Radioactive Exposure. Abstract of Article:

Size: px
Start display at page:

Download "Radioactive Exposure. Abstract of Article:"

Transcription

1 Radioactive Exposure Abstract of Article: All ionizing radiations, at sufficiently large exposures, can cause cancer. Many, in carefully controlled exposures, are also used for cancer therapy. Ionizing radiation and radioactivity are found naturally within the environment and their levels depend generally on the distribution of natural radionuclides within the environment. Industrial and medical uses of radiation are beneficial to man. The benefits derived in these cases notwithstanding, use of radiation and radionuclides can be hazardous to man and the environment if such use isn t regulated and exposure to radiation kept within acceptable limits. As radioactive material decays, or breaks down, the energy released into the environment has two ways of harming a body. It can directly kill cells, or it can cause mutations to DNA. If those mutations are not repaired, the cell may turn cancerous. When the radiation damages nearby healthy tissue, it can cause side effects. Many people worry about this part of their cancer treatment. Before treatment, talk with your doctor or nurse about what you might expect.

2 1. Steel- Cradle to grave cycle: Article Writing Competition: Radioactive Exposure

3 2. Radioactive radiation, hazards and risks. There are three major types of natural radioactivity: Alpha Radiation Alpha radiation consists of a stream of positively charged particles, called alpha particles, which have an atomic mass of 4 and a charge of +2 (a helium nucleus). When an alpha particle is ejected from a nucleus, the mass number of the nucleus decreases by four units and the atomic number decreases by two units. For example: U 4 2He Th The helium nucleus is the alpha particle Beta Radiation Gamma Radiation Beta radiation is a stream of electrons, called beta particles. When a beta particle is ejected, a neutron in the nucleus is converted to a proton, so the mass number of the nucleus is unchanged, but the atomic number increases by one unit. For example: e Pa The electron is the beta particle. Gamma rays are high-energy photons with a very short wavelength ( to 0.1 nm). The emission of gamma radiation results from an energy change within the atomic nucleus. Gamma emission changes neither the atomic number nor the atomic mass. Alpha and beta emission are often accompanied by gamma emission, as an excited nucleus drops to a lower and more stable energy state. 2.2 Hazards Spontaneous decay of radioactive materials produces radiation. Radiation may be ionizing and nonionizing. Alpha and beta, gamma and X-rays particles are the most common forms of ionizing radiations. Radioactive iodine is a beta particle released during nuclear plant accidents. The amount of energy the radiations can deposit in a given space varies with each type. Radiations also differ in the power to penetrate. Inside the body the alpha particle will deposit all its energy in a very small volume of tissue while gamma radiation will spread energy over a much larger volume.

4 2.3 Risks The most important are: The higher the radiation dose, the greater the chance of developing cancer. The chance of developing cancer, not the seriousness of the cancer, increases as the radiation dose increases. Cancers caused by radiation do not appear until years after the radiation exposure. Some people are more likely to develop cancer from radiation exposure than others. 3. Brief History of serious radiation of exposure in the world. In December 1983-February 1984, in Ciudad Juarez, Mexico, and the United States, occurred one of the first widely reported cases of radiation exposure from the inadvertent destruction of orphaned sources through the scrap metal recycling process. On September 13, 1987, at Goiania, Brazil, a radioactive source was removed from an abandoned hospital in the city. Over time, the radioactive source was handled by multiple people, and led to the exposure to high levels of radiation of at least 245 people. Twenty of those showed sign of radiation exposure and needed hospital treatment. At least four people died. At a hospital clinic located in Zaragoza, Spain, between the dates of December 10 and December 20, 1990, at least 27 patients who were receiving radiotherapy for cancer were accidentally exposed to high levels of radiation, which resulted in the deaths of 11 patients, and severe injuries to the others. 4. Contamination of metal scrap used for steelmaking by radioactive sources. The United Nations Economic Commission for Europe (UNECE) describes the three ways radioactively contaminated scrap is produced: Discrete radioactive sources may be mixed with scrap when they escape from regulatory control by being abandoned, lost, or stolen. Uncontrolled material contaminated with natural or man-made radionuclides from industrial processes may enter the scrap stream. 1. Example 1:. Pipe scale from oil and gas drilling that contains naturally occurring radioactive material (NORM). As the oil or gas is pumped from the ground, radionuclides and other minerals from the surrounding soil and water are deposited in pipes or equipment. This material may not be under regulatory control in the first place. 2. Example 2: Material improperly released from the nuclear industry that was contaminated with man-made radionuclides above regulated limits. Material with a very low levels of radioactivity that are below regulatory limits

5 5. Effects of Radiation exposure to human health. High doses of ionizing radiation can lead to various effects, such as skin burns, hair loss, birth defects, illness, cancer, and death. The basic principle of toxicology, the dose determines poison, applies to the toxicology of ionizing radiation as well as to all other branches of toxicology. In the case of threshold effects ( deterministic effects in the language of radiation toxicology), such as skin burns, hair loss, sterility, nausea, and cataracts, a certain minimum dose (the threshold dose), usually on the order of hundreds or thousands of rad, must be exceeded in order for the effect to be expressed. An increase in the size of the dose above the threshold dose will increase the severity of the effect. The thyroid gland is one of the most radiation-sensitive parts of the body, especially in babies and children. Most nuclear accidents release radioactive iodine into the atmosphere. This is absorbed by the body. Absorption of too much radioactive iodine can cause thyroid cancer to develop several years after exposure. 6. Measuring Radiation and safe limits of exposure 6.1 Radiation Measurements Radioactivity Absorbed Dose Dose Equivalent Exposure Common Units curie (Ci) rad rem roentgen (R) SI Units becquerel (Bq) gray (Gy) Sievert (Sv) coulomb/kilogra m (C/kg)

