Quick review of neural excitability. Resting Membrane Potential. BRAIN POWER: non-invasive brain stimulation in neurorehabilitation

Size: px
Start display at page:

Download "Quick review of neural excitability. Resting Membrane Potential. BRAIN POWER: non-invasive brain stimulation in neurorehabilitation"

Transcription

1 BRAIN POWER: non-invasive brain stimulation in neurorehabilitation Quick review of neural excitability Edelle [Edee] Field-Fote, PT, PhD, FAPTA Director of Spinal Cord Injury Research Shepherd Center Crawford Research Institute Changes in synaptic efficacy underlie changes in neural excitability and responsiveness Resting Membrane Potential Potential Difference Across Cell Membrane...Due to: 1. Inequality of ion concentrations on different sides of membrane. 2. Selective permeability of membrane to different ions. Generally between -80mV to -60mV Kandel, Schwartz & Jessell, Principles of Neural Science, 2000 Changes in synaptic efficacy underlie retention of practice effects RMP maintained by ion channels. When membrane potential is altered by ion flux, the RMP is restored by ion pumps... Ion Channels: permit passive diffusion of specific ions down their concentration ([ ]) gradient. Ion Pumps: actively moves ions against their [ ] gradient. Kandel, Schwartz & Jessell, Principles of Neural Science,

2 Ion Pump: creates [ ] gradient Cellular Excitation axon dendrite receptor Actively moves ions against their [ ] gradient Derives energy by hydrolyzing ATP to ADP Ion channels are gated by different mechanisms they may respond to voltage, chemical, mechanical, or thermal changes. Ion channels: Mechanisms of selectivity 1. Different pore diameters. 2. Different charge characteristics at pore entrance or within channel. Selectivity is incomplete but relatively specific for ions important in excitation States of the voltage-gated cation channel Membrane depolarization results in a rapid transition to the open state Inactivation of Na+ and Ca++ channels (and also some K+ channels) results the channel closure (refractory period) Membrane repolarization leads to recovery from the inactivated state back to the resting state Note: The change from the resting to inactivated state is also possible without channel opening such as during slow depolarization (ie, accommodation) Ion channels: Mechanisms of activity 3. Channels are molecularly similar but come in many flavors. 4. Channels are modulated by NTs. 5. Nature of the response depends on ion channel (not NT). 6. Reminder: extracellular Ca++ is essential for NT release Cellular Excitation Depolarization: membrane potential becomes less negative (less polarized) Hyperpolarization: membrane potential becomes more negative (more polarized) Information is digitized at the axon hillock. 2

3 Correlation between increases in cortical excitability and motor performance History of Transcranial Direct Current Stimulation (tdcs) Giovani Aldini (nephew of Galvani) in 1804 reported successful treatment of melancholia with DC currents to the head. Kim et al, 2006 Mechanisms underlying priming are timing-dependent Gating: rapid mechanisms via disinhibition of intracortical inhibitory circuits ( presynaptic Ca 2+ ) Approach: apply stimulation concurrently with activity Homeostatic plasticity: postsynaptic NMDA receptor modulation stabilizes excitability Approach: apply stimulation prior to activity tdcs changes membrane potential Direct current (unidirectional) polarizes tissue (change in membrane potential) Two electrodes Active positioned on target site Reference positioned elsewhere Current provided by battery-driven device Current passes through intervening tissue Anodal DC depolarizes tissue Modulating cortical excitability: tdcs Current under the anode induces a lack of positive ions near the basal part of the neural membrane, inducing depolarization of this part of the membrane. The excitability of the neuron is brought closer to threshold (depolarized), increasing background activity (anodal activation) Depolarization activates Ca and Na+ channels 3

4 Cathodal DC depolarizes tissue D Arsonval Cage The current under the cathode induces an excess of positive ions near the basal part of the neural membrane The excitability of the neuron is further from threshold (hyperpolarized), decreasing background activity (cathodal suppression) Hyperpolarization inactivates Ca and Na channels Modulating cortical excitability: TMS Transcranial magnetic stimulation (TMS) causes discharge of action potential(s) Faraday s law A time-varying current (di/dt) in a wire loop will induce a magnetic field (B) The magnetic field will induce an electromotive force ( ) in an adjacent conductor History of TMS 1896 D Arsonval introduced idea that nerve cells could be excited by magnetic fields (dizzyness and phosphenes) First published record of a human muscle response to magnetic brain stimulation 1965 Brickford and Fremming considered that currents of sufficient magnitude could stimulate cortical structures 1980 Merton and Morton demonstrated that muscles can be directly stimulated by magnetic fields 1985 Barker demonstrated that human brain can be stimulated by magnetic pulses (Barker et al. 1985) 4

5 Biophysics of TMS: electromagnetic induction Influence of tissue interactions on neural effects of TMS shorter axons, and areas of bending = lower thresholds Wagner et al. Cortex, 2009 Wagner et al. Cortex, 2009 Biophysics of TMS: coil location & orientation Biophysics of magnetic stimulation Wagner et al. Cortex, 2009 Biophysics of TMS: stimulation depth Direction of current flow follows right-hand rule Wagner et al. Cortex,

6 Corticospinal tract Safety Implanted metal in the head Hxof seizure Hx of head trauma Headache 1+ milion fibers Mostly small fiber diameter Betz cells large diameter fibers 30% originates in motor cortex Central recruitment order The induced electric field A. Shape of the inducting coil The recruitment order of spinal motoneurons under increasing voluntary or reflex drive is related to their physical size (Henneman s size principle). B. Location and orientation of the coil with respect to the tissue C. Electrical conductivity structure of the tissue Neurophysiology of single pulse TMS (corticomotor excitability) single- & paired-pulse TMS Repetitive TMS (rtms) Modulatory ( virtual lesion ) rtms Modulatory rtms (clinical uses) Theta-burst stimulation 6

7 COIL POSITIONING Mental practice improves function and promotes cortical plasticity Pascual-Leone et al J Neurophysiol. 1995; 74: Measures of cortical excitability Motor evoked potential (MEP) Intracortical facilitation Intracortical inhibition Why be Interested in Sensory Cortex? It contributes to corticospinal tract Dum & Strick. Physiol Behav, 2002 Projections from sensory to motor cortex by neurons activated from group I muscle afferents Clinically accessible approaches to increasing cortical activation Zarzecki, Shinoda& Asanuma. Exp Brain Res,

