Factors determining DNA double strand break repair pathway choice in G2 phase.

Size: px
Start display at page:

Download "Factors determining DNA double strand break repair pathway choice in G2 phase."

Transcription

1 Supplementary Data Factors determining DN double strand break repair pathway choice in G2 phase. tsushi Shibata 1, Sandro Conrad 2, Julie irraux 1, Verena Geuting 2, Olivia arton 2, mani Ismail 1, ndreas Kakarougkas 1, Katheryn Meek 3 Gisela Taucher-Scholz 4, Markus Löbrich 2* and enny. Jeggo 1* Figure S1. nalysis of IR induced foci (IRIF) in G1 and G2 cells. and ) phidicolin (H) was added immediately after 2 Gy X-rays. H treatment blocks the replicative polymerases and hence progression from S to G2 phase. H induced replication stress induces an obvious pan-nuclear H2X/R signal in S phase (eucher et al, 29). Cells are stained with H2X or R and CEN-F (a G2 marker). G1 cells show very low CEN-F signal and clear IRIF. Early S cells show very low CEN-F signal but strong pan-nuclear H2X/R signal. Late S phase cells have a mild CEN-F signal + pan-nuclear H2X/R signal. G2 cells have a greater CEN-F signal and clear H2X/R IRIF. M phase cells are distinguished from other cell cycle phases by morphology and cytoplasmic CEN-F signal. H does not affect DS repair including H2X, R, Rad51 foci formation or SCE formation in cells derived from G2 phase cells and blocks cell cycle progression from S to G2 even in checkpoint defective cells. Full controls for the use of H have been included in (eucher et al, 29; Shibata et al, 21). Figure S2. IR induced R/Rad51 foci co-localise with DSs in G2 phase. ) Cells were irradiated with 2 Gy X-rays and H added immediately. Visible R foci were not detected until ~2 hr after X-rays. However IR induced R foci at >2 hr strongly co-localize with the DS marker, 531. ) IR induced H2X and 531 co-localize in G2 cells. C) IR induced Rad51 foci at >2 hr co-localize with H2X foci. The number of R foci at 2 h post X-rays is similar to the number of unrepaired DSs in HR defective cells (e.g. RC2 cells) (which is also identical to the number of unrepaired DSs in TM defective cells). dditionally, NHEJ defective cells are impaired in the fast component of DS repair in G2 phase. Thus we enumerate R/Rad51 foci at >2 hr after IR as a monitor of resection. We relate this to the number of DSs induced as assessed by H2X numbers 15 min post treatment in Figure 1. Figure S3. Substantial persistent R foci and a DS repair defect in HR defective cells after carbon-ion irradiation. ) Cells were irradiated with 2 Gy carbon ions, and stained with R and CEN-F. 5% of R foci were repaired at 24 hr post carbon irradiation in wild type cells (Figure 1D). In contrast, >9% of R foci remained up to 24 hr post carbon irradiation in RC2 deficient cells. Importantly, the number of R foci at 24 hr in RC2 deficient cells is not drastically changed compared to 2 hr, indicating that the number of R foci at 2 hr

2 represents the peak of R foci formation. This result also suggests that carbon ion induced DSs that become associated with R are repaired by RC2 dependent HR. ) >~9% of H2X foci persist in Rad54 -/- MEFs up to 24 h post carbon-ion irradiation. The number of H2X foci was enumerated after 2 Gy carbon ions. These results indicate that DS repair post carbon ions is repaired by RC2/Rad54 dependent HR. G2 cells were identified as speckled p-histoneh3 Ser1 staining in MEFs. C) The kinetics of DS repair was examined by enumerating H2X foci in HSF1 primary cells in G1 (left) or G2 (right) cells. % of repair kinetics is shown in Figure 1 and. Cells were exposed to 2 Gy carbon ions, 2 Gy X-rays and 2 (for G1) or 5 M (for G2) Etp for 15 min and stained with H2X and CENF. *The number of H2X foci post carbon ions was examined at the indicated time points except for 6 hr. D) R or Rad51 foci numbers in G2 phase were enumerated following exposure to 2 Gy carbon ions, 2 Gy X-rays and 5 M Etp in HSF1 primary cells. % of R or Rad51/ H2X foci at 15 min is shown in Figure 1C. The doses chosen generate similar numbers of H2X foci at 2 h after treatment, since R/Rad51 foci numbers reach the maximal levels at 2 hr post treatment as discussed in Supplementary Figure S2. The induction of DS formation after carbon ion irradiation might be underestimated if they arise in close proximity. Nevertheless, importantly, given that we observe fewer not more H2X foci, it is unlikely that this can explain the magnitude of the increase in R/Rad51 foci that we observe. *The number of R post carbon ions was examined at the indicated time points except for 6 hr. Figure S4. Etp can induce HC-DSs, but they are 2-3 fold lower than X-ray-induced HC-DSs. ) Not all persistent H2X foci co-associate with pk-1 foci. Cells lacking XLF, a core NHEJ protein, were exploited to examine a situation where EC and HC-DSs might persist. t 8 h post 3 M Etp. for 3 min, the % of pk-1 positive H2X foci is approximately 2% in XLF cells, which corresponds to the percentage of HC-DN. Since Etp induces a lower percentage of HC-DSs, 1R (WT) htert cells were treated with 15 M Etp for 3 min, which results in ~8 H2X foci remaining at 8 hr similar to the number remaining in XLF cells treated as described above. In these 1R htert cells nearly all (84 %) of H2X foci co-localise with pk-1 foci. Thus, pk-1 does not form at all persisting H2X foci. Rather, those persisting in control cells represent the slowly repaired HC-DSs. ) Etp can induce DSs at HC regions in NIH3T3 cells. To induce a similar number of DSs (~3 H2X foci), cells were treated with 2 M Etp 3 min or irradiated with 1 Gy X-rays. fter fixation, cells were stained for H2X (green) and DI (blue). H2X (red) in right panel represents regions of H2X and dense-di chromocentre overlap as determined by softworx Suite software. Etp induced DSs can localise to densely staining DI regions but the percentage is less than for X-ray induced DSs. Figure S5. nalysis of R foci in Ku8+RC2 sirn cells. DN-K expression in CHO V3 cell lines.

