Predicting US- and State-Level Cancer Counts for the Current Calendar Year

Size: px
Start display at page:

Download "Predicting US- and State-Level Cancer Counts for the Current Calendar Year"

Transcription

1 Original Article Predicting US- and State-Level Cancer Counts for the Current Calendar Year Part II: Evaluation of Spatiotemporal Projection Methods for Incidence Li Zhu, PhD 1 ; Linda W. Pickle, PhD 2 ; Kaushik Ghosh, PhD 3 ; Deepa Naishadham, MA, MS 4 ; Kenneth Portier, PhD 5 ; Huann-Sheng Chen, PhD 1 ; Hyune-Ju Kim, PhD 6 ; Zhaohui Zou, MS 7 ; James Cucinelli, BA 7 ; Betsy Kohler, MPH 8 ; Brenda K. Edwards, PhD 1 ; Jessica King, MPH 9 ; Eric J. Feuer, PhD 1 ; and Ahmedin Jemal, DVM, PhD 4 BACKGROUND. The current study was undertaken to evaluate the spatiotemporal projection models applied by the American Cancer Society to predict the number of new cancer cases. METHODS. Adaptations of a model that has been used since 2007 were evaluated. Modeling is conducted in 3 steps. In step I, ecologic predictors of spatiotemporal variation are used to estimate age-specific incidence counts for every county in the country, providing an estimate even in those areas that are missing data for specific years. Step II adjusts the step I estimates for reporting delays. In step III, the delay-adjusted predictions are projected 4 years ahead to the current calendar year. Adaptations of the original model include updating covariates and evaluating alternative projection methods. Residual analysis and evaluation of 5 temporal projection methods were conducted. RESULTS. The differences between the spatiotemporal model-estimated case counts and the observed case counts for 2007 were < 1%. After delays in reporting of cases were considered, the difference was 2.5% for women and 3.3% for men. Residual analysis indicated no significant pattern that suggested the need for additional covariates. The vector autoregressive model was identified as the best temporal projection method. CONCLUSIONS. The current spatiotemporal prediction model is adequate to provide reasonable estimates of case counts. To project the estimated case counts ahead 4 years, the vector autoregressive model is recommended to be the best temporal projection method for producing estimates closest to the observed case counts. Cancer 2012;118: VC 2012 American Cancer Society. KEYWORDS: cancer incidence, cancer surveillance, Surveillance, Epidemiology, and End Results (SEER), National Program of Cancer Registries (NPCR), spatiotemporal, projection methods. INTRODUCTION The number of cancer cases diagnosed in the current calendar year in the United States overall and in each state is not known because the most recent year for which incidence data are available lags 4 years behind because of the time required for data collection, compilation, and dissemination. 1 Furthermore, high-quality incidence data have not yet been achieved in all states and the total number of cases for the most recent 1 to 3 data years are incomplete because of delays in reporting. 2 For more than half a century, 3,4 the American Cancer Society has published the estimated number of new cancer cases in the current year in the US overall and in each state to provide broad perspectives on the contemporary cancer burden. These estimates are widely cited in the scientific literature. The methods used to project the estimated cancer cases ahead of time have evolved over the years as populationbased cancer registries have expanded, from a single registry (Connecticut) in the 1950s to nearly national coverage in the 2000s, and as new statistical techniques developed. Before 1995, spatial prediction using incidence-to-mortality ratios from the National Cancer Institute s Surveillance, Epidemiology, and End Results (SEER) Program 5 was used to project counts to the rest of the nation, which were then projected ahead using a simple linear projection model. From 1995 to 2006, a time series quadratic autoregressive model was used. 6 Beginning in 2007, a spatiotemporal regression model with ecologic covariates was used to provide case counts for every state that were then projected ahead 4 years using the joinpoint methodology (segmented linear projection). 7 In this article, we first examined the goodness of fit of the spatiotemporal prediction model. We then compared the accuracy of 5 temporal methods for projecting the number of new cancer Corresponding author: Li Zhu, PhD, Surveillance Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892; Fax: (301) ; li.zhu@nih.gov 1 Surveillance Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, National Institutes of Health, Bethesda, Maryland; 2 StatNet Consulting LLC, Gaithersburg, Maryland; 3 Department of Mathematical Sciences, University of Nevada at Las Vegas, Las Vegas, Nevada; 4 Surveillance Research, American Cancer Society, Atlanta, Georgia; 5 Statistics and Evaluation Center, American Cancer Society, Atlanta, Georgia; 6 Department of Mathematics, Syracuse University, Syracuse, New York; 7 Information Management Services, Inc, Silver Spring, Maryland; 8 North American Association of Central Cancer Registries, Springfield, Illinois; 9 Division of Cancer Prevention and Control, Centers for Disease Control and Prevention, Atlanta, Georgia See companion article on pages , this issue. DOI: /cncr.27405, Received: October 17, 2011; Revised: November 29, 2011; Accepted: December 13, 2011, Published online January 6, 2012 in Wiley Online Library (wileyonlinelibrary.com) 1100 Cancer February 15, 2012