6 6.2 Safe limits of exposure There is no firm basis for setting a "safe" level of exposure above background for stochastic effects. Many sources emit radiation that is well below natural background levels. This makes it extremely difficult to isolate its stochastic effects. In setting limits, EPA makes the conservative (cautious) assumption that any increase in radiation exposure is accompanied by an increased risk of stochastic effects. However, there do appear to be threshold exposures for the various non-stochastic effects. (Please note that the acute affects in the following table are cumulative. For example, a dose that produces damage to bone marrow will have produced changes in blood chemistry and be accompanied by nausea.) Exposure Time to Onset Health Effect (rem) (without treatment) 10-May changes in blood chemistry 50 nausea hours 55 fatigue 70 vomiting 75 hair loss 2-3 weeks 90 diarrhea 100 hemorrhage 400 possible death within 2 months 1,000 destruction of intestinal lining internal bleeding and death 1-2 weeks 2,000 damage to central nervous system loss of consciousness; minutes and death hours to days 7. Preventive Control Method of radiation exposure. Three main factors contribute to how much radiation a person absorbs from a source. The following factors can be controlled to minimize exposure to radiation. Increasing distance from the source of radiation The intensity of radiation falls sharply with greater distance, as per the inverse square law. Increasing the distance of an individual from the source of radiation can therefore reduce the dose of radiation they are exposed to. For example, such distance increases can be achieved simply by using forceps to make contact with a radioactive source, rather than the fingers.

7 Decreasing duration of exposure The time spent exposed to radiation should be limited as much as possible. The longer an individual is subjected to radiation, the larger the dose from the source will be. One example of how the time exposed to radiation and therefore radiation dose may be reduced is through improving training so that any operators who need to handle a radioactive source only do so for the minimum possible time. Reducing incorporation into the human body Potassium iodide (KI) can be given orally immediately after exposure to radiation. This helps protect the thyroid from the effects of ingesting radioactive iodine if an accident occurs at a nuclear power plant, for example. Taking KI in such an event can reduce the risk of thyroid cancer developing. Shielding Shielding refers to the use of absorbent material to cover a reactor or other source of radiation, so that less radiation is emitted in the environment where humans may be exposed to it. 8. Monitoring techniques of radiation exposure. The Radiation Exposure Monitoring Profile requires imaging modalities to export radiation exposure details in a standard format. Radiation reporting systems can either query for these "dose objects" periodically from an archive, or receive them directly from the modalities. The radiation reporting system is expected to perform relevant dose QA analysis and produce related reports. The nature of such analysis and format of the reports is not considered a topic for standardization and is not covered in the profile. The profile also describes how radiation reporting systems can submit dose reports to centralized registries such as might be run by professional societies or national accreditation groups. By profiling automated methods, the profile allows dose information to be collected and evaluated without imposing a significant administrative burden on staff otherwise occupied with caring for patients.

8 9. Relevance of radioactive exposure of UNICOIL. The gauge radiation at UNICOIL which is being monitored every six month. We have 2 thickness gauges at CRM, 2 at CGL entry & 1 coating gauge at process. All are using the X-ray as the source which has radiation. As per UNICOIL safety norms, no one is allowed near the vicinity of the gauge by 2 meters when gauge is ON. Secondly, when maintenance personnel are working on gauge, the shutter is switched off which will block the radiation. IRM THICKNESS GAUGE RADIATION CHECKLIST Measured Radiation Level In MicroSiever/Hr CRM Distance (Meters) Limit MicroSiever/Hr milirem milirem Entry Thickness Gauge Exit Thickness Gauge CGL Entry Thickness Gauge Exit Thickness Gauge NOTE: 1 Micro sievert /hr=0.1mili rem Recommended preventive and monitioring techniques for UNICOIL. Methods for minimizing time in a field of radiation : Pre-plan and discuss the task thoroughly prior to entering the area. Use only the number of workers actually required to do the job. Have all necessary tools before entering the area. Use mock ups and practice runs and Take the most direct route to the site. Never loiter in an area controlled for radiological purposes. Work efficiently but swiftly and do the job right the first time. Perform as much work outside the area as possible. Methods for maintaining distance from sources of radiation: The worker should stay as far away as possible from the source of radiation. Be familiar with radiological conditions in the area. During work delays, move to lower dose rate areas. Use remote handling devices when possible.

9 Proper uses of shielding: Shielding reduces the amount of radiation dose to the worker. Different materials shield a worker from the different types of radiation. Use permanent shielding such as non-radiological equipment/structures. Use shielded containment (e.g., glove boxes, etc.) when available. Wear safety glasses/goggles to protect the eyes from beta radiation, when applicable. It should be remembered that the placement of shielding my actually increase the total dose (e.g., man-hours involved in placement, Bremsstrahlung, etc.). Temporary shielding (e.g. lead or concrete blocks) can only be installed when procedures are used. Once temporary shielding is installed, it cannot be removed without proper authorization. 11. International regulations/legislations in radiation exposure-related to steel industry. The Radiation (Emergency Preparedness and Public Information) Regulations 2001 (REPPIR) Ionising Radiations Regulations 1999 (IRR99) Radioactive Substances Act International Commission on Radiological Protection Radiation Protection Convention, 1960 (No. 115) Occupational Cancer Convention, 1974 (No. 139) Working Environment (Air Pollution, Noise and Vibration) Convention, 1977 (No. 148) 12. Recommendation for effective implementation of regulations/legislations. Effective implementation of Regulation/Legislation involves three key elements broadly categorized as organization, interpretation, and application. Effective organization entails that Regulations/Legislations are implemented by the appropriate agencies or that agency are created for this purpose. Interpretation means that legislative intent is translated into operating rules and guidelines. Application means that the new rules are in coordination with ongoing operations. 13. Conclusion: This Article has provided an overview of the health effects related to ionizing radiation exposure in humans and laboratory animals. These effects can be both non-carcinogenic and carcinogenic in nature. Non-carcinogenic effects primarily result in immediate effects, mainly to organs with rapidly dividing cells, which include the hematopoietic system, gastrointestinal tract, and skin, or delayed effects such as cataracts and embryo/fetal development problems. Carcinogenic effects also may

10 occur in any number of organ systems. This end point may not be expressed for several years after the initial exposure. The dose-response relationships for these effects are known from the massive amount of data from studies on both humans and animals. Epidemiology studies are not likely to provide significant refinement of radiation risk estimates. The most fruitful approach to further understanding risk from exposure to ionizing radiation is through molecular studies, including the identification of unique biomarkers and pathogenic pathways at the cellular and tissue levels.