3 ) Ku8 sirn significantly increases R foci numbers post IR. Quantification is shown in Figure 3. Knockdown efficiency was assessed by immunoblot as shown in right panel. -tubulin was used as a loading control. ) DN-Kcs expression levels in CHO V3 cell lines. DN-Kcs null hamster V3 cells express human DN-Kcs with or without mutations in the CDE phosphorylation sites. Ku8 and -tubulin were used as a loading control. The level of DN-Kcs expression between V3+ WT and particularly between the V3+CDE S>D mutant and V3-CDE S> mutant is similar but the magnitude of resection at 1 h post treatment is very different. The signal intensity of DN-Kcs was quantified with ImageJ. Normalized signal intensities with Talin (cytoskeletal protein) are shown on the bottom of the blots. Figure S6. CtI sirn leads to reduced IR induced Rad51 foci formation in G2 but does not affect activation of TM signalling. ) Cells were irradiated with 3 Gy IR, and stained with Rad51 and CEN-F. Cells containing >5 Rad51 foci were scored as positive. Consistent with ablated R foci formation following CtI sirn treated cells, CtI sirn also significantly reduced Rad51 foci formation (right panel). ) CtI sirn reduced Chk1 S317 phosphorylation, but did not affect TM dependent pk-1 S824 and pchk2 T68. Further, IR induced ptm S1981 foci form normally in CtI knockdown G1 and G2 cells. Figure S7. model for the regulation of DS repair pathway usage at two-ended DSs in G2. We propose that both DN damage complexity and chromatin complexity can influence the speed of DS repair and that DSs, which are not efficiently rejoined by NHEJ, preferentially undergo DS end-resection. 1) DSs that arise in EC-DN without high DN complexity undergo efficient repair with faster kinetics by NHEJ regardless of cell cycle phase. 2) when a highly complex DS arises in EC-DN, it is repaired with slow kinetics in both G1 and G2. In G2, NHEJ stalls and the DSs undergo resection and subsequent repair by HR. 3) HC is also a barrier slowing repair by NHEJ. In G1 phase, an HC-DS is repaired slowly by NHEJ. In G2 phase, NHEJ stalls, allowing resection and subsequent repair by HR. Repair pathway usage at an HC-DS can be switched from HR to NHEJ when CtI dependent DS end resection does not occur. Whereas CtIdependent resection commits to HR. TM has direct and indirect roles in regulating DS end resection by promoting K-1 dependent heterochromatin relaxation and by activating CtI by phosphorylation. The precise magnitude of DN damage complexity required to stall or slow NHEJ is currently unclear but the association of base damage at DSs does not appear to restrict NHEJ usage since most X or -ray induced DSs fall into this class. dditionally, it is unclear whether there is an impact of lesion complexity on HC-DSs e.g. whether DSs without any additional lesions can be repaired rapidly (and without undergoing resection) in G2 phase. Our findings do not eliminate the possibility that some Etpinduced DSs arising in HC-DN can be repaired with fast kinetics without undergoing resection.

4 Table. S1 Comparison of DS repair kinetics between Etoposide and -ray induced damage Etoposide -ray Induction of H2X foci ~ No. of pk-1 associated H2X foci at 8 hr % of pk-1 associated DSs at 8 h ~4.6% 12.6% Half-life of faster repair kinetics ~2.2 h 1.5 h* Half-life of slower repair kinetics 12.7 h 1.2 h* *The data of -ray are from Noon et al., NC, 21. References. eucher, irraux J, Tchouandong L, arton O, Shibata, Conrad S, Goodarzi, Krempler, Jeggo, Lobrich M (29) TM and rtemis promote homologous recombination of radiation-induced DN double-strand breaks in G2. EMO J 28(21): Shibata, arton O, Noon T, Dahm K, Deckbar D, Goodarzi, Lobrich M, Jeggo (21) Role of TM and the damage response mediator proteins 531 and MDC1 in the maintenance of G(2)/M checkpoint arrest. Mol Cell iol 3(13):

5 Supplementary Figure S1 G1 Early S Late S G2 M g-h2x CENF Merge + DI 8 hr after 2 Gy IR (+ H) IR G1 Early S Late S G2 M R CENF Merge + DI 2 hr after 2 Gy IR (+ H) IR

6 Supplementary Figure S2 2 Gy IR (hr) G2 phase S phase R 531 Merge+DI R 531 Merge+DI G2 phase S phase g-h2x 531 Merge+DI g-h2x 531 Merge+DI 2 hr C 2 Gy IR (hr) G2 phase S phase g-h2x Rad51 Merge+DI g-h2x Rad51 Merge+DI

7 No. of R or Rad51 foci per cell No. of gh2x foci per cell No. of gh2x foci per cell No. of carbon ion induced gh2x foci per cell Supplementary Figure S3 CENF R DI R DI C WT G1 phase RC2-2 hr 24 hr 2 hr 24 hr Etp X-ray C G2 phase WT Rad54 -/ Time post irradiation (hr) Etp X-ray C12 D 1 35 * Time post damage (hr) G2 phase Time post damage (hr) * Etp (Rad51) X-ray (Rad51) C12 (R) Time post damage (hr)

8 Supplementary Figure S4 1R (WT) htert 8 hr post 15 mm Etp pk-1 gh2x DI + Merge pk-1 associated gh2x / nalysed no. of gh2x foci 151/181 (83.4%) XLF htert 8 hr post 3 mm Etp 38/173 (21.9%) gh2x DI Merge HC foci 2 mm Etp 14.3% 1 Gy X-ray 29.7% *% of HC-gH2X foci

9 siku8 sirc2 siku8 + sirc2 Supplementary Figure S5 4 hr after 1 Gy R CENF DI Merge sicontrol siku8 sirc2 siku8 + sirc2 RC2 Ku8 Ku7 b-tubulin V3 DN-K DN-Kcs Talin (loading control)

10 No. of ptm foci in G2 per cell % of Rad51 foci positive cells in G2 Supplementary Figure S6 Rad51 CENF Merge +DI 1 hr 8 hr Gy 2 hr 2 3 Gy 2 hr 2 Time post irradiation (hr) IR (Gy) CtI b-tubulin ptm CEN-F Merge +DI G1 1 Gy IR pk-1 S824 K-1 pchk1 S317 Chk Gy X-ray, 2 hr G2 3 Gy IR 2 pchk2 T68 1 Chk2

11 Supplementary Figure S7 Euchromatin Heterochromatin (1) (2) (3) DS without complexity Ku/DN-K DS with complexity DS in HC regions HC remodelling K-1 Ku/DN-K TM NHEJ stalling NHEJ [Repair with FST kinetics] TM CtI CDK CtI CtI dependent resection R/Rad51 loading HR [Repair with SLOW kinetics]