2 Projection Methods for Cancer Incidence/Zhu et al cases to the current year nationally and at the state or registry level. The remainder of the current study is organized as follows. Cancer incidence data and covariates used in the spatiotemporal prediction model and in the validation of the temporal projection methods are introduced and the overall modeling process of the current method is described and 5 temporal projection methods are evaluated for future use. The Results section presents the findings and the Discussion section provides insights into the performance of each method. MATERIALS AND METHODS Overview The process used to estimate the numbers of new cancer cases expected in the current calendar year is comprised of 3 steps. Step I: spatiotemporal prediction A hierarchical Poisson mixed effects model 7 is applied to observed data from high-quality cancer registries, as certified by the North American Association of Central Cancer Registries (NAACCR), 8 to provide estimates of annual case counts over the available time period for every US county. This step provides an estimated case count even for those states with missing data for a particular year and smoothes the observed case counts over time through the modeling process. This step can fill in any holes in a state s time series before the state became a certified high-quality registry, or fill in holes in the map for a year in which some states did not report their data. Step II: delay adjustment The predicted case counts from step I are summed to the state level and then inflated to account for expected delays in case reporting. 9 These delay-adjustment factors range from negligible for some cancers to 15% for leukemia in the most recent reporting year (ie, the case count reported at first is expected to be 15% higher when all cases have been identified). Step III: temporal projection The delay-adjusted predicted case counts from step II are projected ahead 4 years to the upcoming calendar year. For this validation test, we projected ahead to 2008, the latest year for which observed data are available. Because of the complexity of this process, we validated the spatiotemporal prediction and temporal projection steps separately. A residual analysis was performed on the results of step I to determine whether additional covariates or interaction terms were needed. The temporal projection was validated by projecting delay-adjusted observed case counts 4 years ahead, comparing alternative methods by several fit statistics. The temporal projection methods we evaluated are the Nordpred (NP) method, the joinpoint method, the state-space (SS) model, the Bayesian state-space (BSS) method, and the vector autoregressive (VAR) model. The remainder of this section will provide a brief description of the data and methods used for spatiotemporal predictions and for temporal projections. More detailed information can be found in the technical report. 10 Data and Methods for Spatiotemporal Predictions In the spatiotemporal prediction validation, we used an updated version of the Cancer in North America (CINA) Deluxe incidence data from NAACCR 11 that were used in the study by Pickle et al. 7 In that article, data were available from 1995 through 2003 and included 40 states, the District of Columbia, and the Detroit metropolitan area, covering 86% of the US population. The updated data set contains data from 1995 through 2007, and includes 46 states and the District of Columbia, covering 95% of the US population. The covariates for the spatiotemporal model were constructed from various sources. The only information available on the individual cases was their age, gender, race, county of residence, cancer site, and year of diagnosis. Approximately 30 other ecologic covariates 10 were available at the county level, including measures of income, education, housing, racial distribution, foreign birth, language isolation, urban/rural status, land area, and Census division (region) 12 ; availability of physicians and hospitals 13 ; health insurance coverage and rates of cigarette smoking, obesity, vigorous activity, and cancer screening 14 ; and rates of mortality due to the same type of cancer. 15 Of these, measures of the rates of foreign-born individuals, language isolation, land area, obesity, and vigorous activity have to our knowledge not been included in the previous analyses. Lifestyle and medical facility covariates were updated with more recent values. Approximately 50% of the initial covariates were selected through a principal component analysis to avoid collinearity. Because we are interested in the validity of the predicted case counts, we calculated error rates as the difference between the predicted number of cases and the reported observed number of cases (delay-adjusted for 2007) divided by the population size and stratified by state, sex, and cancer site. Population-weighted linear regressions were run on the error rates for all cancers Cancer February 15,

3 Original Article combined as well as cancers of the prostate, breast, cervix, lung, and colon and leukemia, for males and females separately. Only fixed main effects were included. A separate population-weighted log-linear regression was run on county-level relative residuals, defined as the difference between the model-predicted and reported number of cases divided by the reported number plus a small constant, to avoid a division of 0. Only main effects and their interactions with race were included. Data and Methods for Temporal Projections Not enough incidence data are yet available from every registry to test a projection 4 years ahead for the entire country. US cancer registries reporting data to NAACCR participate in SEER, the Centers for Disease Control and Prevention s (CDC) National Program of Cancer Registries 16 (NPCR), or both. The CINA Deluxe incidence data set includes registry data beginning in The latest CINA Deluxe data set now includes incidence data for 1995 through 2008, a 14-year span. Because one of the methods to test (NP) requires time to be specified in 5-year blocks, we extended the required observed data time span to 15 years. Thus, 19 years of observed data are required for this project: 15 years ( ) for model input plus 4 years for projection ahead (to 2008). Only the older SEER registries (Atlanta, Connecticut, Detroit, Hawaii, Iowa, New Mexico, San Francisco-Oakland, Seattle-Puget Sound, and Utah) can provide this much data. In addition, the remainder of California and the state of New Jersey had available data and gave permission for their use in this project. We used the aggregate of the SEER 9 registries plus these 2 additional areas as a proxy for the United States. All case counts were stratified by gender, race (white, black, or other), age (birth-4 years, 5-9 years, years, and 85 years), diagnosis year, and county of residence. Only malignant cancers of the breast, colon, rectum, esophagus, lung, prostate, and testis; melanoma; and non-hodgkin lymphoma were included. This selection of cancer sites includes both very common and very rare cancers and is the same set of sites used to develop the original model. 7 We evaluated 5 temporal methods including the joinpoint methodology previously used in the study by Pickle et al. 7 Joinpoint Regression Joinpoint regression has been applied to cancer trend analysis to summarize cancer trend changes using segmented line regression. 17 Cancer incidence rates are modeled as a function of time, which is comprised of piecewise linear segments. The model is fitted by the leastsquares method for a given number of change points called joinpoints, and then the number of joinpoints is estimated. The joinpoint software 18 provides the point and interval estimates of the joinpoints and the slope parameters and, equivalently, the annual percentage change rates. To select the number of joinpoints, the first version of the software applied the permutation test procedure, in which the permutation distribution of the test statistic is used to estimate the P value to determine whether data demonstrate enough evidence to add more joinpoints. Since version 1.0a was released in 1998, the joinpoint software has been updated to improve its accuracy and efficiency and to include additional features. One of the updates is the addition of 2 model selection procedures: the Bayesian information criterion (BIC) and modified Bayesian information criterion (MBIC). The BIC was added as a faster alternative to the permutation procedure, which is computationally expensive, and the MBIC was proposed to improve the performance of the BIC. In this study, we used the version of the joinpoint software and implemented both the permutation procedure and the MBIC. The joinpoint program allows users to change model specifications. In our comparison, we considered several different choices of these specification values and used the notations JP-perm-xyz or xyz to indicate a joinpoint model with a permutation test or MBIC, a maximum of x joinpoints, a minimum of y observations from a joinpoint to either end of the data, and a minimum of z observations between 2 joinpoints. Nordpred The NP model used in this analysis is essentially model B1 from the study by Moller et al. 19 Model B1 is an age period cohort model, 20 with incidence counts assumed to follow a Poisson distribution with linear effects of age, period, and cohort linked to the expected rate through a fifth root function. The period effect is further modeled as a linear regression on period with the regression coefficient being the drift parameter. In this analysis, predictions involved only 25% of the drift regression parameter for the first future period estimated rates and no drift for the second future period estimated rates. Age and period effects are for 5-year groupings. Five-year predictions are translated to single-year estimates using linear interpolation and to projections 4 years ahead. SS Method The SS method has been used to project the cancer mortality counts 3 years ahead to the current calendar year since In the SS method, we used a local quadratic model to obtain projections of the time series of 1102 Cancer February 15, 2012