8 Sensory input influences corticomotor excitability e2 TENS: what frequency is best? Both low-rate (4Hz)/ high-width TENS and high-rate (100Hz), lowwidth TENS activated the large sensory fibers Asanuma & Mackel Jpn J Physiol, Radhakrishnan R, Sluka KA. J Pain, 2005 Cortical excitability is increased with sensory stimulation TENS improves hand sensory function in individuals with MS (but not ND individuals) Pre MEP Post MEP Ridding et al, Exp Brain Res, 2000 Cuyers et al. Neurorehabil Neural Repair, 2010 TENS to APB 100 Hz 250 µs pulse width 21 days 1hr/day N = 24, 12/group TENS to hand muscle increases size of cortical hand map in ND subjects Transcranial Magnetic Stimulation (TMS) (Magnetically) Induced electrical stimulation Activation of structures oriented horizontal to coil Pyramidal cells through interneuron activation Motor evoked potential Meesen et al. Human Brain Mapping, 2010 (Merabet, Pascual-Leone, 2009; Davey et al, 1999) 8

9 Slide 46 e2 spell abbreviation out the first time efield, 01/04/2011

10 Cortically Evoked Potentials after SCI MEP at 60%MSO in ND individual MEP at 90% MSO in individual incomplete cervical SCI wit Reorganization of cortical map Hoffman & Field-Fote. Phys Ther, 2007 Change in hand function is associated with change in cortical excitability Somatosensory stimulation as an accessible approach to augmenting hand practice Sample thenar MEPs at 80% MSO (avg of 5 traces) Beekhuizen &Field-Fote. Arch Phys Med Rehabil, 2008 TMS cortical mapping to assess cortical plasticity Approaches for direct cortical stimulation Repetitive transcranial magnetic stimulation Activates neurons Studies in persons with stroke High frequency Transcranial direct current stimulation (tdcs) Modulates neuronal excitability Studies in persons with stroke anodal vscathodal 9

11 tdcs represents a clinically accessible approach to direct cortical stimulation Anodal= EXCITATION Cathodal= INHIBITION ANODE CATHODE Bi-hemispheric (anodal/cathodal) more effective than uni-hemispheric (ND subjects) (Fregni & Pascual-Leone, 2007) Vines et al. BMC Neurosci, 2008 Is direct cortical activation more beneficial than indirect (somatosensory) activation? Transcranial direct current stimulation (tdcs) Electrodes applied to the scalp Simple unidirectional direct current 1 ma current Session time: 20 min Mild adverse effects (itching), non-invasive, painless Bihemispheric anodal tdcs Cervical Spinal Cord Injury - Bilateral upper extremity impairment - What about bilateral excitatory stimulation? Uni-hemispheric tdcs in stroke Safety / preliminary efficacy tested in ND subjects Boggio et al. Rest Neurol Neurosci, 2007 Gomes-Osman & Field-Fote. J Motor Behav,

12 Bihemispheric anodal tdcs Methods/Research Design Bilateral anodal corticomotor tdcs (1 ma, 20 min) or sham Outcome Measures: BT and STM tasks OR T E S T I N G MOTOR TRAINING T E S T I N G OR SESSION 30 MIN BREAK T E S T I N G ONE SESSION PER WEEK 3 SESSIONS TOTAL OUTCOME MEASURES Active MEP Threshold Pinch Grip Strength Visuomotor Tracking Task 9-hole peg test Bimanual finger-sequencing scores Third Study- Rationale * Gomes-Osman & Field-Fote. J Motor Behav, 2013 Specific contribution of M1 to voluntary movement Methods/ Research Design Inclusion criteria individuals with a cervical SCI (at least 1 year post-injury), ability to produce visible twitch of thumb Exclusion criteria neurological, orthopedic or cognitive conditions that would affect performance Cross-over, randomized single blind study with concealed allocation Feasibility study no control/comparison group Is direct cortical activation more effective than indirect (somatosensory) activation? Assessment of clinically available approaches tdcs Vibration TENS 11

13 tdcs is associated with most effect TENS also influenced function Spike timing-dependent plasticity for enhanced corticospinal transmission * * * * Dashed line= moderate effect size Gomes-Osman & Field-Fote. J Neurol Phys Ther, 2015 Bunday & Perez. Current Biology, 2012: 22: EVEREST Study Overview Lab-based approaches to increasing cortical activation Phase III, RCT of patients with chronic hemiparesis Targeted cortical stimulation during intensive rehab Randomize 151 subjects (100 implanted, 51 control) 21 sites Primary OMs: Composite endpoint at 4 weeks post Upper extremity Fugl-Meyer (UEFM) Arm Motor Ability Test (AMAT) Secondary outcome at 24 weeks Targeted primary efficacy endpoint: 20% difference between groups Summing cortical & spinal stimulation Outcomes Safety confirmed no adverse effects At 4 weeks (primary end point) clinically meaningful improvements did not meet criteria of 20% difference: 30.8% of patients receiving stim + MP 29.1% of patients MP only At 25 weeks, significantly greater AMAT improvement in stim + MP group Questions raised about dosing levels (EVEREST investigator, Robert Levy) 12

14 rtms in SCI and ND High frequency rtms 10Hz [excitatory]) 80% biceps RMT EVEREST Trial (Phase III) Northstar Neuroscience Cortical hand site identified via fmri Epidural electrode placed over cortical target site Implantable pulse generator Overnight hospital stay Subthreshold stimulation Stim on only during rehab (Pascual-Leone, 1994; Beradelli et al, 1998; Butefish et al, 2004; Kim et al, 2006; Tallelli & Rothwell, 2006) rtms is associated with improved functional scores in persons with SCI rtms in Stroke Dashed line indicates threshold for moderate effect size Gomes-Osman & Field-Fote. Clin Rehabil, 2014 Implanted cortical stimulation Theta-burst stimulation Phase 1: Adams RCT, non-blinded, multicenter study of safety and secondarily of efficacy of subthreshold cortical stimulation with rehabilitation N = 8 (4 control, 4 investigational) Phase II: Baker RCT, blinded, targeted cortical stimulation during intensive rehabilitation for chronic post-stroke hemiparesis N = 24 (12 control, 12 investigational) Outcomes: combined Adams & Baker results Clinically Meaningful Changes ( 3.5 points) in UEFM 75% of stim + MP group showed improvement Significantly more (p< 0.01) than in MP only group Conclusions: Efficacy evaluation suggests that cortical stim+mp improves hand/arm function over rehabilitation alone at primary (4 week) and secondary (3 and 6month) endpoints. 13