SUPPLEMENTAL FIGURE LEGENDS

SUPPLEMENTAL FIGURE LEGENDS SUPPLEMENTAL FIGURE LEGENDS Supplemental Figure S1: Endogenous interaction between RNF2 and H2AX: Whole cell extracts from 293T were subjected to immunoprecipitation with anti-rnf2 or anti-γ-h2ax antibodies

More information

Tumor cell reassortment within the cell cycle (including checkpoints and cell-cycle arrest)

Tumor cell reassortment within the cell cycle (including checkpoints and cell-cycle arrest) Tumor cell reassortment within the cell cycle (including checkpoints and cell-cycle arrest) Carsten Herskind Dept. of Radiation Oncology. Universitätsmedizin Mannheim Medical Faculty Mannheim, Heidelberg

More information

Supplementary Figure S1: Defective heterochromatin repair in HGPS progeroid cells

Supplementary Figure S1: Defective heterochromatin repair in HGPS progeroid cells Supplementary Figure S1: Defective heterochromatin repair in HGPS progeroid cells Immunofluorescence staining of H3K9me3 and 53BP1 in PH and HGADFN003 (HG003) cells at 24 h after γ-irradiation. Scale bar,

More information

Supplementary Figure 1

Supplementary Figure 1 Supplementary Figure 1 a γ-h2ax MDC1 RNF8 FK2 BRCA1 U2OS Cells sgrna-1 ** 60 sgrna 40 20 0 % positive Cells (>5 foci per cell) b ** 80 sgrna sgrna γ-h2ax MDC1 γ-h2ax RNF8 FK2 MDC1 BRCA1 RNF8 FK2 BRCA1

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supplementary Discussion The cell cycle machinery and the DNA damage response network are highly interconnected and co-regulated in assuring faithful duplication and partition of genetic materials into

More information

Supplementary Figure 1: si-craf but not si-braf sensitizes tumor cells to radiation.

Supplementary Figure 1: si-craf but not si-braf sensitizes tumor cells to radiation. Supplementary Figure 1: si-craf but not si-braf sensitizes tumor cells to radiation. (a) Embryonic fibroblasts isolated from wildtype (WT), BRAF -/-, or CRAF -/- mice were irradiated (6 Gy) and DNA damage

More information

DNA double-strand break repair of parental chromatin in ooplasm and origin of de novo mutations. Peter de Boer

DNA double-strand break repair of parental chromatin in ooplasm and origin of de novo mutations. Peter de Boer DNA double-strand break repair of parental chromatin in ooplasm and origin of de novo mutations Peter de Boer Department of Obst.& Gynaecology, Div. Reproductive Medicine Radboud University Nijmegen Medical

More information

Tumour growth environment modulates Chk1 signalling pathways and sensitivity to Chk1 inhibition

Tumour growth environment modulates Chk1 signalling pathways and sensitivity to Chk1 inhibition Tumour growth environment modulates Chk1 signalling pathways and sensitivity to Chk1 inhibition Andrew J Massey Supplementary Information Supplementary Figure S1. Related to Fig. 1. (a) HT29 or U2OS cells

More information

DSB. Double-Strand Breaks causate da radiazioni stress ossidativo farmaci

DSB. Double-Strand Breaks causate da radiazioni stress ossidativo farmaci DSB Double-Strand Breaks causate da radiazioni stress ossidativo farmaci METODI DDR foci formation in irradiated (2 Gy) cells fixed 2 h later IRIF IRradiation Induced Focus Laser micro-irradiation DDR

More information

Chapter 2. Aims & Objectives

Chapter 2. Aims & Objectives 2.1. Statement of the problem: Earlier reports have shown ambiguous alteration of histone marks in response to DNA damage in asynchronized population of cells. These histone marks not only undergo dynamic

More information

DNA Repair Processes and Checkpoint Pathways in Human Cells Exposed to Heavy Ion Beams

DNA Repair Processes and Checkpoint Pathways in Human Cells Exposed to Heavy Ion Beams DNA Repair Processes and Checkpoint Pathways in Human Cells Exposed to Heavy Ion Beams Hirohiko Yajima, PhD 1 ; and Lian Xue, PhD 2 1 Research Center for Charged Particle Therapy, National Institute of

More information

Modelling of Biological Processes

Modelling of Biological Processes Modelling of Biological Processes WHAT HAPPENS AFTER EARLY MOLECULAR DAMAGE? Stephen McMahon Queen s University, Belfast, Northern Ireland 3 rd August 2016 1 Do we need biology? The Linear-quadratic relationship

More information

Supplementary Figure S1

Supplementary Figure S1 Supplementary Figure S1 Supplementary Figure S1. PARP localization patterns using GFP-PARP and PARP-specific antibody libraries GFP-PARP localization in non-fixed (A) and formaldehyde fixed (B) GFP-PARPx

More information

nuclear science and technology

nuclear science and technology EUROPEAN COMMISSION nuclear science and technology Radiation-specific DNA non-double strand break lesions: repair mechanisms and biological effects (Non-DSB Lesions) Contract N o FIGH-CT2002-00207 Final

More information

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists 3,900 116,000 120M Open access books available International authors and editors Downloads Our

More information

GrK 1657 Retreat Kleinwalsertal

GrK 1657 Retreat Kleinwalsertal GrK 1657 Retreat Kleinwalsertal 14.06. 18.06.2015 Timetable Time table Sunday Monday Tuesday Wednesday Thursday 14.06.2015 15.06.2015 16.06.2015 17.06.2015 18.06.2015 08.00 09:15 Fr. Nuber 10:00 Talk Session

More information

Brian T Burgess, DO, PhD, GYN Oncology Fellow Rachel W. Miller, MD, GYN Oncology

Brian T Burgess, DO, PhD, GYN Oncology Fellow Rachel W. Miller, MD, GYN Oncology Brian T Burgess, DO, PhD, GYN Oncology Fellow Rachel W. Miller, MD, GYN Oncology Epithelial Ovarian Cancer - Standard Current Treatment: Surgery with De-bulking + Platinum-Taxane based Chemotherapy - No

More information

DNA double strand break repair: a radiation perspective

DNA double strand break repair: a radiation perspective DNA double strand break repair: a radiation perspective Kavanagh, J. N., Redmond, K. M., Schettino, G., & Prise, K. M. (2013). DNA double strand break repair: a radiation perspective. Antioxidants & Redox