4 Projection Methods for Cancer Incidence/Zhu et al incidence counts 4 years into the future. The method proceeds as follows. First, to account for the uncertainty in measuring the observed incidence counts, the count at any point of time is assumed to be a realization of a normal distribution. This is the so-called measurement equation. Next, we modeled the average trajectory (ie, the trend in incidence counts obtained by joining the averages of these normal distributions) using a locally various quadratic trend. Such a trend is obtained by representing the year-to-year variation of trend in the form of a socalled SS model, whereby one relates the parameters (or state) of the model at a particular point to those of the previous point through a set of transition equations. These transitions are assumed to have a stochastic component and as before, errors in these transitions are assumed to have normal distributions. An iterative procedure called the Kalman filter can then be used to estimate the trend and project it into the future. The whole model fitting and projection is done using the R statistical software. 22 BSS Method As an alternative method of projection of time series, we explored the use of dynamic generalized linear models fitted in the Bayesian paradigm. We will refer to this overall method as the BSS method. The method proceeds as follows. Because the observed values are annual incidence counts, we assume that for any year, the observed count is a realization of a random variable, taken for our purposes to have the Poisson distribution. The parameters of the Poisson distributions are assumed to be unknown and vary smoothly from year to year according to a random process. In particular, we assume that the logarithm of the parameter (henceforth called the state) in any year is a normal perturbation around the state of the previous year, with the amount of variation in this perturbation constant from year to year. All this is used to put together the likelihood function of the data, which contains all the information on the unknown model parameters from the data. Combined with prior information concerning the unknown parameters in the form of distribution of the initial state (at time t ¼ 0) and the variance of the year-to-year transition of the states, the likelihood is used to generate the posterior distribution of the parameters. Although the entire posterior distribution is unavailable in closed form, the univariate conditionals are easy to sample from. The generated predictions are estimates of the posterior mean of the unknown quantities of interest. VAR Model via Hilbert-Huang Transform Spectral analysis is a complementary tool for analyzing time series. Fourier transforms, wavelet transforms, and some other spectral analysis methods have been developed to analyze stationary time series data. These techniques are widely used by many scientists in the fields of electrical engineering and physics, among many others. Recently, the Hilbert-Huang transform (HHT) based on empirical mode decomposition (EMD) was developed for nonlinear and nonstationary processes. 23 The advantage of HHT-EMD is that it does not require a set of prespecified functions. Instead, it uses a set of adaptive intrinsic mode functions (IMFs) derived from the time series data itself. To project the incidence count, we applied the EMD to decompose the data to several IMFs and then applied the multivariate time series technique on these IMFs for projections. Among many multivariate time series models, the VAR is a standard instrument for forecasting. VAR is a multivariate version of autoregressive model. Although univariate models may be useful for describing short-term correlation, the multivariate models may provide a better description of the underlying structure of the time series and a better forecast. The R software package is used for obtaining the forecast counts. 22 Comparison of the Temporal Projection Methods To measure the accuracy of the prediction counts, the prediction error was defined as the difference between the predicted incidence counts and the delay-adjusted observed incidence counts in Relative deviation was defined as the ratio of the prediction error to the observed counts plus 0.5. Adding 0.5 to the observed counts was done to avoid a division of 0. To evaluate the temporal projection methods, 6 statistics were computed to compare the different methods. The Average Absolute Relative Deviation (AARD) is the average of the relative deviations across all cancer sites and/or geographic areas in the data. AARD is interpreted as the average percentage deviation from the true value. This measure attempts to take into account the relative differences in observed incidence counts as we attempted to assess the extent to which the estimates deviate from the observed. Smaller values in AARD indicate closer estimates to the true values across different cancer sites and geographic areas. Other measures of discrepancy are also obtained by comparing the projection methods. The maximum absolute relative deviation is a measure of the maximum deviation from the observed values that might exist. The mean relative sums of squares deviation is similar to AARD, except that only deviations are squared resulting in higher weights being applied to larger deviations in the average. The root mean square error (RMSE) is an estimate of Cancer February 15,