15 Activity-dependent accumulation of AMPARs at a perisynaptic site Training itself is an approach to changing neural excitability Yunlei Yang et al. PNAS 2008;105: Conclusions Even in chronic CNS injury there is potential for improvement of hand function. Should we train the brain to reflexes or to voluntary control? Both stimulation & training affect neural structures that underlie movement effects may be additive. There are changes in cortical neurophysiologic measures associated with functional change. Clinically available devices can be employed 3 baseline sessions 300 repetitions/session 12 training sessions (3/wk x 4 wks) Manella, Roach, Field-Fote. J Neurophys, 2013 Neuroplasticity Alterations in the nervous system in response to experience Repeated experience practice May be adaptive or maladaptive Training to voluntary control vs. to reflexes which is associated with greater benefit? Requirements Sufficient intensity Sufficient time } DOSE Manella, Roach, Field-Fote. J Neurophys,

16 Sample SOL Outcome H-reflex M-wave Manella & Field-Fote. J Neurophys, 2013 Outcomes reflexes, strength, walking, EMG TA SOL TA %MVC amplitude Stretch reflex threshold Active dorsiflexor ROM Dorsiflexor strength Step height in walking ** 2MinWT distance TA/SOL co-activation **significant between-group diff Manella, Roach, Field-Fote. J Neurophys, 2013 Outcomes EMG, clinical, walking, reflexes Manella, Roach, Field-Fote. J Neurophys,

Roadmap: neuroplasticity and motor learning

Roadmap: neuroplasticity and motor learning Advanced rehabilitation strategies to optimize neurological recovery after SCI Edelle C. Field-Fote, PhD, PT, FAPTA Professor, Physical Therapy & Neurological Surgery Principal Investigator, The Miami

More information

Introduction to TMS Transcranial Magnetic Stimulation

Introduction to TMS Transcranial Magnetic Stimulation Introduction to TMS Transcranial Magnetic Stimulation Lisa Koski, PhD, Clin Psy TMS Neurorehabilitation Lab Royal Victoria Hospital 2009-12-14 BIC Seminar, MNI Overview History, basic principles, instrumentation

More information

STRUCTURAL ELEMENTS OF THE NERVOUS SYSTEM

STRUCTURAL ELEMENTS OF THE NERVOUS SYSTEM STRUCTURAL ELEMENTS OF THE NERVOUS SYSTEM STRUCTURE AND MAINTENANCE OF NEURONS (a) (b) Dendrites Cell body Initial segment collateral terminals (a) Diagrammatic representation of a neuron. The break in

More information

Roadmap Neuroplasticity

Roadmap Neuroplasticity REACTIVATE, REWIRE, RESTORE: challenging the nervous system to optimize function after SCI Edelle [Edee] Field-Fote, PT, PhD, FAPTA Director of Spinal Cord Injury Research Shepherd Center Crawford Research

More information

The EVEREST Study Dr. Robert Levy, MD, PhD

The EVEREST Study Dr. Robert Levy, MD, PhD The EVEREST Study Safety and Effectiveness of Cortical Stimulation in the Treatment of Upper Extremity Hemiparesis Dr. Robert Levy, MD, PhD Departments of Neurosurgery and Physiology Feinberg School of

More information

Introduction to Neurobiology

Introduction to Neurobiology Biology 240 General Zoology Introduction to Neurobiology Nervous System functions: communication of information via nerve signals integration and processing of information control of physiological and

More information

Using Stimulation and Repetitive Task Practice to Promote Neuroplasticity Targeted at Improving Hand Function in Individuals with Chronic Tetraplegia.

Using Stimulation and Repetitive Task Practice to Promote Neuroplasticity Targeted at Improving Hand Function in Individuals with Chronic Tetraplegia. University of Miami Scholarly Repository Open Access Dissertations Electronic Theses and Dissertations 2013-12-12 Using Stimulation and Repetitive Task Practice to Promote Neuroplasticity Targeted at Improving

More information

Water immersion modulates sensory and motor cortical excitability

Water immersion modulates sensory and motor cortical excitability Water immersion modulates sensory and motor cortical excitability Daisuke Sato, PhD Department of Health and Sports Niigata University of Health and Welfare Topics Neurophysiological changes during water

More information

Chapter 7 Nerve Cells and Electrical Signaling

Chapter 7 Nerve Cells and Electrical Signaling Chapter 7 Nerve Cells and Electrical Signaling 7.1. Overview of the Nervous System (Figure 7.1) 7.2. Cells of the Nervous System o Neurons are excitable cells which can generate action potentials o 90%

More information

NEURONS Chapter Neurons: specialized cells of the nervous system 2. Nerves: bundles of neuron axons 3. Nervous systems

NEURONS Chapter Neurons: specialized cells of the nervous system 2. Nerves: bundles of neuron axons 3. Nervous systems NEURONS Chapter 12 Figure 12.1 Neuronal and hormonal signaling both convey information over long distances 1. Nervous system A. nervous tissue B. conducts electrical impulses C. rapid communication 2.