More information

Repair of Broken Chromosomes and Maintenance of Chromosome Stability

Repair of Broken Chromosomes and Maintenance of Chromosome Stability Repair of Broken Chromosomes and Maintenance of Chromosome Stability Jim Haber Brandeis University Genome instability in tumor cells Truncations Translocations Inversions Duplications Amplifications Deletions

More information

PREPARED FOR: U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland

PREPARED FOR: U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland AD Award Number: W81XWH-05-1-0494 TITLE: Tumor Suppression by BRCA-1: A Critical Role at DNA Replication Forks PRINCIPAL INVESTIGATOR: Jean Gautier, Ph.D. CONTRACTING ORGANIZATION: Columbia University

More information

Supplementary Appendix

Supplementary Appendix Supplementary Appendix This appendix has been provided by the authors to give readers additional information about their work. Supplement to: Fong PC, Boss DS, Yap TA, et al. Inhibition of poly(adp-ribose)

More information

Nature Structural and Molecular Biology: doi: /nsmb Supplementary Figure 1

Nature Structural and Molecular Biology: doi: /nsmb Supplementary Figure 1 Supplementary Figure 1 Mutational analysis of the SA2-Scc1 interaction in vitro and in human cells. (a) Autoradiograph (top) and Coomassie stained gel (bottom) of 35 S-labeled Myc-SA2 proteins (input)

More information

Cell Cycle, Mitosis, and Microtubules. LS1A Final Exam Review Friday 1/12/07. Processes occurring during cell cycle

Cell Cycle, Mitosis, and Microtubules. LS1A Final Exam Review Friday 1/12/07. Processes occurring during cell cycle Cell Cycle, Mitosis, and Microtubules LS1A Final Exam Review Friday 1/12/07 Processes occurring during cell cycle Replicate chromosomes Segregate chromosomes Cell divides Cell grows Cell Growth 1 The standard

More information

Ex vivo functional assays for Homologous Recombination deficiency in breast cancer. Dik C. van Gent

Ex vivo functional assays for Homologous Recombination deficiency in breast cancer. Dik C. van Gent Ex vivo functional assays for Homologous Recombination deficiency in breast cancer Dik C. van Gent Breast cancer types treatments ER/PR: anti-hormonal therapy HER2: Herceptin Triple negative (TNBC): no

More information

Regulators of Cell Cycle Progression

Regulators of Cell Cycle Progression Regulators of Cell Cycle Progression Studies of Cdk s and cyclins in genetically modified mice reveal a high level of plasticity, allowing different cyclins and Cdk s to compensate for the loss of one

More information

nuclear science and technology

nuclear science and technology EUROPEAN COMMISSION nuclear science and technology The role of intercellular communication and DNA double-strand breaks in the induction of bystander effects (INTERSTANDER) Contract N o FIGH-CT2002-00218

More information

Supplementary Figure 1. Normal T lymphocyte populations in Dapk -/- mice. (a) Normal thymic development in Dapk -/- mice. Thymocytes from WT and Dapk

Supplementary Figure 1. Normal T lymphocyte populations in Dapk -/- mice. (a) Normal thymic development in Dapk -/- mice. Thymocytes from WT and Dapk Supplementary Figure 1. Normal T lymphocyte populations in Dapk -/- mice. (a) Normal thymic development in Dapk -/- mice. Thymocytes from WT and Dapk -/- mice were stained for expression of CD4 and CD8.

More information

(a) Schematic diagram of the FS mutation of UVRAG in exon 8 containing the highly instable

(a) Schematic diagram of the FS mutation of UVRAG in exon 8 containing the highly instable Supplementary Figure 1. Frameshift (FS) mutation in UVRAG. (a) Schematic diagram of the FS mutation of UVRAG in exon 8 containing the highly instable A 10 DNA repeat, generating a premature stop codon

More information

Supplementary Materials for

Supplementary Materials for www.sciencesignaling.org/cgi/content/full/9/439/ra78/dc1 Supplementary Materials for Small heterodimer partner mediates liver X receptor (LXR) dependent suppression of inflammatory signaling by promoting

More information

The impact of different radiation qualities on cancer cells

The impact of different radiation qualities on cancer cells The impact of different radiation qualities on cancer cells Marjan Moreels, PhD Radiobiology Unit,, Belgium XXth Colloque GANIL Session 10, Amboise, France Oct 19, 2017 1 The Belgian Nuclear Research Center

More information

Bystander responses and low dose exposure: Current evidence and future research requirements

Bystander responses and low dose exposure: Current evidence and future research requirements Bystander responses and low dose exposure: Current evidence and future research requirements Kevin M. Prise Centre for Cancer Research & Cell Biology, Queen s University Belfast Outline Definition of bystander

More information

PREPARED FOR: U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland

PREPARED FOR: U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland AD Award Number: W81XWH- TITLE: PRINCIPAL INVESTIGATOR: CONTRACTING ORGANIZATION: REPORT DATE: TYPE OF REPORT: Annual PREPARED FOR: U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland

More information

Targeting the ATR Kinase in Cancer Therapy

Targeting the ATR Kinase in Cancer Therapy Targeting the ATR Kinase in Cancer Therapy 2017 Chabner Colloquium October 30, 2017 Lee Zou MGH Cancer Center Harvard Medical School Disclosure Consultant/advisory role: Loxo Oncology DNA Damage and Replication

More information

Computational Systems Biology Modeling of DNA-damage Stress Pathways for Assessing Mutation Rates at Low Doses

Computational Systems Biology Modeling of DNA-damage Stress Pathways for Assessing Mutation Rates at Low Doses Computational Systems Biology Modeling of DNA-damage Stress Pathways for Assessing Mutation Rates at Low Doses Rebecca Clewell Society of Toxicology March 25, 2015 Exposure & Consumer Use Assessment High-content

More information

Supplementary Figure 1

Supplementary Figure 1 Supplementary Figure 1 6 HE-50 HE-116 E-1 HE-108 Supplementary Figure 1. Targeted drug response curves of endometrial cancer cells. Endometrial cancer cell lines were incubated with serial dilutions of

More information

Supplementary Figure 1.TRIM33 binds β-catenin in the nucleus. a & b, Co-IP of endogenous TRIM33 with β-catenin in HT-29 cells (a) and HEK 293T cells