5 Original Article Table Case Counts for All Cancers Combined for 48 States With Data for Comparison (Excluding MD, MN, and NV) variability of estimates about the true value. The normalized RMSE is RMSE expressed as a fraction of the mean. The average rank of the relative sums of squares is the average rank of deviations among the methods. These measures produce results similar to AARD; therefore, in the current study, we used AARD as the default measure for comparison. RESULTS Males and Males Females Females a Model projected no. 1,376, , ,865 Observed no. 1,383, , ,437 Difference, no % difference 0.48% 0.85% 0.086% MD indicates Maryland; MN, Minnesota; NV, Nevada. a Totals may not sum correctly due to rounding up to an integer value. Exploratory Analysis Initial comparisons of the totals of the previously published predicted state case counts 24 for 2007 with the observed data (released in 2010) demonstrate close agreement (Table 1). However, the predicted counts were adjusted for an expected delay in reporting whereas the 2007 observed counts were not. For comparability, the observed counts were then adjusted for expected reporting delay by multiplying the sex- and cancer site-specific delay adjustment factor. 2,9 For most cancer sites, this factor is constant across race and age. For the few sites for which this factor is age-dependent, the age 65 years delay factor was used (consistent with the median age of diagnosis for most cancers) because age is not provided on the state data file. As shown in Table 2, the published case counts underestimated the reported (and delay-adjusted) counts for all cancer sites combined in 2007 by 2.5% for women and 3.3% for men. A similar comparison stratified by cancer site indicated that breast and prostate cancer case counts were greatly underestimated (by 27,042 and 12,874 cases, respectively) and colon cancer was slightly overestimated (by 6313 cases), whereas the other 45 cancer sites demonstrated close agreement between observed and predicted counts (Fig. 1). Proportionally, several of the rare cancer sites were predicted less accurately, not surprising due to the greater variability of small numbers. For the more common sites, the numbers of cancers of the breast, cervix, and liver were found to be underestimated by > 10% (Fig. 2). Examination of differences by state Table Case Counts for All Cancers Combined, With Observed Number Multiplied by Age 65 Years Delay Factor, for 48 States With Data for Comparison (Excluding MD, MN, and NV) Males and Males Females Females a Model projected no. 1,376, , ,865 Observed no., 1,416, , ,863 delay-adjusted Difference, no. 41,509 24,514 16,995 % difference 2.93% 3.32% 2.50% MD indicates Maryland; MN, Minnesota; NV, Nevada. a Totals may not sum correctly due to rounding up to an integer value. demonstrates that case counts are more likely to be underestimated in southern states than elsewhere. Spatiotemporal Model Residual Analysis Between 27% and 59% of the total variation is explained by the regression models of 2007 state error rates. The significance of each covariate varies by cancer site, but measures of language isolation or foreign birth, poverty, and cancer screening have consistently significant effects on the error rates. Influence diagnostics (Cook distance) have shown that Hawaii is very influential on the results for prostate and all cancers among males (a very high percentage of Asian Pacific Islanders), and the District of Columbia is very influential with regard to the results for male lung cancer (very high percentage of black individuals, percentage urban residence, and densities of medical physicians). There were no clear spatial patterns in the distribution of the error rates. As a more specific validation of the spatiotemporal prediction model, we repeated the regression analysis of relative residuals for 2003 data, updated in the 2007 CINA file, stratified by county, gender, race, and cancer site. The use of 2003 data removed the need to project ahead to 2007 and to adjust for delay, because case ascertainment was nearly complete by that time. The larger errors are in county/race/gender strata with < 10,000 people. Despite the inclusion of several new covariates and interactions with race, the percentage variance explained is small: 7% for males, all cancers; 6% for females, all cancers; 6% for prostate cancer; and 5% for breast cancer. Because there was little consistency with regard to the significance of the covariates across the types of cancer at either the state or county level, the more detailed models of county residuals cannot explain > 7% of their total variation, and there was minimal spatial trend in the residuals. Therefore, we conclude that the spatiotemporal model with the original set of covariates still appears to 1104 Cancer February 15, 2012

6 Projection Methods for Cancer Incidence/Zhu et al Figure 1. A comparison stratified by cancer site indicates that breast and prostate cancer case counts are greatly underestimated and colon cancer is slightly overestimated, whereas the other 45 cancer sites show close agreement between observed and predicted counts # indicates number. provide reasonable estimates of the state-level case counts across the time span of the observed data. Delay Adjustment One question regarding the prediction process is whether the delay adjustment factors calculated from SEER 9 data are applicable for all US cancer registries. In Table 3, we note that the number of breast cancer cases reported for 2003 on the 2003 file (released in 2006) was increased by 3.8% in SEER registries and 5.1% in NPCR registries after 4 more years of data collection (2007 data released in 2010). Temporal Projection Results We summarize the comparison of the temporal projection methods using AARD at the US level (Table 4) and the state/registry level (Table 5). As discussed earlier, for the purposes of this analysis, we considered the SEER 9 registries plus the rest of California and the state of New Jersey Cancer February 15,

7 Original Article Figure 2. For the more common tumor sites, the numbers of cancers of the breast, cervix, and liver are underestimated by > 10% as a proxy for the nation, and the 9 registries plus the rest of California and New Jersey as a proxy for 10 states. (San Francisco-Oakland registry and the remainder of California were combined as 1 state). At the US level (Table 4), across the 15 cancer sites included in the current study, all the temporal projection methods produced estimates whose difference from the observed incidence counts for year 2008 were < 9%. The BSS method produced estimates that were slightly closer to the observed counts than that of the VAR model and others. We then grouped the cancer sites according to the delayadjusted observed incidence counts in 2008 so that group < 1000 indicates a rare cancer and group > 20,000 indicates a very common cancer. In general, the temporal projection methods perform better for common cancers than for rare cancers. For rare cancers, BSS is the best method, but for the most common cancers, VAR produces estimates that are closest to the observed incidence 1106 Cancer February 15, 2012