More information

Chapter 11: Nervous System and Nervous Tissue

Chapter 11: Nervous System and Nervous Tissue Chapter 11: Nervous System and Nervous Tissue I. Functions and divisions of the nervous system A. Sensory input: monitor changes in internal and external environment B. Integrations: make decisions about

More information

Function of the Nervous System

Function of the Nervous System Nervous System Function of the Nervous System Receive sensory information, interpret it, and send out appropriate commands to form a response Composed of neurons (functional unit of the nervous system)

More information

Nerve. (2) Duration of the stimulus A certain period can give response. The Strength - Duration Curve

Nerve. (2) Duration of the stimulus A certain period can give response. The Strength - Duration Curve Nerve Neuron (nerve cell) is the structural unit of nervous system. Nerve is formed of large numbers of nerve fibers. Types of nerve fibers Myelinated nerve fibers Covered by myelin sheath interrupted

More information

Neurons, Synapses, and Signaling

Neurons, Synapses, and Signaling Neurons, Synapses, and Signaling The Neuron is the functional unit of the nervous system. Neurons are composed of a cell body, which contains the nucleus and organelles; Dendrites which are extensions

More information

Chapter 4 Neuronal Physiology

Chapter 4 Neuronal Physiology Chapter 4 Neuronal Physiology V edit. Pg. 99-131 VI edit. Pg. 85-113 VII edit. Pg. 87-113 Input Zone Dendrites and Cell body Nucleus Trigger Zone Axon hillock Conducting Zone Axon (may be from 1mm to more

More information

MOLECULAR AND CELLULAR NEUROSCIENCE

MOLECULAR AND CELLULAR NEUROSCIENCE MOLECULAR AND CELLULAR NEUROSCIENCE BMP-218 November 4, 2014 DIVISIONS OF THE NERVOUS SYSTEM The nervous system is composed of two primary divisions: 1. CNS - Central Nervous System (Brain + Spinal Cord)

More information

Implantable Microelectronic Devices

Implantable Microelectronic Devices ECE 8803/4803 Implantable Microelectronic Devices Fall - 2015 Maysam Ghovanloo (mgh@gatech.edu) School of Electrical and Computer Engineering Georgia Institute of Technology 2015 Maysam Ghovanloo 1 Outline

More information

ANATOMY AND PHYSIOLOGY OF NEURONS. AP Biology Chapter 48

ANATOMY AND PHYSIOLOGY OF NEURONS. AP Biology Chapter 48 ANATOMY AND PHYSIOLOGY OF NEURONS AP Biology Chapter 48 Objectives Describe the different types of neurons Describe the structure and function of dendrites, axons, a synapse, types of ion channels, and

More information

Outline. Neuron Structure. Week 4 - Nervous System. The Nervous System: Neurons and Synapses

Outline. Neuron Structure. Week 4 - Nervous System. The Nervous System: Neurons and Synapses Outline Week 4 - The Nervous System: Neurons and Synapses Neurons Neuron structures Types of neurons Electrical activity of neurons Depolarization, repolarization, hyperpolarization Synapses Release of

More information

Chapter 11 Introduction to the Nervous System and Nervous Tissue Chapter Outline

Chapter 11 Introduction to the Nervous System and Nervous Tissue Chapter Outline Chapter 11 Introduction to the Nervous System and Nervous Tissue Chapter Outline Module 11.1 Overview of the Nervous System (Figures 11.1-11.3) A. The nervous system controls our perception and experience

More information

Portions from Chapter 6 CHAPTER 7. The Nervous System: Neurons and Synapses. Chapter 7 Outline. and Supporting Cells

Portions from Chapter 6 CHAPTER 7. The Nervous System: Neurons and Synapses. Chapter 7 Outline. and Supporting Cells CHAPTER 7 The Nervous System: Neurons and Synapses Chapter 7 Outline Neurons and Supporting Cells Activity in Axons The Synapse Acetylcholine as a Neurotransmitter Monoamines as Neurotransmitters Other

More information

THE NERVOUS SYSTEM. Homeostasis Strand

THE NERVOUS SYSTEM. Homeostasis Strand THE NERVOUS SYSTEM Homeostasis Strand Introduction In general, a nervous system has three overlapping functions : 1. Sensory input conduction of signals from sensory receptors to integration centres 2.

More information

5-Nervous system II: Physiology of Neurons

5-Nervous system II: Physiology of Neurons 5-Nervous system II: Physiology of Neurons AXON ION GRADIENTS ACTION POTENTIAL (axon conduction) GRADED POTENTIAL (cell-cell communication at synapse) SYNAPSE STRUCTURE & FUNCTION NEURAL INTEGRATION CNS

More information

Applied Neuroscience. Conclusion of Science Honors Program Spring 2017

Applied Neuroscience. Conclusion of Science Honors Program Spring 2017 Applied Neuroscience Conclusion of Science Honors Program Spring 2017 Review Circle whichever is greater, A or B. If A = B, circle both: I. A. permeability of a neuronal membrane to Na + during the rise

More information

Neurons. Pyramidal neurons in mouse cerebral cortex expressing green fluorescent protein. The red staining indicates GABAergic interneurons.

Neurons. Pyramidal neurons in mouse cerebral cortex expressing green fluorescent protein. The red staining indicates GABAergic interneurons. Neurons Pyramidal neurons in mouse cerebral cortex expressing green fluorescent protein. The red staining indicates GABAergic interneurons. MBL, Woods Hole R Cheung MSc Bioelectronics: PGEE11106 1 Neuron

More information

Non-therapeutic and investigational uses of non-invasive brain stimulation

Non-therapeutic and investigational uses of non-invasive brain stimulation Non-therapeutic and investigational uses of non-invasive brain stimulation Robert Chen, MA, MBBChir, MSc, FRCPC Catherine Manson Chair in Movement Disorders Professor of Medicine (Neurology), University

More information

Trans-spinal direct current stimulation: a novel tool to promote plasticity in humans

Trans-spinal direct current stimulation: a novel tool to promote plasticity in humans Trans-spinal direct current stimulation: a novel tool to promote plasticity in humans Jean-Charles Lamy, PhD Brain and Spine Institute, Paris 1 Background Grecco et al., J Neuroresto, 2015 2 Background:

More information

Thursday, January 22, Nerve impulse

Thursday, January 22, Nerve impulse Nerve impulse Transmembrane Potential caused by ions moving through cell membrane at different rates Two main ions of concern Na + - Sodium K + - potassium Cell membrane not freely permeable therefore

More information

Outline. Animals: Nervous system. Neuron and connection of neurons. Key Concepts:

Outline. Animals: Nervous system. Neuron and connection of neurons. Key Concepts: Animals: Nervous system Neuron and connection of neurons Outline 1. Key concepts 2. An Overview and Evolution 3. Human Nervous System 4. The Neurons 5. The Electrical Signals 6. Communication between Neurons

More information

Chapter 2. The Cellular and Molecular Basis of Cognition Cognitive Neuroscience: The Biology of the Mind, 2 nd Ed.,

Chapter 2. The Cellular and Molecular Basis of Cognition Cognitive Neuroscience: The Biology of the Mind, 2 nd Ed., Chapter 2. The Cellular and Molecular Basis of Cognition Cognitive Neuroscience: The Biology of the Mind, 2 nd Ed., M. S. Gazzaniga, R. B. Ivry, and G. R. Mangun, Norton, 2002. Summarized by B.-W. Ku,

More information

Endocrine System Nervous System

Endocrine System Nervous System Cells Endocrine System Nervous System Tissues Controls Organs Nervous System vs Endocrine System Electrical signals (graded potentials and action potentials) and chemical signals (neurotransmitters) Fast

More information

What is Anatomy and Physiology?