Supplementary Figure 1.TRIM33 binds β-catenin in the nucleus. a & b, Co-IP of endogenous TRIM33 with β-catenin in HT-29 cells (a) and HEK 293T cells Supplementary Figure 1.TRIM33 binds β-catenin in the nucleus. a & b, Co-IP of endogenous TRIM33 with β-catenin in HT-29 cells (a) and HEK 293T cells (b). TRIM33 was immunoprecipitated, and the amount of

More information

Basics of Radiation Biology

Basics of Radiation Biology Basics of Radiation Biology Sally A. Amundson Columbia University Center for Radiological Research http://www.cmcr.columbia.edu/ Overview Radiation damage to cells DNA Effects of radiation damage on cells

More information

Basics of Radiation Biology

Basics of Radiation Biology Basics of Radiation Biology Sally A. Amundson Columbia University Center for Radiological Research http://www.cmcr.columbia.edu/ Overview Radiation damage to cells DNA Effects of radiation damage on cells

More information

genome edited transient transfection, CMV promoter

genome edited transient transfection, CMV promoter Supplementary Figure 1. In the absence of new protein translation, overexpressed caveolin-1-gfp is degraded faster than caveolin-1-gfp expressed from the endogenous caveolin 1 locus % loss of total caveolin-1-gfp

More information

DNA-PK suppresses a p53-independent apoptotic response to DNA damage

DNA-PK suppresses a p53-independent apoptotic response to DNA damage scientificreport DNA-PK suppresses a p5-independent apoptotic response to DNA damage Kay E. Gurley, Russell Moser,YansongGu 2, Paul Hasty & Christopher J. Kemp + Division of Human Biology, Fred Hutchinson

More information

Effects of targeted phosphorylation site mutations in the DNA-PKcs phosphorylation domain on low and high LET radiation sensitivity

Effects of targeted phosphorylation site mutations in the DNA-PKcs phosphorylation domain on low and high LET radiation sensitivity ONCOLOGY LETTERS 9: 1621-1627, 2015 Effects of targeted phosphorylation site mutations in the DNA-PKcs phosphorylation domain on low and high LET radiation sensitivity IAN M. CARTWRIGHT 1, JUSTIN J. BELL

More information

Biology is the only subject in which multiplication is the same thing as division

Biology is the only subject in which multiplication is the same thing as division The Cell Cycle Biology is the only subject in which multiplication is the same thing as division Why do cells divide? For reproduction asexual reproduction For growth one-celled organisms from fertilized

More information

Clinical considerations of RBE in proton therapy

Clinical considerations of RBE in proton therapy Clinical considerations of RBE in proton therapy H. Paganetti PhD Professor, Harvard Medical School Director of Physics Research, Massachusetts General Hospital, Radiation Oncology Why do we need the RBE

More information

c Ischemia (30 min) Reperfusion (8 w) Supplementary Figure bp 300 bp Ischemia (30 min) Reperfusion (4 h) Dox 20 mg/kg i.p.

c Ischemia (30 min) Reperfusion (8 w) Supplementary Figure bp 300 bp Ischemia (30 min) Reperfusion (4 h) Dox 20 mg/kg i.p. a Marker Ripk3 +/ 5 bp 3 bp b Ischemia (3 min) Reperfusion (4 h) d 2 mg/kg i.p. 1 w 5 w Sacrifice for IF size A subset for echocardiography and morphological analysis c Ischemia (3 min) Reperfusion (8

More information

Lecture 10. G1/S Regulation and Cell Cycle Checkpoints. G1/S regulation and growth control G2 repair checkpoint Spindle assembly or mitotic checkpoint

Lecture 10. G1/S Regulation and Cell Cycle Checkpoints. G1/S regulation and growth control G2 repair checkpoint Spindle assembly or mitotic checkpoint Lecture 10 G1/S Regulation and Cell Cycle Checkpoints Outline: G1/S regulation and growth control G2 repair checkpoint Spindle assembly or mitotic checkpoint Paper: The roles of Fzy/Cdc20 and Fzr/Cdh1

More information

Radiation response in human cells

Radiation response in human cells Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine 1157 Radiation response in human cells DNA damage formation, repair and signaling ANN-SOFIE GUSTAFSSON ACTA UNIVERSITATIS

More information

Assistant Professor Department of Therapeutic Radiology Yale University School of Medicine

Assistant Professor Department of Therapeutic Radiology Yale University School of Medicine A Mechanism-Based Approach to Predict Relative Biological i Effectiveness and the Effects of Tumor Hypoxia in Charged Particle Radiotherapy David J. Carlson, Ph.D. Assistant Professor Department of Therapeutic

More information

Legends for Supplemental Figures.

Legends for Supplemental Figures. 1 Legends for Supplemental Figures. Supplemental Figure 1. Proteasome Inhibition does not abrogate the expression of FA core complex proteins or formation of the FA core complex. (Full-length blots are

More information

Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory

Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Title Disruption of Maternal DNA Repair Increases Sperm-Derived Chromosomal Aberrations Permalink https://escholarship.org/uc/item/3s33w7ng

More information

DNA-PK suppresses a p53 independent apoptotic response to DNA damage

DNA-PK suppresses a p53 independent apoptotic response to DNA damage DNA-PK suppresses a p53 independent apoptotic response to DNA damage Kay E. Gurley 1, Russell Moser 1, Yansong Gu 2, Paul Hasty 3, and Christopher J. Kemp 1 * 1 Division of Human Biology Fred Hutchinson

More information

Acquisition of Radiation Resistant Ability in Non- Irradiated Cells by Secreted Factors from Low Dose Irradiated Cells

Acquisition of Radiation Resistant Ability in Non- Irradiated Cells by Secreted Factors from Low Dose Irradiated Cells Nagoya University Acquisition of Radiation Resistant Ability in Non- Irradiated Cells by Secreted Factors from Low Dose Irradiated Cells Jun Kumagai a *, Akane Oohashi b and Genro Kashino c a Institute

More information

Removal of Shelterin Reveals the Telomere End-Protection Problem

Removal of Shelterin Reveals the Telomere End-Protection Problem Removal of Shelterin Reveals the Telomere End-Protection Problem DSB Double-Strand Breaks causate da radiazioni stress ossidativo farmaci DSB e CROMATINA Higher-order chromatin packaging is a barrier to

More information

SUPPLEMENTARY FIGURES

SUPPLEMENTARY FIGURES SUPPLEMENTARY FIGURES Supplementary Figure 1. (A) Left, western blot analysis of ISGylated proteins in Jurkat T cells treated with 1000U ml -1 IFN for 16h (IFN) or left untreated (CONT); right, western