8 Projection Methods for Cancer Incidence/Zhu et al counts. In Table 5, AARD was calculated by summing the relative differences stratified by registry as well as the delay-adjusted observed incidence counts in Stratified this way, all the temporal projection methods produced estimates whose differences from the observed incidence counts for year 2008 were below 12%. The VAR method produced an estimate that was the closest to the observed incidence count. The grouping was done according to the registry and cancer site combination, so that group <400 includes rare cancers in a registry with a small population and group includes moderately rare cancers in a small registry or rare cancers in a medium-sized registry, and so on. Table 5 shows that the VAR model is the best temporal projection method in that it outperforms other methods when all cancer sites and registries are included in the comparison, and also for 3 of the 5 groups. Table 6 summarizes the number of times each method was the best temporal projection model. VAR outperformed all other methods because it won 5 of the 10 groups across the national and the state/ registry-level comparisons. Table 3. Comparison of Changes in Reported Number of Female Breast Cancer Cases in 2003 From the 2003 to 2007 CINA File, Summed According to Whether the Registry Was in the NPCR or SEER System Female Breast Cancer, 2003 No. of Cases in 2007 File No. of Cases in 2003 File NPCR registries 400, , SEER registries a 192, , Ratio of 2007 to 2003 File CINA indicates Cancer in North America; NPCR, National Program of Cancer Registries; SEER, Surveillance, Epidemiology, and End Results. a A state was classified as a SEER registry even if only part of the state was in the SEER system. Michigan was deleted because we did not have permission to use their county data other than the Detroit SEER area for the 2003 analysis. DISCUSSION Five years have passed since the spatiotemporal method was developed. Many factors that may impact cancer incidence have changed, including, but not limited to, changes in population, screening, diagnostic technology, behavior, and other risk factors. Reevaluation of the projection methods turns out to be timely. We first validated the spatiotemporal prediction model that fills in holes in observed incidence case counts. Even with an updated and expanded list of covariates in the model, no substantial improvement was found and therefore we concluded the model provides reasonable estimates of state- and national-level case counts across the time span of the observed data. One concern about the second step in the 3-step prediction process is the application of delay-adjustment factors that were derived only from SEER 9 data to all registry data. That is, the data collection systems for SEER registries and NPCR registries are different and therefore their reporting delay patterns may not be the same. Our initial comparison of changes in the number of cases after 4 additional years of data collection suggests that the delays in reporting are not the same in SEER and NPCR registries. A study is currently underway to derive more accurate delay-adjustment factors for all US registries. Next, we performed a more thorough search for a better temporal projection method with which to project 4 years ahead for cancer incidence counts, the third step of the 3-step prediction process. Five projection methods were evaluated and compared. At the US level, on average, the BSS method produced projections that were closer to the observed counts than other projections. However, for the most common cancer sites, the VAR model outperformed the BSS method. At the state level, the VAR model produced projections that were closest to the Table 4. AARD Values for the Temporal Projection Methods at the US Level, Grouped by the 2008 Number of Estimated Cancer Cases a Group b 234 c NP SS BSS VAR All cancer sites < , >20, AARD indicates average absolute relative deviation; BSS, Bayesian state-space method; JP-MBIC, joinpoint method with modified Bayesian information criterion; JP-Perm, joinpoint method with permutation test; NP, Nordpred method; SS, state-space method; VAR, vector autoregressive model. a Boldface numbers are the minimum in each row. b <1000: female esophagus cancer; 1001 to 5000: testis cancer, male esophagus cancer, female rectum cancer, and male rectum cancer; 5000 to 20,000: female melanoma, female non-hodgkin lymphoma, male non-hodgkin lymphoma, male melanoma, male colon cancer, female colon cancer, female lung cancer, and male lung cancer; and >20,000: prostate cancer and female breast cancer. c Temporal projection method used in Cancer Facts & Figures for 2007 through Cancer February 15,

9 Original Article Table 5. AARD Values for the Temporal Projection Methods at the State/Registry Level, Grouped by the 2008 Number of Estimated Cancer Cases a Group NP SS BSS VAR All registries, all cancer sites < , >20, AARD indicates average absolute relative deviation; BSS, Bayesian state-space method; JP-MBIC, joinpoint method with modified Bayesian information criterion; JP-Perm, joinpoint method with permutation test; NP, Nordpred method; SS, state-space method; VAR, vector autoregressive model. a Boldface numbers are the minimum in each row. Table 6. Number of Times Each Temporal Projection Method Was Best When Applied to Groups of Cancers at the US and State/ Registry Level (as Highlighted in Tables 4 and 5) Level NP SS BSS VAR US level State level All BSS indicates Bayesian state-space method; JP-MBIC, joinpoint method with modified Bayesian information criterion; JP-Perm, joinpoint method with permutation test; NP, Nordpred method; SS, state-space method; VAR, vector autoregressive model. observed counts. Although these 2 methods could be recommended (the BSS method at the US level and the VAR model at the state level), the decision was made to use a single model, the VAR model, at both the US and the state levels starting with the 2012 version of Cancer Facts & Figures and Cancer Statistics, The VAR model is capable of capturing subtle changes in incidence trends resulting from changes in population, screening guidelines, diagnostic technology, etc. BSS performs very well in many cancer sites at both the US level and the state level. However, the BSS method presents more of a computational burden, especially when the algorithm needs to be run on a large number of cancer sites and registries. Although the method previously used (JP-perm) performs relatively well, especially for moderately rare and moderately common cancer sites, the VAR method appears to outperform it enough to justify changing the methods. NP has been used in the Nordic countries and the United Kingdom to predict cancer incidence and mortality. 19,25 The model does not perform as well for the US incidence counts, possibly due to the shorter time series of the US incidence data. The SS model is less sensitive to the fluctuations in cancer incidence counts, but may perform just as well in less noisy series. Because each method has its strengths and limitations, it is difficult to find 1 method that is superior for every cancer site and every registry. It is interesting to note that for mortality, joinpoint regression was selected as the best method because it provided the most accurate projections at the national level and performed reasonably well at the state level. Similarly, VAR was selected for incidence projection because it was the best method overall at the state level and for the most common cancer sites at the national level. In general, incidence is a more volatile measure than mortality, and is sometimes impacted by the rapid introduction of screening such as prostate-specific antigen, 26 changing risk factors (eg, withdraw of hormone replacement therapy), 27 or new medical technologies. 28 Changes in mortality are generally attenuated by the finding that the deaths in a particular year are a blend of cases diagnosed across many years. The VAR method is more adaptable to rapid changes in the number of new cases. Therefore, it is important to revisit the projection methods periodically to account for changes in population, screening and diagnostics, and risk factors, as well as the development of new statistical methods to provide the most accurate estimated cancer cases in the current year. These estimates are widely cited in the scientific literature and are used to allocate scarce resources at the state and local jurisdictions in their cancer prevention and control efforts. Actual incidence data from cancer registries for the most recent year lag 4 years behind due to the time required for data collection, compilation, and dissemination. Furthermore, these data are affected by delays in 1108 Cancer February 15, 2012