Laboratory Safety 197/405. Types of Radiation 198/405

Laboratory Safety 197/405. Types of Radiation 198/405 Laboratory Safety 197/405 Types of Radiation 198/405 Particle Radiation Alpha He nucleus (heavy particle) +2 charge Internal hazard only Beta Electron -1 charge Internal and external hazard Neutron 199/405

More information

IONIZING RADIATION, HEALTH EFFECTS AND PROTECTIVE MEASURES

IONIZING RADIATION, HEALTH EFFECTS AND PROTECTIVE MEASURES May 2011 IONIZING RADIATION, HEALTH EFFECTS AND PROTECTIVE MEASURES KEY FACTS Ionizing radiation is a type of energy released by atoms in the form of electromagnetic waves or particles. People are exposed

More information

BIOLOGICAL EFFECTS OF

BIOLOGICAL EFFECTS OF BIOLOGICAL EFFECTS OF RADIATION Natural Sources of Radiation Natural background radiation comes from three sources: Cosmic Radiation Terrestrial Radiation Internal Radiation 2 Natural Sources of Radiation

More information

Radiation Safety Information for Students in Courses given by the Nuclear Physics Group at KTH, Stockholm, Sweden

Radiation Safety Information for Students in Courses given by the Nuclear Physics Group at KTH, Stockholm, Sweden Radiation Safety Information for Students in Courses given by the Nuclear Physics Group at KTH, Stockholm, Sweden September 2006 The aim of this text is to explain some of the basic quantities and units

More information

Ionizing Radiation. Alpha Particles CHAPTER 1

Ionizing Radiation. Alpha Particles CHAPTER 1 CHAPTER 1 Ionizing Radiation Ionizing radiation is radiation that has sufficient energy to remove electrons from atoms. In this document, it will be referred to simply as radiation. One source of radiation

More information

ACUTE RADIATION SYNDROME: Diagnosis and Treatment

ACUTE RADIATION SYNDROME: Diagnosis and Treatment ACUTE RADIATION SYNDROME: Diagnosis and Treatment Badria Al Hatali, MD Medical Toxicologist Department of Environmental and Occupational Health MOH - Oman Objectives Provide a review of radiation basics

More information

Understanding Radiation and Its Effects

Understanding Radiation and Its Effects Understanding Radiation and Its Effects Prepared by Brooke Buddemeier, CHP University of California Lawrence Livermore National Laboratory Presented by Jeff Tappen Desert Research Institute 1 Radiation

More information

Training Course on Medical Preparedness and Response for a Nuclear or Radiological Emergency Pre- Test - BASIC

Training Course on Medical Preparedness and Response for a Nuclear or Radiological Emergency Pre- Test - BASIC Training Course on Medical Preparedness and Response for a Nuclear or Radiological Emergency Pre- Test - BASIC Name Date. (dd/mm/yyyy) Circle the correct answer(s). 1. Delayed effects of radiation exposure

More information

Radioactivity. Alpha particles (α) :

Radioactivity. Alpha particles (α) : Radioactivity It is the property of an element that causes it to emit radiation Discovered by Becquerel (1896) Radiation comes from the nucleus of the atom There are three types of radiation : alpha particles

More information

Principles of Radiation

Principles of Radiation RADIOACTIVE AGENTS Principles of Radiation 2 types of radiation Non-ionizing (no tissue damage) Ionizing (tissue damage) 2010 MGH International Disaster Institute 1 2010 MGH International Disaster Institute

More information

RADIATION RISK ASSESSMENT

RADIATION RISK ASSESSMENT RADIATION RISK ASSESSMENT EXPOSURE and TOXITY ASSESSMENT Osipova Nina, associated professor, PhD in chemistry, Matveenko Irina, Associate professor, PhD in philology TOMSK -2013 The contents 1.What is

More information

Radiation physics and radiation protection. University of Szeged Department of Nuclear Medicine

Radiation physics and radiation protection. University of Szeged Department of Nuclear Medicine Radiation physics and radiation protection University of Szeged Department of Nuclear Medicine Radiation doses to the population 1 Radiation doses to the population 2 Sources of radiation 1 Radiation we

More information

Chem 481 Lecture Material 3/11/09

Chem 481 Lecture Material 3/11/09 Chem 481 Lecture Material 3/11/09 Health Physics NRC Dose Limits The NRC has established the following annual dose limits. Organ NRC Limit (mrem/year) Comments Whole Body 5000 (50 msv/yr) Lens of the Eye

More information

PAGE 1 OF 5 HEALTH, SAFETY & ENVIROMENTAL MANUAL PROCEDURE: S560 Radiation Safety REV /14/2012

PAGE 1 OF 5 HEALTH, SAFETY & ENVIROMENTAL MANUAL PROCEDURE: S560 Radiation Safety REV /14/2012 PAGE 1 OF 5 RADIATION SAFETY PURPOSE: A wide usage of x-ray machines and isotopes for examination of steel plate fabricated and erected structures require a knowledge of the radiation hazard and the precautionary

More information

Biological Effects of Ionizing Radiation & Commonly Used Radiation Units

Biological Effects of Ionizing Radiation & Commonly Used Radiation Units INAYA MEDICAL COLLEGE (IMC) RAD 232 - LECTURE 2 & 3 Biological Effects of Ionizing Radiation & Commonly Used Radiation Units DR. MOHAMMED MOSTAFA EMAM How does radiation injure people? - High energy radiation

More information

PRINCIPLES AND METHODS OF RADIATION PROTECTION

PRINCIPLES AND METHODS OF RADIATION PROTECTION PRINCIPLES AND METHODS OF RADIATION PROTECTION Lesson Outcomes At the end of the lesson, student should be able to: Define what is radiation protection (RP) Describe basic principles of RP Explain methods

More information

UQ X-ray Safety Training Module

UQ X-ray Safety Training Module UQ X-ray Safety Training Module 23 January 2018, v2 1 UQ X-ray Safety Training Module Course Overview: This training module has been developed for workers at the University of Queensland, and forms part