What is Anatomy and Physiology? Introduction BI 212 BI 213 BI 211 Ecosystems Organs / organ systems Cells Organelles Communities Tissues Molecules Populations Organisms Campbell et al. Figure 1.4 Introduction What is Anatomy and Physiology?

More information

CSE 599E Lecture 2: Basic Neuroscience

CSE 599E Lecture 2: Basic Neuroscience CSE 599E Lecture 2: Basic Neuroscience 1 Today s Roadmap The neuron doctrine (or dogma) Neuronal signaling The electrochemical dance of ions Action Potentials (= spikes) Synapses and Synaptic Plasticity

More information

Neural Basis of Motor Control

Neural Basis of Motor Control Neural Basis of Motor Control Central Nervous System Skeletal muscles are controlled by the CNS which consists of the brain and spinal cord. Determines which muscles will contract When How fast To what

More information

CHAPTER 44: Neurons and Nervous Systems

CHAPTER 44: Neurons and Nervous Systems CHAPTER 44: Neurons and Nervous Systems 1. What are the three different types of neurons and what are their functions? a. b. c. 2. Label and list the function of each part of the neuron. 3. How does the

More information

BIOLOGY 2050 LECTURE NOTES ANATOMY & PHYSIOLOGY I (A. IMHOLTZ) FUNDAMENTALS OF THE NERVOUS SYSTEM AND NERVOUS TISSUE P1 OF 5

BIOLOGY 2050 LECTURE NOTES ANATOMY & PHYSIOLOGY I (A. IMHOLTZ) FUNDAMENTALS OF THE NERVOUS SYSTEM AND NERVOUS TISSUE P1 OF 5 P1 OF 5 The nervous system controls/coordinates the activities of cells, tissues, & organs. The endocrine system also plays a role in control/coordination. The nervous system is more dominant. Its mechanisms

More information

Lecture 22: A little Neurobiology

Lecture 22: A little Neurobiology BIO 5099: Molecular Biology for Computer Scientists (et al) Lecture 22: A little Neurobiology http://compbio.uchsc.edu/hunter/bio5099 Larry.Hunter@uchsc.edu Nervous system development Part of the ectoderm

More information

Nervous System. 2. Receives information from the environment from CNS to organs and glands. 1. Relays messages, processes info, analyzes data

Nervous System. 2. Receives information from the environment from CNS to organs and glands. 1. Relays messages, processes info, analyzes data Nervous System 1. Relays messages, processes info, analyzes data 2. Receives information from the environment from CNS to organs and glands 3. Transmits impulses from CNS to muscles and glands 4. Transmits

More information

The Nervous System. Nervous System Functions 1. gather sensory input 2. integration- process and interpret sensory input 3. cause motor output

The Nervous System. Nervous System Functions 1. gather sensory input 2. integration- process and interpret sensory input 3. cause motor output The Nervous System Nervous System Functions 1. gather sensory input 2. integration- process and interpret sensory input 3. cause motor output The Nervous System 2 Parts of the Nervous System 1. central

More information

Electrical Properties of Neurons. Steven McLoon Department of Neuroscience University of Minnesota

Electrical Properties of Neurons. Steven McLoon Department of Neuroscience University of Minnesota Electrical Properties of Neurons Steven McLoon Department of Neuroscience University of Minnesota 1 Neuronal Communication Neurons communicate with other cells, often over long distances. The electrical

More information

Electrophysiology. General Neurophysiology. Action Potentials

Electrophysiology. General Neurophysiology. Action Potentials 5 Electrophysiology Cochlear implants should aim to reproduce the coding of sound in the auditory system as closely as possible, for best sound perception. The cochlear implant is in part the result of

More information

Endocrine System Nervous System

Endocrine System Nervous System Cells Endocrine System Nervous System Tissues Controls Organs Nervous System vs Endocrine System Electrical signals (graded potentials and action potentials) and chemical signals (neurotransmitters) Fast

More information

Omar Sami. Muhammad Abid. Muhammad khatatbeh

Omar Sami. Muhammad Abid. Muhammad khatatbeh 10 Omar Sami Muhammad Abid Muhammad khatatbeh Let s shock the world In this lecture we are going to cover topics said in previous lectures and then start with the nerve cells (neurons) and the synapses

More information

6.5 Nerves, Hormones and Homeostasis

6.5 Nerves, Hormones and Homeostasis 6.5 Nerves, Hormones and Homeostasis IB Biology SL Part 1 - Nerves Outcomes Part 1 6.5.1State that the nervous system consists of the central nervous system (CNS) and peripheral nerves, and is composed

More information

Chapter 2. The Cellular and Molecular Basis of Cognition

Chapter 2. The Cellular and Molecular Basis of Cognition Chapter 2. The Cellular and Molecular Basis of Cognition Cognitive Neuroscience: The Biology of the Mind, 2 nd Ed., M. S. Gazzaniga,, R. B. Ivry,, and G. R. Mangun,, Norton, 2002. Summarized by B.-W. Ku,

More information

Paired-Pulse TMS to one Brain Region. Joyce Gomes-Osman Research Fellow Berenson-Allen Center for Non-Invasive Stimulation LEASE DO NOT COPY

Paired-Pulse TMS to one Brain Region. Joyce Gomes-Osman Research Fellow Berenson-Allen Center for Non-Invasive Stimulation LEASE DO NOT COPY Paired-Pulse TMS to one Brain Region Joyce Gomes-Osman Research Fellow Berenson-Allen Center for Non-Invasive Stimulation Paired-Pulse Paradigms Sequential pulses applied to the same cortical region Variable

More information

The Nervous System 12/11/2015

The Nervous System 12/11/2015 The Nervous System Biology 12 Unit 3: Homeostasis December 11, 2015 The nervous system is an elaborate communication system that contains more than 100 billion nerve cells in the brain alone There are

More information

LESSON 3.3 WORKBOOK. Why does applying pressure relieve pain?