More information

Regulation of DNA double-strand break repair pathway choice

Regulation of DNA double-strand break repair pathway choice Regulation of DSB repair pathway choice 134 REVIEW Cell Research (2008) 18:134-147. 2008 IBCB, SIBS, CAS All rights reserved 1001-0602/08 $ 30.00 www.nature.com/cr Regulation of DNA double-strand break

More information

Supplemental Figure 1. Western blot analysis indicated that MIF was detected in the fractions of

Supplemental Figure 1. Western blot analysis indicated that MIF was detected in the fractions of Supplemental Figure Legends Supplemental Figure 1. Western blot analysis indicated that was detected in the fractions of plasma membrane and cytosol but not in nuclear fraction isolated from Pkd1 null

More information

Supplementary Information for. A cancer-associated BRCA2 mutation reveals masked nuclear. export signals controlling localization

Supplementary Information for. A cancer-associated BRCA2 mutation reveals masked nuclear. export signals controlling localization Supplementary Information for A cancer-associated BRCA2 mutation reveals masked nuclear export signals controlling localization Anand D Jeyasekharan 1, Yang Liu 1, Hiroyoshi Hattori 1,3, Venkat Pisupati

More information

Recruitment of HBO1 Histone Acetylase and Blocks

Recruitment of HBO1 Histone Acetylase and Blocks Molecular Cell, Volume 44 Supplemental Information JNK1 Phosphorylation of Cdt1 Inhibits Recruitment of HO1 Histone cetylase and locks Replication Licensing in Response to Stress enoit Miotto and Kevin

More information

HCMV disrupts both ATM and ATR-mediated. DNA damage responses during lytic infection ACCEPTED

HCMV disrupts both ATM and ATR-mediated. DNA damage responses during lytic infection ACCEPTED JVI Accepts, published online ahead of print on 6 December 2006 J. Virol. doi:10.1128/jvi.01670-06 Copyright 2006, American Society for Microbiology and/or the Listed Authors/Institutions. All Rights Reserved.

More information

Supplementary Materials for

Supplementary Materials for www.sciencesignaling.org/cgi/content/full/6/278/rs11/dc1 Supplementary Materials for In Vivo Phosphoproteomics Analysis Reveals the Cardiac Targets of β-adrenergic Receptor Signaling Alicia Lundby,* Martin

More information

Supplementary Figure 1. Schematic diagram of o2n-seq. Double-stranded DNA was sheared, end-repaired, and underwent A-tailing by standard protocols.

Supplementary Figure 1. Schematic diagram of o2n-seq. Double-stranded DNA was sheared, end-repaired, and underwent A-tailing by standard protocols. Supplementary Figure 1. Schematic diagram of o2n-seq. Double-stranded DNA was sheared, end-repaired, and underwent A-tailing by standard protocols. A-tailed DNA was ligated to T-tailed dutp adapters, circularized

More information

nature methods Organelle-specific, rapid induction of molecular activities and membrane tethering

nature methods Organelle-specific, rapid induction of molecular activities and membrane tethering nature methods Organelle-specific, rapid induction of molecular activities and membrane tethering Toru Komatsu, Igor Kukelyansky, J Michael McCaffery, Tasuku Ueno, Lidenys C Varela & Takanari Inoue Supplementary

More information

Genome Instability is Breathtaking

Genome Instability is Breathtaking Genome Instability is Breathtaking Effects of Alpha Radiation exposure on DNA at a molecular level and consequences to cell health Dr. Aaron Goodarzi A.Goodarzi@ucalgary.ca Radiation what do you think

More information

SUPPLEMENTARY FIGURES

SUPPLEMENTARY FIGURES SUPPLEMENTARY FIGURES Figure S1. Clinical significance of ZNF322A overexpression in Caucasian lung cancer patients. (A) Representative immunohistochemistry images of ZNF322A protein expression in tissue

More information

The Need for a PARP in vivo Pharmacodynamic Assay

The Need for a PARP in vivo Pharmacodynamic Assay The Need for a PARP in vivo Pharmacodynamic Assay Jay George, Ph.D. Chief Scientific Officer Trevigen, Inc. Gaithersburg, MD Poly(ADP-ribose) polymerases are promising therapeutic targets. In response

More information

Open Access Book Chapter

Open Access Book Chapter ERC-OAPEN-2015, Deposit cover page Open Access Book Chapter Published version Chapter title Signalling DNA Damage Title in English Author(s) Andres Joaquin Lopez-Contreras and Oscar Fernandez-Capetillo

More information

Supplementary Information

Supplementary Information Supplementary Information HBV maintains electrostatic homeostasis by modulating negative charges from phosphoserine and encapsidated nucleic acids Authors: Pei-Yi Su 1,2,3, Ching-Jen Yang 2, Tien-Hua Chu

More information

Radiobiology of fractionated treatments: the classical approach and the 4 Rs. Vischioni Barbara MD, PhD Centro Nazionale Adroterapia Oncologica

Radiobiology of fractionated treatments: the classical approach and the 4 Rs. Vischioni Barbara MD, PhD Centro Nazionale Adroterapia Oncologica Radiobiology of fractionated treatments: the classical approach and the 4 Rs Vischioni Barbara MD, PhD Centro Nazionale Adroterapia Oncologica Radiobiology It is fundamental in radiation oncology Radiobiology

More information

Importance of ATM in Radiotherapy

Importance of ATM in Radiotherapy Importance of ATM in Radiotherapy Radiology and Physical Medicine María Trinidad Rueda Cáceres Radiotherapy Importance of ATM in Radiotherapy One of the standard treatment options for various malignant

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION DOI: 10.1038/ncb2988 Supplementary Figure 1 Kif7 L130P encodes a stable protein that does not localize to cilia tips. (a) Immunoblot with KIF7 antibody in cell lysates of wild-type, Kif7 L130P and Kif7

More information

Infect MCF-7 cells carrying dcas9-vp64 + psm2-p65-hsf1 with SAM library or vector. Introduce AKT reporter

Infect MCF-7 cells carrying dcas9-vp64 + psm2-p65-hsf1 with SAM library or vector. Introduce AKT reporter Infect MCF-7 cells carrying dcas9-vp64 + psm2-p65-hsf1 with SM library or vector Introduce reporter Grow cells in presence of puromycin for 5 days Vector control SM library fewer surviving cells More surviving