More information

Ionizing Radiation. Michael J. Vala, CHP. Bristol-Myers Squibb

Ionizing Radiation. Michael J. Vala, CHP. Bristol-Myers Squibb Ionizing Radiation Michael J. Vala, CHP Bristol-Myers Squibb michael.vala@bms.com 732-227-5096 2013 American Industrial Hygiene Association, New Jersey Section, Inc. Course Objectives At the end of this

More information

Biological Effects of Ionizing Radiation & Commonly Used Radiation Units

Biological Effects of Ionizing Radiation & Commonly Used Radiation Units INAYA MEDICAL COLLEGE (IMC) RAD 232 - LECTURE 3, 4 & 5 Biological Effects of Ionizing Radiation & Commonly Used Radiation Units DR. MOHAMMED MOSTAFA EMAM How does radiation injure people? - High energy

More information

Chapter 8. Ionizing and Non-Ionizing Radiation

Chapter 8. Ionizing and Non-Ionizing Radiation Chapter 8 Ionizing and Non-Ionizing Radiation Learning Objectives By the end of the chapter the reader will be able to: Define the terms ionizing radiation and nonionizing radiation State the differences

More information

Radiobiology Hall 14: Radiologic Terrorism (Completed)

Radiobiology Hall 14: Radiologic Terrorism (Completed) Radiobiology Hall 14: Radiologic Terrorism (Completed) What are a few of the possible scenarios of radiologic terrorism? 1. Detonation of a nuclear major city 2. An attack on a nuclear power station 3.

More information

Radiopharmaceuticals. Radionuclides in NM. Radionuclides NUCLEAR MEDICINE. Modes of radioactive decays DIAGNOSTIC THERAPY CHEMICAL COMPOUND

Radiopharmaceuticals. Radionuclides in NM. Radionuclides NUCLEAR MEDICINE. Modes of radioactive decays DIAGNOSTIC THERAPY CHEMICAL COMPOUND Univerzita Karlova v Praze - 1. Lékařská fakulta Radiation protection NUCLEAR MEDICINE Involving the application of radioactive substances in the diagnosis and treatment of disease. Nuclear medicine study

More information

RADIOACTIVITY & RADIATION CHARACTERISTICS

RADIOACTIVITY & RADIATION CHARACTERISTICS CEMP TRAINING SESSION 15-17 JULY 2013 RADIOACTIVITY & RADIATION CHARACTERISTICS Instructor: Gary M. Sandquist, PhD, CHP 2013 Training Session Slide 1 Occupational Dose Equivalent Limits General Public

More information

Lab & Rad Safety Newsletter

Lab & Rad Safety Newsletter Ohio UNIVERSITY Fall 2018 Lab & Rad Safety Newsletter Alan Watts Radiation Safety Officer In This Issue: Instruction Concerning Risks From Occupational Radiation Exposure... pg.1-5 = Required = Optional

More information

Special Topic: Radiological Dispersal Device or Dirty Bomb EXPLOSION AND BLAST INJURIES

Special Topic: Radiological Dispersal Device or Dirty Bomb EXPLOSION AND BLAST INJURIES Special Topic: Radiological Dispersal Device or Dirty Bomb EXPLOSION AND BLAST INJURIES Scenario Presentation Possible Scenarios Simple radiological device Improvised nuclear device (IND) Nuclear weapon

More information

CRACKCast E146 Radiation Injuries

CRACKCast E146 Radiation Injuries CRACKCast E146 Radiation Injuries Key concepts: Patients contaminated with radiation pose very little risk to health care providers when appropriate precautions and decontamination procedures are employed.

More information

Radiation Safety for New Medical Physics Graduate Students

Radiation Safety for New Medical Physics Graduate Students Radiation Safety for New Medical Physics Graduate Students John Vetter, PhD Medical Physics Department UW School of Medicine & Public Health Background and Purpose of This Training This is intended as

More information

Case Files of the University of Massachusetts Fellowship in Medical Toxicology: Three Patients with an Industrial Radiography Source Exposure

Case Files of the University of Massachusetts Fellowship in Medical Toxicology: Three Patients with an Industrial Radiography Source Exposure Toxicology Case Files Case Files of the University of Massachusetts Fellowship in Medical Toxicology: Three Patients with an Industrial Radiography Source Exposure Christina Hernon, MD a, Edward W. Boyer,

More information

Radiation Safety - Things You Need to Know

Radiation Safety - Things You Need to Know Radiation Safety - Things You Need to Know Michael Casey Ph.D. Phlebotomy Autumn Seminar 13 th October 2012 Radiation is a form of energy transport What is Radiation? It is caused by electrical disturbances

More information

Topic 6 Benefits and drawbacks of using radioactive materials

Topic 6 Benefits and drawbacks of using radioactive materials Topic 6 Benefits and drawbacks of using radioactive materials CHANGING IDEAS When radioactivity was first discovered in the late 1800s, scientists did not know it was dangerous: o Becquerel handled radioactive

More information

Radiologic Units: What You Need to Know

Radiologic Units: What You Need to Know Radiologic Units: What You Need to Know TODD VAN AUKEN M.ED. RT (R)(MR) Agenda Greys, Sieverts, Coulombs per kg, & Becquerel's Conventional Units Other Concepts (LET, Q-Factor, Effective Dose, NCRP Report

More information

Table of Contents. Introduction 3. Background 4

Table of Contents. Introduction 3. Background 4 Training manual Table of Contents Introduction 3 Background 4 What are X-rays? 4 How are X-rays Generated? 5 Primary and Scatter Radiation 6 Interactions with Matter 6 Biological Effects of Radiation 7

More information

Radiation Safety Guide. Analytical X-Ray Equipment

Radiation Safety Guide. Analytical X-Ray Equipment Radiation Safety Guide Analytical X-Ray Equipment Table of Content Page 1. Radiation 2 A. Radiation Quantities 2 B. Background Radiation 2 C. Biological Effect of Radiation 3 D. Radiation Injury To The

More information

Option D: Medicinal Chemistry

Option D: Medicinal Chemistry Option D: Medicinal Chemistry Basics - unstable radioactive nuclei emit radiation in the form of smaller particles alpha, beta, positron, proton, neutron, & gamma are all used in nuclear medicine unstable