LESSON 3.3 WORKBOOK. Why does applying pressure relieve pain? Postsynaptic potentials small changes in voltage (membrane potential) due to the binding of neurotransmitter. Receptor-gated ion channels ion channels that open or close in response to the binding of a

More information

Neurophysiological Basis of TMS Workshop

Neurophysiological Basis of TMS Workshop Neurophysiological Basis of TMS Workshop Programme 31st March - 3rd April 2017 Sobell Department Institute of Neurology University College London 33 Queen Square London WC1N 3BG Brought to you by 31 March

More information

Version A. AP* Biology: Nervous System. Questions 1 and 2. Name: Period

Version A. AP* Biology: Nervous System. Questions 1 and 2. Name: Period Name: Period Version A AP* Biology: Nervous System Directions: Each of the questions or incomplete statements below is followed by four suggested answers or completions. Select the one that is best in

More information

THE HISTORY OF NEUROSCIENCE

THE HISTORY OF NEUROSCIENCE THE HISTORY OF NEUROSCIENCE BIOLOGICAL ASPECTS OF BEHAVIOR: THE NEURON & NEURAL COMMUNICATION NERVOUS SYSTEM Combined activity of the brain, spinal cord & other nerve fibers Acts as an information processing

More information

Nervous System. Master controlling and communicating system of the body. Secrete chemicals called neurotransmitters

Nervous System. Master controlling and communicating system of the body. Secrete chemicals called neurotransmitters Nervous System Master controlling and communicating system of the body Interacts with the endocrine system to control and coordinate the body s responses to changes in its environment, as well as growth,

More information

Summarized by B.-W. Ku, E. S. Lee, and B.-T. Zhang Biointelligence Laboratory, Seoul National University.

Summarized by B.-W. Ku, E. S. Lee, and B.-T. Zhang Biointelligence Laboratory, Seoul National University. Chapter 2. The Cellular l and Molecular Basis of Cognition Cognitive Neuroscience: The Biology of the Mind, 3 rd Ed., M. S. Gazzaniga, R. B. Ivry, and G. R. Mangun, Norton, 2008. Summarized by B.-W. Ku,

More information

Part 11: Mechanisms of Learning

Part 11: Mechanisms of Learning Neurophysiology and Information: Theory of Brain Function Christopher Fiorillo BiS 527, Spring 2012 042 350 4326, fiorillo@kaist.ac.kr Part 11: Mechanisms of Learning Reading: Bear, Connors, and Paradiso,

More information

Na + K + pump. The beauty of the Na + K + pump. Cotransport. The setup Cotransport the result. Found along the plasma membrane of all cells.

Na + K + pump. The beauty of the Na + K + pump. Cotransport. The setup Cotransport the result. Found along the plasma membrane of all cells. The beauty of the Na + K + pump Na + K + pump Found along the plasma membrane of all cells. Establishes gradients, controls osmotic effects, allows for cotransport Nerve cells have a Na + K + pump and

More information

Naoyuki Takeuchi, MD, PhD 1, Takeo Tada, MD, PhD 2, Masahiko Toshima, MD 3, Yuichiro Matsuo, MD 1 and Katsunori Ikoma, MD, PhD 1 ORIGINAL REPORT

Naoyuki Takeuchi, MD, PhD 1, Takeo Tada, MD, PhD 2, Masahiko Toshima, MD 3, Yuichiro Matsuo, MD 1 and Katsunori Ikoma, MD, PhD 1 ORIGINAL REPORT J Rehabil Med 2009; 41: 1049 1054 ORIGINAL REPORT REPETITIVE TRANSCRANIAL MAGNETIC STIMULATION OVER BILATERAL HEMISPHERES ENHANCES MOTOR FUNCTION AND TRAINING EFFECT OF PARETIC HAND IN PATIENTS AFTER STROKE

More information

D) around, bypassing B) toward

D) around, bypassing B) toward Nervous System Practice Questions 1. Which of the following are the parts of neurons? A) brain, spinal cord, and vertebral column B) dendrite, axon, and cell body C) sensory and motor D) cortex, medulla

More information

TMS: Full Board or Expedited?

TMS: Full Board or Expedited? TMS: Full Board or Expedited? Transcranial Magnetic Stimulation: - Neurostimulation or neuromodulation technique based on the principle of electro-magnetic induction of an electric field in the brain.

More information

The Three Pearls DOSE FUNCTION MOTIVATION

The Three Pearls DOSE FUNCTION MOTIVATION The Three Pearls DOSE FUNCTION MOTIVATION Barriers to Evidence-Based Neurorehabilitation No placebo pill for training therapy Blinded studies often impossible Outcome measures for movement, language, and

More information

10.1: Introduction. Cell types in neural tissue: Neurons Neuroglial cells (also known as neuroglia, glia, and glial cells) Dendrites.

10.1: Introduction. Cell types in neural tissue: Neurons Neuroglial cells (also known as neuroglia, glia, and glial cells) Dendrites. 10.1: Introduction Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Cell types in neural tissue: Neurons Neuroglial cells (also known as neuroglia, glia, and glial

More information

Ameen Alsaras. Ameen Alsaras. Mohd.Khatatbeh

Ameen Alsaras. Ameen Alsaras. Mohd.Khatatbeh 9 Ameen Alsaras Ameen Alsaras Mohd.Khatatbeh Nerve Cells (Neurons) *Remember: The neural cell consists of: 1-Cell body 2-Dendrites 3-Axon which ends as axon terminals. The conduction of impulse through

More information

All questions below pertain to mandatory material: all slides, and mandatory homework (if any).