10 Projection Methods for Cancer Incidence/Zhu et al reporting and subnational coverage of high-quality registries. Overall, the estimates provided by the projection methods fulfill the need for contemporary and most accurate estimates. FUNDING SUPPORT No specific funding was disclosed. CONFLICT OF INTEREST DISCLOSURES Dr. Pickle s work is supported by National Institutes of Health (NIH) contract HHSN P. Dr. Ghosh s work is supported by NIH contract HHSN P. Dr. Kim s work is partially supported by NIH contract HHSN P. REFERENCES 1. Siegel R,Ward E,Brawley O,Jemal A. Cancer statistics, 2011: the impact of eliminating socioeconomic and racial disparities on premature cancer deaths. CA Cancer J Clin. 2011;61: Clegg LX,Feuer EJ,Midthune DN,Fay MP,Hankey BF. Impact of reporting delay and reporting error on cancer incidence rates and trends. J Natl Cancer Inst. 2002;94: American Cancer Society. Cancer Facts & Figures New York: American Cancer Society; American Cancer Society. Cancer Facts & Figures New York: American Cancer Society; National Cancer Institute. Surveillance, Epidemiology, and End Results. Accessed October 11, Wingo P,Landis S,Parker S,Bolden S,Heath CWJ. Using cancer registry and vital statistics data to estimate the number of new cancer cases and deaths in the United States for the upcoming year. J Registry Manag. 1998;25: Pickle LW,Hao Y,Jemal A, et al. A new method of estimating United States and state-level cancer incidence counts for the current calendar year. CA Cancer J Clin. 2007;57: North American Association of Central Cancer Registries. Who is Certified. Accessed August 25, National Cancer Institute. Surveillance, Epidemiology, and End Results 9 Delay Model. Accessed August 25, National Cancer Institute Cancer Counts Prediction Workgroup. Technical Details of Predicting US and State-Level Cancer Counts for the Current Calendar Year. review/appendix_cancercounts.pdf. Accessed December 15, North American Association of Central Cancer Registries. CINA Deluxe Analytic File. Accessed August 25, National Cancer Institute. Surveillance, Epidemiology, and End Results. Population Estimates Used in NCI s SEER*Stat Software. Accessed August 25, Health Resources and Services Administration. Area Resource File. Accessed December 19, Centers for Disease Control and Prevention. Behavioral Risk Factor Surveillance System. Survey Data and Documentation. Accessed August 25, Centers for Disease Control and Prevention. National Vital Statistics System. Mortality Data. Accessed August 25, Centers for Disease Control and Prevention. National Program of Cancer Registries (NPCR). Accessed October 11, Kim HJ,Fay MP,Feuer EJ,Midthune DN. Permutation tests for joinpoint regression with applications to cancer rates. Stat Med. 2000;19: National Cancer Institute. Joinpoint Regression Program. Latest Release: Version Accessed August 25, Moller B,Fekjaer H,Hakulinen T, et al. Prediction of cancer incidence in the Nordic countries: empirical comparison of different approaches. Stat Med. 2003;22: Holford TR. The estimation of age, period and cohort effects for vital rates. Biometrics. 1983;39: Tiwari RC,Ghosh K,Jemal A, et al. A new method of predicting US and state-level cancer mortality counts for the current calendar year. CA Cancer J Clin. 2004;54: Venables WN,Smith DM, R Development Core Team. An Introduction to R. Notes on R: A Programming Environment for Data Analysis and Graphics, Version Vol r-project.org/doc/manuals/r-intro.pdf. Accessed October 11, Huang NE,Shen Z,Long SR, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc R Soc Lond A. 1998;454: American Cancer Society. Cancer Facts & Figures Atlanta, GA: American Cancer Society; Olsen AH,Parkin DM,Sasieni P. Cancer mortality in the United Kingdom: projections to the year Br J Cancer. 2008;99: Legler JM,Feuer EJ,Potosky AL,Merrill RM,Kramer BS. The role of prostate-specific antigen (PSA) testing patterns in the recent prostate cancer incidence decline in the United States. Cancer Causes Control. 1998;9: Ravdin PM,Cronin KA,Howlader N, et al. The decrease in breastcancer incidence in 2003 in the United States. N Engl J Med. 2007; 356: Biner S,Perk G,Kar S, et al. Utility of combined two-dimensional and three-dimensional transesophageal imaging for catheter-based mitral valve clip repair of mitral regurgitation. J Am Soc Echocardiogr. 2011;24: Cancer February 15,