More information

Nuclear Radiation Today

Nuclear Radiation Today CHAPTER 10 13 SECTION Nuclear Changes Nuclear Radiation Today KEY IDEAS As you read this section, keep these questions in mind: Where are some common sources of radiation? What are some beneficial uses

More information

Everyday Radiation. David D. Dixon HDT Rally Hutchinson, KS October 15, 2014

Everyday Radiation. David D. Dixon HDT Rally Hutchinson, KS October 15, 2014 Everyday Radiation David D. Dixon HDT Rally Hutchinson, KS October 15, 2014 Overview Types of radiation and radiation damage Sources of radiation Naturally Occurring Medical Energy Industry Other Man-Made

More information

Radiation Effects. Radiobiology Steve Curtis Desert Research Institute

Radiation Effects. Radiobiology Steve Curtis Desert Research Institute Radiation Effects Radiobiology Steve Curtis Desert Research Institute Background Radiation Cosmic Terrestrial In our Bodies Total Radiation About 300 mr per year Equals about 15 X-Rays Over half is from

More information

Radioactivity. Lecture 8 Biological Effects of Radiation

Radioactivity. Lecture 8 Biological Effects of Radiation Radioactivity Lecture 8 Biological Effects of Radiation Studies of impact of ionizing radiation on the human body - Hiroshima - US-Japanese teams medical tests, autopsies, human organ analysis, on-site

More information

Radiation Health Effects

Radiation Health Effects Radiation Health Effects Elena Buglova Incident and Emergency Centre Department of Nuclear Safety and Security Content Historical background Primary target for cell damage Deterministic effects Stochastic

More information

Radiation Protection in Laboratory work. Mats Isaksson, prof. Department of radiation physics, GU

Radiation Protection in Laboratory work. Mats Isaksson, prof. Department of radiation physics, GU Radiation Protection in Laboratory work Mats Isaksson, prof. Department of radiation physics, GU mats.isaksson@radfys.gu.se Fundamental principles (ICRP) Justification Optimisation Application of dose

More information

Public and Worker Health Impacts from the Fukushima Nuclear Plant Accident Thomas McKone, PhD & James Seward, MD, MPP

Public and Worker Health Impacts from the Fukushima Nuclear Plant Accident Thomas McKone, PhD & James Seward, MD, MPP Public and Worker Health Impacts from the Fukushima Nuclear Plant Accident JAPAN EARTHQUAKE & TSUNAMI RELIEF ORGANIZATIONS Doctors Without Borders/Médecins Sans Frontières: Doctorswithoutborders.org The

More information

Basic radiation protection & radiobiology

Basic radiation protection & radiobiology Basic radiation protection & radiobiology By Dr. Mohsen Dashti Patient care & management 202 Wednesday, October 13, 2010 Ionizing radiation. Discussion issues Protecting the patient. Protecting the radiographer.

More information

Radiation in Everyday Life

Radiation in Everyday Life Image not found Rincón http://www.rinconeducativo.org/sites/default/files/logo.jpg Educativo Published on Rincón Educativo (http://www.rinconeducativo.org) Inicio > Radiation in Everyday Life Recursos

More information

Biological Effects of Radiation KJ350.

Biological Effects of Radiation KJ350. Biological Effects of Radiation KJ350 deborah.oughton@nmbu.no 2111 2005 Radiation Biology Interaction of radiation with biological material Doses (Gy, Sv) and effects Scientific Controversy Radiation Protection

More information

Everyday Radiation. David D. Dixon HDT Rally Hutchinson, KS October 13, 2015

Everyday Radiation. David D. Dixon HDT Rally Hutchinson, KS October 13, 2015 Everyday Radiation David D. Dixon HDT Rally Hutchinson, KS October 13, 2015 Overview Nuclear Energy Industry Outlook Types of radiation and radiation damage Sources of radiation Naturally Occurring Medical

More information

Cancer Risk Factors in Ontario. Other Radiation

Cancer Risk Factors in Ontario. Other Radiation Cancer Risk Factors in Ontario Other Radiation OTHer radiation risk factor/ exposure Radon-222 and decay products X-radiation, gamma radiation Cancer The context where high risks were reported Magnitude

More information

1/31/2014. Radiation Biology and Risk to the Public

1/31/2014. Radiation Biology and Risk to the Public Radiation Biology and Risk to the Public Dr. David C. Medich University of Massachusetts Lowell Lowell MA 01854 Introduction Definition: Radiation Biology is the field of science that studies the biological

More information

Accelerator Laboratory GENERAL EMPLOYEE RADIATION TRAINING

Accelerator Laboratory GENERAL EMPLOYEE RADIATION TRAINING f Fermi National Accelerator Laboratory GENERAL EMPLOYEE RADIATION TRAINING Operated by Universities Research Association, Inc. under contract with the United States Department of Energy October, 1999

More information

Sources of ionizing radiation Atomic structure and radioactivity Radiation interaction with matter Radiation units and dose Biological effects

Sources of ionizing radiation Atomic structure and radioactivity Radiation interaction with matter Radiation units and dose Biological effects INTRODUCTION TO RADIATION PROTECTION Sources of ionizing radiation Atomic structure and radioactivity Radiation interaction with matter Radiation units and dose Biological effects 3/14/2018 1 Wilhelm C.