All questions below pertain to mandatory material: all slides, and mandatory homework (if any). ECOL 182 Spring 2008 Dr. Ferriere s lectures Lecture 6: Nervous system and brain Quiz Book reference: LIFE-The Science of Biology, 8 th Edition. http://bcs.whfreeman.com/thelifewire8e/ All questions below

More information

EE 791 Lecture 2 Jan 19, 2015

EE 791 Lecture 2 Jan 19, 2015 EE 791 Lecture 2 Jan 19, 2015 Action Potential Conduction And Neural Organization EE 791-Lecture 2 1 Core-conductor model: In the core-conductor model we approximate an axon or a segment of a dendrite

More information

LESSON 3.3 WORKBOOK. Why does applying pressure relieve pain? Workbook. Postsynaptic potentials

LESSON 3.3 WORKBOOK. Why does applying pressure relieve pain? Workbook. Postsynaptic potentials Depolarize to decrease the resting membrane potential. Decreasing membrane potential means that the membrane potential is becoming more positive. Excitatory postsynaptic potentials (EPSP) graded postsynaptic

More information

Nervous Tissue and Neurophysiology

Nervous Tissue and Neurophysiology Nervous Tissue and Neurophysiology Objectives Describe the two major divisions of the nervous system and their characteristics. Identify the structures/functions of a typical neuron. Describe the location

More information

Introduction to Physiological Psychology

Introduction to Physiological Psychology Introduction to Physiological Psychology Review Kim Sweeney ksweeney@cogsci.ucsd.edu www.cogsci.ucsd.edu/~ksweeney/psy260.html Today n Discuss Final Paper Proposal (due 3/10) n General Review 1 The article

More information

Nervous System Dr. Naim Kittana Department of Biomedical Sciences Faculty of Medicine & Health Sciences An-Najah National University

Nervous System Dr. Naim Kittana Department of Biomedical Sciences Faculty of Medicine & Health Sciences An-Najah National University Nervous System Department of Biomedical Sciences Faculty of Medicine & Health Sciences An-Najah National University Declaration The content and the figures of this seminar were directly adopted from the

More information

Principles of Anatomy and Physiology

Principles of Anatomy and Physiology Principles of Anatomy and Physiology 14 th Edition CHAPTER 12 Nervous Tissue Introduction The purpose of the chapter is to: 1. Understand how the nervous system helps to keep controlled conditions within

More information

Chapter 7. The Nervous System: Structure and Control of Movement

Chapter 7. The Nervous System: Structure and Control of Movement Chapter 7 The Nervous System: Structure and Control of Movement Objectives Discuss the general organization of the nervous system Describe the structure & function of a nerve Draw and label the pathways

More information

Neurophysiology. Corresponding textbook pages: ,

Neurophysiology. Corresponding textbook pages: , Neurophysiology Corresponding textbook pages: 436-440, 442-455 Organization Helps maintain homeostasis in the body Nervous system and endocrine system Nervous system is faster due to nerve impulses 1 Fig.

More information

Chapter 12 Nervous Tissue. Copyright 2009 John Wiley & Sons, Inc. 1

Chapter 12 Nervous Tissue. Copyright 2009 John Wiley & Sons, Inc. 1 Chapter 12 Nervous Tissue Copyright 2009 John Wiley & Sons, Inc. 1 Terms to Know CNS PNS Afferent division Efferent division Somatic nervous system Autonomic nervous system Sympathetic nervous system Parasympathetic

More information

Transcranial Magnetic Stimulation

Transcranial Magnetic Stimulation Transcranial Magnetic Stimulation Scientific evidence in major depression and schizophrenia C.W. Slotema Parnassia Bavo Group The Hague, the Netherlands Faraday s law (1831) Electrical current magnetic

More information

Chapter 7. Objectives

Chapter 7. Objectives Chapter 7 The Nervous System: Structure and Control of Movement Objectives Discuss the general organization of the nervous system Describe the structure & function of a nerve Draw and label the pathways

More information

Primary Functions. Monitor changes. Integrate input. Initiate a response. External / internal. Process, interpret, make decisions, store information

Primary Functions. Monitor changes. Integrate input. Initiate a response. External / internal. Process, interpret, make decisions, store information NERVOUS SYSTEM Monitor changes External / internal Integrate input Primary Functions Process, interpret, make decisions, store information Initiate a response E.g., movement, hormone release, stimulate/inhibit

More information

Neurophysiology scripts. Slide 2

Neurophysiology scripts. Slide 2 Neurophysiology scripts Slide 2 Nervous system and Endocrine system both maintain homeostasis in the body. Nervous system by nerve impulse and Endocrine system by hormones. Since the nerve impulse is an

More information

Can brain stimulation help with relearning movement after stroke?

Can brain stimulation help with relearning movement after stroke? stroke.org.uk Final report summary Can brain stimulation help with relearning movement after stroke? The effect of transcranial direct current stimulation on motor learning after stroke PROJECT CODE: TSA

More information

Chapter 11: Functional Organization of Nervous Tissue

Chapter 11: Functional Organization of Nervous Tissue Chapter 11: Functional Organization of Nervous Tissue I. Functions of the Nervous System A. List and describe the five major nervous system functions: 1. 2. 3. 4. 5. II. Divisions of the Nervous System

More information

Synaptic Transmission: Ionic and Metabotropic

Synaptic Transmission: Ionic and Metabotropic Synaptic Transmission: Ionic and Metabotropic D. Purves et al. Neuroscience (Sinauer Assoc.) Chapters 5, 6, 7. C. Koch. Biophysics of Computation (Oxford) Chapter 4. J.G. Nicholls et al. From Neuron to

More information

Communication within a Neuron

Communication within a Neuron Neuronal Communication, Ph.D. Communication within a Neuron Measuring Electrical Potentials of Axons The Membrane Potential The Action Potential Conduction of the Action Potential 1 The withdrawal reflex

More information

Neurons, Synapses and Signaling. Chapter 48

Neurons, Synapses and Signaling. Chapter 48 Neurons, Synapses and Signaling Chapter 48 Warm Up Exercise What types of cells can receive a nerve signal? Nervous Organization Neurons- nerve cells. Brain- organized into clusters of neurons, called

More information

The Nervous System -The master controlling and communicating system of the body

The Nervous System -The master controlling and communicating system of the body The Nervous System -The master controlling and communicating system of the body Functions: -Sensory input -Integration -Motor output Organization of the Nervous System Central nervous system (CNS) -Brain