More information

Supplementary Figure 1

Supplementary Figure 1 A B D Relative TAp73 mrna p73 Supplementary Figure 1 25 2 15 1 5 p63 _-tub. MDA-468 HCC1143 HCC38 SUM149 MDA-468 HCC1143 HCC38 SUM149 HCC-1937 MDA-MB-468 ΔNp63_ TAp73_ TAp73β E C Relative ΔNp63 mrna TAp73

More information

A post-translational modification switch controls coactivator function of histone methyltransferases G9a and GLP

A post-translational modification switch controls coactivator function of histone methyltransferases G9a and GLP rticle post-translational modification switch controls coactivator function of histone methyltransferases G9a and GLP oralie Poulard, anielle ittencourt, ai-ying Wu Michael R Stallcup *, Yixin Hu, aniel

More information

Tyrosine phosphorylation and protein degradation control the transcriptional activity of WRKY involved in benzylisoquinoline alkaloid biosynthesis

Tyrosine phosphorylation and protein degradation control the transcriptional activity of WRKY involved in benzylisoquinoline alkaloid biosynthesis Supplementary information Tyrosine phosphorylation and protein degradation control the transcriptional activity of WRKY involved in benzylisoquinoline alkaloid biosynthesis Yasuyuki Yamada, Fumihiko Sato

More information

Figure S1. B % of Phosphorylation 32H. 32ss

Figure S1. B % of Phosphorylation 32H. 32ss Figure S1 8H 32ss 32H 32Hc % of Phosphorylation 3 32H 2 1 32ss 1 2 3 4 Extract (μg) C % of Phosphorylation 18 12 6-32H 32Hc 8H 32ss Dbait Figure S1. List of the Dbait molecules and activation of DN-PK

More information

CELL CYCLE,CHECK POINTS. Prof S.N.Senapati, A.H.REGIONAL CANCER CENTRE, MANGALABAG, CUTTACK

CELL CYCLE,CHECK POINTS. Prof S.N.Senapati, A.H.REGIONAL CANCER CENTRE, MANGALABAG, CUTTACK CELL CYCLE,CHECK POINTS Prof S.N.Senapati, A.H.REGIONAL CANCER CENTRE, MANGALABAG, CUTTACK E-Mail:-snsenapati2007@gmail.com IN RADIATION ONCOLOGY TUMOR CELL DEATH CELL DEATH AFTER IRRADIATION OCCURS MOSTLY

More information

8/3/2016. Clinical Significance of RBE Variations in Proton Therapy. Why RBE (relative biological effectiveness)?

8/3/2016. Clinical Significance of RBE Variations in Proton Therapy. Why RBE (relative biological effectiveness)? 8//06 Clinical Significance of Variations in Proton Therapy H. Paganetti PhD Professor, Harvard Medical School Director of Physics Research, Massachusetts General Hospital, Radiation Oncology Introduction

More information

Dissecting the role of H3K64me3 in mouse pericentromeric heterochromatin.

Dissecting the role of H3K64me3 in mouse pericentromeric heterochromatin. Supplementary Information Dissecting the role of H3K64me3 in mouse pericentromeric heterochromatin. Ulrike C. Lange 1, Stéphanie Siebert 2, Mark Wossidlo 3,4, Thomas Weiss 1, Céline Ziegler- Birling 2,

More information

Chapter 12. Regulation of Cell Division. AP Biology

Chapter 12. Regulation of Cell Division. AP Biology Chapter 12. Regulation of Cell Division Coordination of cell division! Multicellular organism " need to coordinate across different parts of organism! timing of cell division! rates of cell division "

More information

Supplementary table 1

Supplementary table 1 Supplementary table 1 S. pombe strain list Fig. 1A JX38 h + ade6-m216 nda3-km311 PX476 PW775 PX545 PX546 h- ade6-m216 sgo2::ura4 + nda3-km311 h 9 mad2::ura4 + nda3-km311 h + ade6-m21 nda3-km311 rad21 +

More information

Received 2 August 2006/Accepted 21 November 2006

Received 2 August 2006/Accepted 21 November 2006 JOURNAL OF VIROLOGY, Feb. 2007, p. 1934 1950 Vol. 81, No. 4 0022-538X/07/$08.00 0 doi:10.1128/jvi.01670-06 Copyright 2007, American Society for Microbiology. All Rights Reserved. Human Cytomegalovirus

More information

Supplementary Figure 1: High-throughput profiling of survival after exposure to - radiation. (a) Cells were plated in at least 7 wells in a 384-well

Supplementary Figure 1: High-throughput profiling of survival after exposure to - radiation. (a) Cells were plated in at least 7 wells in a 384-well Supplementary Figure 1: High-throughput profiling of survival after exposure to - radiation. (a) Cells were plated in at least 7 wells in a 384-well plate at cell densities ranging from 25-225 cells in

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION DOI: 10.1038/ncb3461 In the format provided by the authors and unedited. Supplementary Figure 1 (associated to Figure 1). Cpeb4 gene-targeted mice develop liver steatosis. a, Immunoblot displaying CPEB4

More information

Table S1. New colony formation 7 days after stimulation with doxo and VCR in JURKAT cells

Table S1. New colony formation 7 days after stimulation with doxo and VCR in JURKAT cells Table S1. New colony formation 7 days after stimulation with and in JURKAT cells drug co + number of colonies 7±14 4±7 48±11 JURKAT cells were stimulated and analyzed as in Table 1. Drug concentrations

More information

DSB. Double-Strand Breaks causate da radiazioni stress ossidativo farmaci

DSB. Double-Strand Breaks causate da radiazioni stress ossidativo farmaci DSB Double-Strand Breaks causate da radiazioni stress ossidativo farmaci DSB e CROMATINA Higher-order chromatin packaging is a barrier to the detection and repair of DNA damage DSBs induce a local decrease

More information

Cancer Drug Discovery and Development. Philip J. Tofilon Kevin Camphausen Editors. Increasing the Therapeutic Ratio of Radiotherapy

Cancer Drug Discovery and Development. Philip J. Tofilon Kevin Camphausen Editors. Increasing the Therapeutic Ratio of Radiotherapy Cancer Drug Discovery and Development Philip J. Tofilon Kevin Camphausen Editors Increasing the Therapeutic Ratio of Radiotherapy Cancer Drug Discovery and Development Series Editor Beverly A. Teicher