National Cancer Institute

National Cancer Institute U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Trends and patterns of childhood cancer incidence in the US, 1995 2010 Li Zhu National Cancer Institute Linda Pickle StatNet Consulting, LLC Joe Zou Information

More information

This information is current as of January 19, 2007

This information is current as of January 19, 2007 A New Method of Estimating United States and State-level Cancer Incidence Counts for the Current Calendar Year Linda W. Pickle, Yongping Hao, Ahmedin Jemal, Zhaohui Zou, Ram C. Tiwari, Elizabeth Ward,

More information

Age-Adjusted US Cancer Death Rate Predictions

Age-Adjusted US Cancer Death Rate Predictions Georgia State University ScholarWorks @ Georgia State University Public Health Faculty Publications School of Public Health 2010 Age-Adjusted US Cancer Death Rate Predictions Matt Hayat Georgia State University,

More information

Trends and patterns of childhood cancer incidence in the United States,

Trends and patterns of childhood cancer incidence in the United States, Statistics and Its Interface Volume 7 (2014) 121 134 Trends and patterns of childhood cancer incidence in the United States, 1995 2010 Li Zhu, Linda W. Pickle, Zhaohui Zou, and James Cucinelli Background:

More information

Annual Report to the Nation on the Status of Cancer, , Featuring the Increasing Incidence of Liver Cancer

Annual Report to the Nation on the Status of Cancer, , Featuring the Increasing Incidence of Liver Cancer Annual Report to the Nation on the Status of Cancer, 1975-, Featuring the Increasing Incidence of Liver Cancer A. Blythe Ryerson, PhD, MPH 1 ; Christie R. Eheman, PhD, MSHP 1 ; Sean F. Altekruse, DVM,

More information

A New Measure to Assess the Completeness of Case Ascertainment

A New Measure to Assess the Completeness of Case Ascertainment A New Measure to Assess the Completeness of Case Ascertainment Barnali Das, Ph.D. Linda Pickle, Ph.D. Eric J. (Rocky) Feuer, Ph.D. Lin Clegg, Ph.D. Surveillance Research Program, National Cancer Institute

More information

Annual Report to the Nation on the Status of Cancer, , with a Special Feature Regarding Survival

Annual Report to the Nation on the Status of Cancer, , with a Special Feature Regarding Survival University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Public Health Resources Public Health Resources 7-1-2004 Annual Report to the Nation on the Status of Cancer, 1975 2001,

More information

Cancer Statistics, 2011

Cancer Statistics, 2011 Cancer Statistics, 2011 Cancer Statistics, 2011 The Impact of Eliminating Socioeconomic and Racial Disparities on Premature Cancer Deaths Rebecca Siegel, MPH 1 ; Elizabeth Ward, PhD 2 ; Otis Brawley, MD

More information

CANCER FACTS & FIGURES For African Americans

CANCER FACTS & FIGURES For African Americans CANCER FACTS & FIGURES For African Americans Pennsylvania, 2006 Pennsylvania Cancer Registry Bureau of Health Statistics and Research Contents Data Hightlights...1 Pennsylvania and U.S. Comparison...5

More information

Annual Report to the Nation on the Status of Cancer, , Featuring Survival Questions and Answers

Annual Report to the Nation on the Status of Cancer, , Featuring Survival Questions and Answers EMBARGOED FOR RELEASE CONTACT: Friday, March 31, 2017 NCI Media Relations Branch: (301) 496-6641 or 10:00 am EDT ncipressofficers@mail.nih.gov NAACCR: (217) 698-0800 or bkohler@naaccr.org ACS Press Office:

More information

Cancer Statistics, 2008

Cancer Statistics, 2008 CA Cancer J Clin 8;58:71 96 Cancer Statistics, 8 Ahmedin Jemal, DVM, PhD; Rebecca Siegel, MPH; Elizabeth Ward, PhD; Yongping Hao, PhD; Jiaquan Xu*, MD; Taylor Murray; Michael J. Thun, MD, MS ABSTRACT Each

More information

Holey Data: Prediction and Mapping of US Cervical Cancer Incidence Rates

Holey Data: Prediction and Mapping of US Cervical Cancer Incidence Rates Holey Data: Prediction and Mapping of US Cervical Cancer Incidence Rates Marie-Jo Horner (NCI) Dave Stinchcomb (NCI) Joe Zao (IMS) James Cuccinelli (IMS) hornerm@mail.nih.gov September 28th, 2008 ESRI

More information

of Nebraska - Lincoln

of Nebraska - Lincoln University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Public Health Resources Public Health Resources 2012 Annual Report to the Nation on the Status of Cancer, 1975-, Featuring

More information

Estimated Minnesota Cancer Prevalence, January 1, MCSS Epidemiology Report 04:2. April 2004

Estimated Minnesota Cancer Prevalence, January 1, MCSS Epidemiology Report 04:2. April 2004 MCSS Epidemiology Report 04:2 Suggested citation Perkins C, Bushhouse S.. Minnesota Cancer Surveillance System. Minneapolis, MN, http://www.health.state.mn.us/divs/hpcd/ cdee/mcss),. 1 Background Cancer

More information

The Effect of Changing Hysterectomy Prevalence on Trends in Endometrial Cancer, SEER