More information

Chatsworth High School Medical Careers Academy. By the Waters of Babylon Highlighting Assignment

Chatsworth High School Medical Careers Academy. By the Waters of Babylon Highlighting Assignment Assignment: 1. Read the following medical article about radiation sickness. 2. Highlight the points of interest: statements that could be investigated further; significance of each section. 3. Make notes

More information

Radiological Injuries

Radiological Injuries Radiological Injuries Chapter 30 Radiological Injuries The reader is strongly advised to supplement material in this chapter with the following two references: 1. Medical Management of Radiological Casualties

More information

Lecture 14 Exposure to Ionizing Radiation

Lecture 14 Exposure to Ionizing Radiation Lecture 14 Exposure to Ionizing Radiation Course Director, Conrad Daniel Volz, DrPH, MPH Assistant Professor, Environmental & Occupational Health, University of Pittsburgh, Graduate School of Public Health

More information

Radiation Carcinogenesis

Radiation Carcinogenesis Radiation Carcinogenesis November 11, 2014 Dhyan Chandra, Ph.D. Pharmacology and Therapeutics Roswell Park Cancer Institute Email: dhyan.chandra@roswellpark.org Overview - History of radiation and radiation-induced

More information

QUANTIFICATION OF THE RISK-REFLECTING STOCHASTIC AND DETERMINISTIC RADIATION EFFECTS

QUANTIFICATION OF THE RISK-REFLECTING STOCHASTIC AND DETERMINISTIC RADIATION EFFECTS RAD Conference Proceedings, vol. 2, pp. 104 108, 2017 www.rad-proceedings.org QUANTIFICATION OF THE RISK-REFLECTING STOCHASTIC AND DETERMINISTIC RADIATION EFFECTS Jozef Sabol *, Bedřich Šesták Crisis Department,

More information

Risk and Risk Reduction. Environmental Health and Safety. Radiation Safety. Radiation is all around us

Risk and Risk Reduction. Environmental Health and Safety. Radiation Safety. Radiation is all around us Risk and Risk Reduction Radiation is all around us Environmental Health and Safety Radiation Safety Risk and Risk Reduction Risk Webster s dictionary defines risk as the chance of injury, damage, or loss;

More information

Howard Dickson President Emeritus Health Physics Society

Howard Dickson President Emeritus Health Physics Society Howard Dickson President Emeritus Health Physics Society Summary of accident experience Differentiation between nuclear & radiation accidents Categories of accidents Examples of accidents & their severity

More information

Is there a safe level of radiation exposure? The Petkau effect

Is there a safe level of radiation exposure? The Petkau effect Page 1 of 8 Is there a safe level of radiation exposure? The Petkau effect Dr GOURI GOUTAM BORTHAKUR Department of Physics, Jorhat Institute of Science and Technology Jorhat-785010, Assam Mail borthakur.gg@gmail.com

More information

Section 7 ALARA Program

Section 7 ALARA Program Page 7-1 Section 7 ALARA Program Contents A. ALARA Principle... 7-2 1. Biological Basis... 7-2 2. Applied Practices... 7-3 3. Operational Dose Limits... 7-3 4. Collective Dose... 7-3 B. Radiation Safety

More information

What is the current risk of radiation-related health problems in Japan to those near the reactor at the time, and those in other parts of Japan?

What is the current risk of radiation-related health problems in Japan to those near the reactor at the time, and those in other parts of Japan? What is the current risk of radiation-related health problems in Japan to those near the reactor at the time, and those in other parts of Japan? The actions proposed by the Government of Japan are in line

More information

Radiation Safety General Awareness and ALARA Training

Radiation Safety General Awareness and ALARA Training Radiation Safety General Awareness and ALARA Training Authorized User The following materials should be used to provide training to laboratory personnel that do not use radioactive material. Have each

More information

Radiation Safety Bone Densitometer

Radiation Safety Bone Densitometer Radiation Safety Bone Densitometer Outline I. State Regulations II. Fundamentals of Radiation Safety III. IV. i. Characteristics of x-ray radiation ii. Units of radiation dose iii. Biological effects iv.

More information

Utilize radiation safety principles to reduce the amount of radiation used to achieve desired clinical result.

Utilize radiation safety principles to reduce the amount of radiation used to achieve desired clinical result. Minimizing Dose Understand the importance and methods of pre-procedure patient assessment including a review of previous radiologic exams, disease processes and anatomical considerations that may increase

More information

Radiation Safety in the Workplace. v1.0

Radiation Safety in the Workplace. v1.0 Radiation Safety in the Workplace v1.0 Outline What is radiation? Different types of radiation Activity and Half-life Units of radiation dose Health effects of exposure to radiation Dose limits Common

More information

ARRT Specifications Radiation Exposure & Monitoring

ARRT Specifications Radiation Exposure & Monitoring Radiation Protection Review 15% (30) 11% (22) Gina Tice, MSRS, RT(R) Gadsden State Community College ARRT Specifications Radiation Exposure & Monitoring Radiation Protection (45) Biological Aspects of

More information

Medical Use of Radioisotopes

Medical Use of Radioisotopes Medical Use of Radioisotopes Therapy Radioisotopes prove to be useful in the application of brachytherapy, the procedure for using temporary irradiation close to the area of disease (i.e. cancer) 10% Medical

More information

RELIANT HOLDINGS LTD AND ITS AFFILIATES Safety Management System. Preparation: Safety Mgr Authority: CEO Issuing Dept: Safety Page: Page 1 of 5

RELIANT HOLDINGS LTD AND ITS AFFILIATES Safety Management System. Preparation: Safety Mgr Authority: CEO Issuing Dept: Safety Page: Page 1 of 5 Preparation: Safety Mgr Authority: CEO Issuing Dept: Safety Page: Page 1 of 5 Purpose The purpose of this program is to protect employees who may encounter ionizing radiation and its hazards while performing

More information

RADIATION HAZARDS. A dabbler s perspective. Jess H. Brewer

RADIATION HAZARDS. A dabbler s perspective. Jess H. Brewer RADIATION HAZARDS A dabbler s perspective by Jess H. Brewer Mortality Paraphrased from memory: Front page of special HEALTH edition of LA Free Press (around 1970): No matter how much money you have, how

More information

Sodium Iodide I 131 Solution. Click Here to Continue. Click Here to Return to Table of Contents

Sodium Iodide I 131 Solution. Click Here to Continue. Click Here to Return to Table of Contents Sodium Iodide I 131 Solution Package inserts are current as of January, 1997. Contact Professional Services, 1-888-744-1414, regarding possible revisions Click Here to Continue Click Here to Return to

More information

Q&A: Health effects of radiation exposure

Q&A: Health effects of radiation exposure Page 1 of 10 HEALTH 30 March 2011 Last updated at 08:38 ET Q&A: Health effects of radiation exposure By Richard Warry BBC News Concern remains over the potential effect on human health from radiation leaks

More information

The x-rays produced penetrate the body which absorbs, refracts, or reflects the x-ray beam energy depending on the tissue. Bone