More information

BENG 260 Supplementary neurophysiology slides

BENG 260 Supplementary neurophysiology slides BENG 260 Supplementary neurophysiology slides Fall 2013 Slides are taken from Vander s Human Physiology, 11 th edition, McGraw Hill (ISBN 0077216091)" These slides cover:" Chapter 6, Neuronal Signaling

More information

Neurophysiology of Nerve Impulses

Neurophysiology of Nerve Impulses M52_MARI0000_00_SE_EX03.qxd 8/22/11 2:47 PM Page 358 3 E X E R C I S E Neurophysiology of Nerve Impulses Advance Preparation/Comments Consider doing a short introductory presentation with the following

More information

NEURAL TISSUE (NEUROPHYSIOLOGY) PART I (A): NEURONS & NEUROGLIA

NEURAL TISSUE (NEUROPHYSIOLOGY) PART I (A): NEURONS & NEUROGLIA PART I (A): NEURONS & NEUROGLIA Neural Tissue Contains 2 kinds of cells: neurons: cells that send and receive signals neuroglia (glial cells): cells that support and protect neurons Neuron Types Sensory

More information

Chapter Nervous Systems

Chapter Nervous Systems The Nervous System Chapter Nervous Systems Which animals have nervous systems? (Which do not) What are the basic components of a NS? What kind of fish performs brain operations? What differentiates one

More information

tdcs in Clinical Disorders

tdcs in Clinical Disorders HBM Educational course Brain Stimulation: Past, Present and Future Hamburg, June 8th, 2014 tdcs in Clinical Disorders Agnes Flöel NeuroCure Clinical Research Center, Neurology, & Center for Stroke Research

More information

Human Brain and Senses

Human Brain and Senses Human Brain and Senses Outline for today Levels of analysis Basic structure of neurons How neurons communicate Basic structure of the nervous system Levels of analysis Organism Brain Cell Synapses Membrane

More information

Biology 201-Worksheet on Nervous System (Answers are in your power point outlines-there is no key!)

Biology 201-Worksheet on Nervous System (Answers are in your power point outlines-there is no key!) Bio 201 Tissues and Skin 1 March 21, 2011 Biology 201-Worksheet on Nervous System (Answers are in your power point outlines-there is no key!) 1. The study of the normal functioning and disorders of the

More information

Maturation of corticospinal tracts assessed by electromagnetic stimulation of the motor cortex

Maturation of corticospinal tracts assessed by electromagnetic stimulation of the motor cortex Archives of Disease in Childhood, 1988, 63, 1347-1352 Maturation of corticospinal tracts assessed by electromagnetic stimulation of the motor cortex T H H G KOH AND J A EYRE Department of Child Health,

More information

Nervous System. Unit 6.6 (6 th Edition) Chapter 7.6 (7 th Edition)

Nervous System. Unit 6.6 (6 th Edition) Chapter 7.6 (7 th Edition) Nervous System Unit 6.6 (6 th Edition) Chapter 7.6 (7 th Edition) 1 Learning Objectives Identify the main parts (anatomy) of a neuron. Identify the 2 divisions of nervous system. Classify the major types

More information

3) Most of the organelles in a neuron are located in the A) dendritic region. B) axon hillock. C) axon. D) cell body. E) axon terminals.

3) Most of the organelles in a neuron are located in the A) dendritic region. B) axon hillock. C) axon. D) cell body. E) axon terminals. Chapter 48 Neurons, Synapses, and Signaling Multiple-Choice Questions 1) A simple nervous system A) must include chemical senses, mechanoreception, and vision. B) includes a minimum of 12 ganglia. C) has

More information

-Ensherah Mokheemer. -Amani Nofal. -Loai Alzghoul

-Ensherah Mokheemer. -Amani Nofal. -Loai Alzghoul -1 -Ensherah Mokheemer -Amani Nofal -Loai Alzghoul 1 P a g e Today we will start talking about the physiology of the nervous system and we will mainly focus on the Central Nervous System. Introduction:

More information

Quantitative Electrophysiology

Quantitative Electrophysiology ECE 795: Quantitative Electrophysiology Notes for Lecture #10 Wednesday, November 22, 2006 14. FUNDAMENTALS OF FUNCTIONAL ELECTRICAL STIMULATION (FES) We will look at: Design issues for FES Subthreshold

More information

Using Transcranial magnetic stimulation to improve our understanding of Transverse Myelitis

Using Transcranial magnetic stimulation to improve our understanding of Transverse Myelitis Using Transcranial magnetic stimulation to improve our understanding of Transverse Myelitis Kathy Zackowski, PhD, OTR Kennedy Krieger Institute Johns Hopkins University School of Medicine TMS (transcranial

More information

Physiology of the nerve

Physiology of the nerve Physiology of the nerve Objectives Transmembrane potential Action potential Relative and absolute refractory period The all-or-none law Hoorweg Weiss curve Du Bois Reymond principle Types of nerve fibres

More information

Neural Tissue. Chapter 12 Part B

Neural Tissue. Chapter 12 Part B Neural Tissue Chapter 12 Part B CNS Tumors - Neurons stop dividing at age 4 but glial cells retain the capacity to divide. - Primary CNS tumors in adults- division of abnormal neuroglia rather than from

More information

FIRST MIDTERM EXAM October 18, 2011 BILD2

FIRST MIDTERM EXAM October 18, 2011 BILD2 FIRST MIDTERM EXAM October 18, 2011 BILD2 WRITE YOUR NAME ON ALL 6 PAGES. ANSWER ALL 10 QUESTIONS (100 POINTS). CONFINE YOUR ANSWERS TO THE SPACE ALLOWED. If you would like to write on the back of the

More information

Cortical Map Plasticity. Gerald Finnerty Dept Basic and Clinical Neuroscience

Cortical Map Plasticity. Gerald Finnerty Dept Basic and Clinical Neuroscience Cortical Map Plasticity Gerald Finnerty Dept Basic and Clinical Neuroscience Learning Objectives Be able to: 1. Describe the characteristics of a cortical map 2. Appreciate that the term plasticity is

More information

Chapter 2: Cellular Mechanisms and Cognition

Chapter 2: Cellular Mechanisms and Cognition Chapter 2: Cellular Mechanisms and Cognition MULTIPLE CHOICE 1. Two principles about neurons were defined by Ramón y Cajal. The principle of connectional specificity states that, whereas the principle

More information