More information

BCHM3972 Human Molecular Cell Biology (Advanced) 2013 Course University of Sydney

BCHM3972 Human Molecular Cell Biology (Advanced) 2013 Course University of Sydney BCHM3972 Human Molecular Cell Biology (Advanced) 2013 Course University of Sydney Page 2: Immune Mechanisms & Molecular Biology of Host Defence (Prof Campbell) Page 45: Infection and Implications for Cell

More information

Expanded View Figures

Expanded View Figures Shao-Ming Shen et al Role of I in MT of cancers MO reports xpanded View igures igure V1. nalysis of the expression of I isoforms in cancer cells and their interaction with PTN. RT PR detection of Ish and

More information

Asingle inherited mutant gene may be enough to

Asingle inherited mutant gene may be enough to 396 Cancer Inheritance STEVEN A. FRANK Asingle inherited mutant gene may be enough to cause a very high cancer risk. Single-mutation cases have provided much insight into the genetic basis of carcinogenesis,

More information

(A) SW480, DLD1, RKO and HCT116 cells were treated with DMSO or XAV939 (5 µm)

(A) SW480, DLD1, RKO and HCT116 cells were treated with DMSO or XAV939 (5 µm) Supplementary Figure Legends Figure S1. Tankyrase inhibition suppresses cell proliferation in an axin/β-catenin independent manner. (A) SW480, DLD1, RKO and HCT116 cells were treated with DMSO or XAV939

More information

Nature Structural & Molecular Biology: doi: /nsmb.3218

Nature Structural & Molecular Biology: doi: /nsmb.3218 Supplementary Figure 1 Endogenous EGFR trafficking and responses depend on biased ligands. (a) Lysates from HeLa cells stimulated for 2 min. with increasing concentration of ligands were immunoblotted

More information

Accumulation of DNA double strand breaks. in normal tissues after fractionated low dose irradiation

Accumulation of DNA double strand breaks. in normal tissues after fractionated low dose irradiation Aus der Klinik für Strahlentherapie und Radioonkologie Direktor: Prof. Dr. Ch. Rübe UniversitätskliniKum des Saarlandes Accumulation of DNA double strand breaks in normal tissues after fractionated low

More information

Loss of Calreticulin Uncovers a Critical Role for Calcium in Regulating Cellular Lipid Homeostasis

Loss of Calreticulin Uncovers a Critical Role for Calcium in Regulating Cellular Lipid Homeostasis SUPPLEMENTARY MATERIAL Loss of Calreticulin Uncovers a Critical Role for Calcium in Regulating Cellular Lipid Homeostasis Wen-An Wang 1, Wen-Xin Liu 1, Serpen Durnaoglu 2, Sun-Kyung Lee 2, Jihong Lian

More information

Mitosis and the Cell Cycle

Mitosis and the Cell Cycle Mitosis and the Cell Cycle Chapter 12 The Cell Cycle: Cell Growth & Cell Division Where it all began You started as a cell smaller than a period at the end of a sentence Getting from there to here Cell

More information

w ª wy xvwz A ª vw xvw P ª w} xvw w Æ w Æ V w,x Æ w Æ w Æ y,z Æ { Æ y,z, w w w~ w wy}æ zy Æ wyw{ xæ wz w xywæ xx Æ wv Æ } w x w x w Æ w Æ wy} zy Æ wz

w ª wy xvwz A ª vw xvw P ª w} xvw w Æ w Æ V w,x Æ w Æ w Æ y,z Æ { Æ y,z, w w w~ w wy}æ zy Æ wyw{ xæ wz w xywæ xx Æ wv Æ } w x w x w Æ w Æ wy} zy Æ wz w ª wy xvwz A ª vw xvw P ª w} xvw w Æ w Æ V w,x Æ w Æ w Æ y,z Æ { Æ y,z, w w w~ w wy}æ zy Æ wyw{ xæ wz w xywæ xx Æ wv Æ } w x w x w Æ w Æ wy} zy Æ wz {w Æ Æ wyw{ x w Germ-line mutations in BRCA1 are associated

More information

Selective targeting of cancer cells through inhibition of Checkpoint kinase 1

Selective targeting of cancer cells through inhibition of Checkpoint kinase 1 Selective targeting of cancer cells through inhibition of Checkpoint kinase 1 Grete Hasvold Department of Radiation Biology Institute for Cancer Research The Norwegian Radium Hospital Oslo University Hospital

More information

Figure S1, Beyer et al.

Figure S1, Beyer et al. Figure S1, eyer et al. Pax7 Myogenin si sitrl Hoechst T = 72h 14 1.8.6.4.2 12 1 8 6 4 2 24h 48h 96h diff. sitrl siset1 212 72h diff. b1 td r t Se km MyH Vinculin Myogenin β-ctin Vinculin MW b1 ka td r

More information

TITLE: Novel Mechanisms of PARP inhibitor resistance in BRCA1-deficient Breast Cancers

TITLE: Novel Mechanisms of PARP inhibitor resistance in BRCA1-deficient Breast Cancers AWARD NUMBER: W81XWH-13-1-0027 TITLE: Novel Mechanisms of PARP inhibitor resistance in BRCA1-deficient Breast Cancers PRINCIPAL INVESTIGATOR: Stephanie Yazinski CONTRACTING ORGANIZATION: Massachusetts

More information

Bacterial cell. Origin of replication. Septum

Bacterial cell. Origin of replication. Septum Bacterial cell Bacterial chromosome: Double-stranded DNA Origin of replication Septum 1 2 3 Chromosome Rosettes of Chromatin Loops Scaffold protein Chromatin Loop Solenoid Scaffold protein Chromatin loop

More information

DNA damage and DNA repair

DNA damage and DNA repair DNA damage and DNA repair Susan P. Lees-Miller, PhD, Professor, Departments of Biochemistry & Molecular Biology and Oncology, Southern Alberta Cancer Research Institute, University of Calgary, Calgary,

More information

SV40 Utilizes ATM Kinase Activity to Prevent Non-homologous End Joining of Broken Viral DNA Replication Products

SV40 Utilizes ATM Kinase Activity to Prevent Non-homologous End Joining of Broken Viral DNA Replication Products SV40 Utilizes ATM Kinase Activity to Prevent Non-homologous End Joining of Broken Viral DNA Replication Products Gregory A. Sowd 1 *, Dviti Mody 1, Joshua Eggold 1, David Cortez 2, Katherine L. Friedman

More information