The x-rays produced penetrate the body which absorbs, refracts, or reflects the x-ray beam energy depending on the tissue. Bone Authors Sari Cohen, Poh Yan Lim, Merng Koon Wong, Siew Hong Lau, Donna Russell-Larson 1.6.2 Image intensifier Poh Yan Lim, Merng Koon Wong The discovery of x-rays had a profound impact on the diagnosis

More information

1. The Accident of Chernobyl Unit 4 of 1,000 MWe Graphite-Moderated Boiling Water Pressure Tube Reactor in 1986

1. The Accident of Chernobyl Unit 4 of 1,000 MWe Graphite-Moderated Boiling Water Pressure Tube Reactor in 1986 April 12, 2011 The Lesson learned from the Chernobyl Accident and the Data from Atomic Bomb Survivors For Understanding the Fukushima Daiichi Accident and the Robustness of the Human Body to Ionizing Radiation

More information

RADIATION SAFETY. Junior Radiology Course

RADIATION SAFETY. Junior Radiology Course RADIATION SAFETY Junior Radiology Course Expectations for the Junior Radiology Course Medical School wants students to learn basic principles, factual knowledge, safety info, etc. Medical Students want

More information

Adult: > 18 Years ALARA: As low as reasonably achievable ALI:

Adult: > 18 Years ALARA: As low as reasonably achievable ALI: Health Physics Adult: > 18 Years ALARA: As low as reasonably achievable ALI: Annual Limit on Intake. The amount of an isotope that if taken into the body over the course of a year would result in in a

More information

"LEAD EXPOSURE IN GENERAL INDUSTRY"

LEAD EXPOSURE IN GENERAL INDUSTRY PRESENTER'S GUIDE "LEAD EXPOSURE IN GENERAL INDUSTRY" Training For THE OSHA LEAD STANDARD Quality Safety and Health Products, for Today... and Tomorrow OUTLINE OF MAJOR PROGRAM POINTS OUTLINE OF MAJOR

More information

Introduction. Chapter 15 Radiation Protection. Advisory bodies. Regulatory bodies. Main Principles of Radiation Protection

Introduction. Chapter 15 Radiation Protection. Advisory bodies. Regulatory bodies. Main Principles of Radiation Protection Introduction Chapter 15 Radiation Protection Radiation Dosimetry I Text: H.E Johns and J.R. Cunningham, The physics of radiology, 4 th ed. F.M. Khan, The Physics of Radiation Therapy, 4th ed., Chapter

More information

AN INTRODUCTION TO NUCLEAR MEDICINE

AN INTRODUCTION TO NUCLEAR MEDICINE AN INTRODUCTION TO NUCLEAR MEDICINE WITH RESPECT TO THYROID DISORDERS By: B.Shafiei MD Nuclear Physician Taleghani Medical Center Radioactive: An element with Unstable Nucleus (Excess Energy), can achieve

More information

Nuclear Plant Emergency Response

Nuclear Plant Emergency Response Nuclear Plant Emergency Response Acute and Chronic Clinical Health Effects after a NPP Accident Module 5 At the end of this presentation you will be able to: Discuss the initial medical evaluation of a

More information

Nuclear Plant Emergency Response

Nuclear Plant Emergency Response Nuclear Plant Emergency Response Acute and Chronic Clinical Health Effects after a NPP Accident Module 5 At the end of this presentation you will be able to: Discuss the initial medical evaluation of a

More information

User's Guide for the Interactive RadioEpidemiological Program (NIOSH-IREP)

User's Guide for the Interactive RadioEpidemiological Program (NIOSH-IREP) User's Guide for the Interactive RadioEpidemiological Program (NIOSH-IREP) Designed for use by the Department of Labor in adjudicating claims under the Energy Employees Occupational Illness Compensation

More information

ICRP Recommendations Evolution or Revolution? John R Cooper Main Commission

ICRP Recommendations Evolution or Revolution? John R Cooper Main Commission ICRP Recommendations Evolution or Revolution? John R Cooper Main Commission 3 September 2009 ICRP Recommendations 1. Reasons for new Recommendations 2. Summary of health risks 3. Summary of changes to

More information

The Basics of Radiation Safety

The Basics of Radiation Safety Cardiac Imaging Symposium 2013 UNIVERSITY OF OTTAWA HEART INSTITUTE The Basics of Radiation Safety Leah Shuparski-Miller Medical Health Physicist Radiation Safety & Emergency Preparedness Department The

More information

Effects of Radiation on Human In the Face of Fukushima Daiichi Nuclear Power Plant Accident

Effects of Radiation on Human In the Face of Fukushima Daiichi Nuclear Power Plant Accident Effects of Radiation on Human In the Face of Fukushima Daiichi Nuclear Power Plant Accident At Sophia University 11 May 2011 Presented by: Tokyo Institute of Technology Research Laboratory for Nuclear

More information

Experiences in Neutron Dosimetry

Experiences in Neutron Dosimetry Experiences in Neutron Dosimetry Nasser B. Rashidifard M.S., CHP NECHPS Annual Technical Symposium May 29 th, 2014 Westford, Massachusetts Radiation Safety & Control Services, Inc. Why is it Important

More information

RADIATION PROTECTION INSTITUTE GHANA ATOMIC ENERGY COMMISSION P. O. BOX LG 80, LEGON ACCRA. PROSPECTUS FOR

RADIATION PROTECTION INSTITUTE GHANA ATOMIC ENERGY COMMISSION P. O. BOX LG 80, LEGON ACCRA. PROSPECTUS FOR RADIATION PROTECTION INSTITUTE GHANA ATOMIC ENERGY COMMISSION P. O. BOX LG 80, LEGON ACCRA. PROSPECTUS FOR NATIONAL TRAINING COURSE ON RADIATION PROTECTION AND SAFETY FOR RADIOGRAPHERS AND X-RAY TECHNICIANS,

More information

Survey of Radiation Dose Levels in Patients in X-Ray Units of Some Selected Hospitals in Jos Metropolis

Survey of Radiation Dose Levels in Patients in X-Ray Units of Some Selected Hospitals in Jos Metropolis International Journal of Innovative Scientific & Engineering Technologies Research 6(4):1-9, Oct.-.Dec., 2018 SEAHI PUBLICATIONS, 2018 www.seahipaj.org ISSN: 2360-896X Survey of Radiation Dose Levels in

More information

RADIATION SAFETY REFRESHER TRAINING FOR AUGUSTA UNIVERSITY USERS OF RADIOACTIVE MATERIAL

RADIATION SAFETY REFRESHER TRAINING FOR AUGUSTA UNIVERSITY USERS OF RADIOACTIVE MATERIAL RADIATION SAFETY REFRESHER TRAINING FOR AUGUSTA UNIVERSITY USERS OF RADIOACTIVE MATERIAL Environmental Health and Safety Division Course Content Radiation Safety Radiation Dose Limits and Dosimetry Postings

More information

Radiation biology. Dr. István Voszka. Department of Biophysics and Radiation Biology. Grotthus (1815) - Draper (1845)

Radiation biology. Dr. István Voszka. Department of Biophysics and Radiation Biology. Grotthus (1815) - Draper (1845) Radiation biology Dr. István Voszka Department of Biophysics and Radiation Biology Wilhelm Conrad Röntgen Antoine Henri Becquerel 1845-1923 1852-1908 1895 x-radiation 1896 - radioactivity Grotthus (1815)

More information

Radiation Dose Specification

Radiation Dose Specification Chapter 9 Dose Limits for Exposure to Ionizing Radiation Dose Limits for exposure to Ionizing Radiation apply to: Occupational workers Nonoccupational workers Radiation Dose Specification Equivalent Dose

More information

MONITORING OF OCCUPATIONAL EXPOSURE AT NUCLEAR FACILITIES

MONITORING OF OCCUPATIONAL EXPOSURE AT NUCLEAR FACILITIES GUIDE YVL 7.10 / 29 JANUARY 2002 MONITORING OF OCCUPATIONAL EXPOSURE AT NUCLEAR FACILITIES 1 GENERAL 3 2 PROVISIONS OF THE RADIATION ACT AND DECREE 3 3 MONITORING OF RADIATION EXPOSURE 4 3.1 General requirements

More information

REVIEW Nuclear Disaster after the Earthquake and Tsunami of March 11

REVIEW Nuclear Disaster after the Earthquake and Tsunami of March 11 REVIEW Nuclear Disaster after the Earthquake and Tsunami of March 11 Naoyuki Shigematsu, Junichi Fukada, Toshio Ohashi, Osamu Kawaguchi and Tetsuya Kawata Department of Radiology, School of Medicine, Keio

More information

Chapter 18: Principles of Toxicology and Risk Assessment

Chapter 18: Principles of Toxicology and Risk Assessment Chapter 18: Principles of Toxicology and Risk Assessment Kartouchken/ShutterStock, Inc. 18.1 Principles of Toxicology Many thousands of chemicals are produced each year in industrialized nations. Only

More information

Fukushima: What We All Should Know about Radiation

Fukushima: What We All Should Know about Radiation Fukushima: What We All Should Know about Radiation Peter N. Saeta, Harvey Mudd College Physics, 25 March 2011 Outline Radioactivity: what is it, what causes it, and what s a half life? How does ionizing

More information

Ernest Rutherford:

Ernest Rutherford: November 1895: Roentgen discovers x rays February 1896: Becquerel discovers radioactivity Ernest Rutherford 1898-99 Ernest Rutherford: 1898-99 The Electromagnetic Spectrum Interaction of Charged Particles

More information

Application of the Commission's Recommendations for the Protection of People in

Application of the Commission's Recommendations for the Protection of People in ICRP Publication 127 ICRP Publication 126 ICRP Publication 125 ICRP Publication 124 ICRP Publication 123 ICRP Publication 122 ICRP Publication 121 ICRP Publication 120 ICRP 2011 Proceedings Radiological

More information

6) Radiation Protection (1) Radiation effects in biological material (cells)

6) Radiation Protection (1) Radiation effects in biological material (cells) 6) Radiation Protection (1) Three phase model of biological effects on organisms: Outer irradiation Physical Phase Chemical Phase Internal irradiation Radiolysis, peroxide formation Ionisation and excitation

More information

Core Concepts in Radiation Exposure 4/10/2015. Ionizing Radiation, Cancer, and. James Seward, MD MPP

Core Concepts in Radiation Exposure 4/10/2015. Ionizing Radiation, Cancer, and. James Seward, MD MPP Ionizing Radiation, Cancer, and Causation James P. Seward, MD MPP FACOEM Clinical Professor of Medicine, UCSF American Occupational Health Conf May 4, 2015 Ionizing Radiation, Cancer, and Causation James

More information

PHYSICS 2: HSC COURSE 2 nd edition (Andriessen et al) CHAPTER 20 Radioactivity as a diagnostic tool (pages 394-5)

PHYSICS 2: HSC COURSE 2 nd edition (Andriessen et al) CHAPTER 20 Radioactivity as a diagnostic tool (pages 394-5) PHYSICS 2: HSC COURSE 2 nd edition (Andriessen et al) CHAPTER 20 Radioactivity as a diagnostic tool (pages 394-5) 1. (a) A radioisotope is an isotope that is unstable and will emit particles from the nucleus

More information

Radiological Injuries

Radiological Injuries Chapter 28 The reader is strongly advised to supplement material in this chapter with the following two references: 1. Armed Forces Radiobiology Research Institute. Medical Management of Radiological Casualties.

More information

Chemical Engineering 412

Chemical Engineering 412 Chemical Engineering 412 Introductory Nuclear Engineering Lecture 28 Heath Physics 1: Radiation Dose Spiritual Thought 2 The BIG Picture 3 Summary Points Biological systems are most vulnerable to radiation-induced

More information

Hiroshima / Fukushima: Gender Matters in the Atomic Age

Hiroshima / Fukushima: Gender Matters in the Atomic Age Hiroshima / Fukushima: Gender Matters in the Atomic Age Mary Olson, Nuclear Information and Resource Service (NIRS) www.nirs.org / maryo@nirs.org Presentation posted: http://tinyurl.com/olson2016 Original

More information