The Effect of Changing Hysterectomy Prevalence on Trends in Endometrial Cancer, SEER The Effect of Changing Hysterectomy Prevalence on Trends in Endometrial Cancer, SEER 1992-2008 Annie Noone noonea@mail.nih.gov Missy Jamison, Lynn Ries, Brenda Edwards NAACCR 2012 Portland, OR Outline

More information

Annual Report to the Nation on the Status of Cancer, , Featuring Survival

Annual Report to the Nation on the Status of Cancer, , Featuring Survival JNCI J Natl Cancer Inst (217) 19(9): djx3 doi: 1.193/jnci/djx3 First published online March 31, 217 Article Annual Report to the Nation on the Status of Cancer, 1975 214, Featuring Survival Ahmedin Jemal,

More information

Key Words. Cancer statistics Incidence Lifetime risk Multiple primaries Survival SEER

Key Words. Cancer statistics Incidence Lifetime risk Multiple primaries Survival SEER The Oncologist Epidemiology and Population Studies: SEER Series Cancer Statistics, Trends, and Multiple Primary Cancer Analyses from the Surveillance, Epidemiology, and End Results (SEER) Program MATTHEW

More information

Cancer Statistics, 2014

Cancer Statistics, 2014 CA CANCER J CLIN 2014;64:9 29 Cancer Statistics, 2014 Rebecca Siegel, MPH 1 ; Jiemin Ma, PhD 2, *; Zhaohui Zou, MS 3 ; Ahmedin Jemal, DVM, PhD 4 Each year, the American Cancer Society estimates the numbers

More information

Rare Cancer Prevalence in the SEER Population: Hepatobiliary Cancers,

Rare Cancer Prevalence in the SEER Population: Hepatobiliary Cancers, Rare Cancer Prevalence in the SEER Population: Hepatobiliary Cancers, 1975-2015 NAACCR 2018 Annual Conference Andrea Ayers, MPH Outline 1. Rare cancer classification 2. Hepatobiliary cancers 3. Key analytic

More information

Construction of a North American Cancer Survival Index to Measure Progress of Cancer Control Efforts

Construction of a North American Cancer Survival Index to Measure Progress of Cancer Control Efforts Construction of a North American Cancer Survival Index to Measure Progress of Cancer Control Efforts Chris Johnson, Cancer Data Registry of Idaho NAACCR 2016 Annual Conference June 14, 2016 Concurrent

More information

Hysterectomy-Corrected Rates of Endometrial Cancer among Women of Reproductive Age

Hysterectomy-Corrected Rates of Endometrial Cancer among Women of Reproductive Age Hysterectomy-Corrected Rates of Endometrial Cancer among Women of Reproductive Age Annie Noone noonea@mail.nih.gov NAACCR 2017 Albuquerque, NM Motivation Cancer incidence rates are typically calculated

More information

Cancer Statistics, 2010 Ahmedin Jemal, Rebecca Siegel, Jiaquan Xu and Elizabeth Ward. DOI: /caac.20073

Cancer Statistics, 2010 Ahmedin Jemal, Rebecca Siegel, Jiaquan Xu and Elizabeth Ward. DOI: /caac.20073 Statistics, 21 Ahmedin Jemal, Rebecca Siegel, Jiaquan Xu and Elizabeth Ward CA J Clin 21;6;277-3; originally published online Jul 7, 21; DOI: 1.3322/caac.273 This information is current as of February

More information

Cancer in Rural Illinois, Incidence, Mortality, Staging, and Access to Care. April 2014

Cancer in Rural Illinois, Incidence, Mortality, Staging, and Access to Care. April 2014 Cancer in Rural Illinois, 1990-2010 Incidence, Mortality, Staging, and Access to Care April 2014 Prepared by Whitney E. Zahnd, MS Research Development Coordinator Center for Clinical Research Southern

More information

Nation nal Cancer Institute. Prevalence Projections: The US Experience

Nation nal Cancer Institute. Prevalence Projections: The US Experience Nation nal Cancer Institute Prevalence Projections: The US Experience State of Art Methods for the Analysis of Population- Based Cancer Data January 22-23, 2014 Ispra, Italy U.S. DEPARTMENT OF HEALTH AND

More information

Cancer Statistics, 2015

Cancer Statistics, 2015 Cancer Statistics, 2015 Rebecca L. Siegel, MPH 1 *; Kimberly D. Miller, MPH 2 ; Ahmedin Jemal, DVM, PhD 3 Each year the American Cancer Society estimates the numbers of new cancer cases and deaths that

More information

Cancer Statistics, 2019

Cancer Statistics, 2019 CA CANCER J CLIN 2019;0:1 28 Cancer Statistics, 2019 Rebecca L. Siegel, MPH 1 ; Kimberly D. Miller, MPH 2 ; Ahmedin Jemal, DVM, PhD 3 1 Scientific Director, Surveillance Research, American Cancer Society,

More information

Cancer Statistics, 2009 Ahmedin Jemal, Rebecca Siegel, Elizabeth Ward, Yongping Hao, Jiaquan Xu and Michael J. Thun. DOI: /caac.

Cancer Statistics, 2009 Ahmedin Jemal, Rebecca Siegel, Elizabeth Ward, Yongping Hao, Jiaquan Xu and Michael J. Thun. DOI: /caac. Cancer Statistics, 2009 Ahmedin Jemal, Rebecca Siegel, Elizabeth Ward, Yongping Hao, Jiaquan Xu and Michael J. Thun CA Cancer J Clin 2009;59;225-249; originally published online May 27, 2009; DOI: 10.3322/caac.20006

More information

An Overview of Survival Statistics in SEER*Stat

An Overview of Survival Statistics in SEER*Stat An Overview of Survival Statistics in SEER*Stat National Cancer Institute SEER Program SEER s mission is to provide information on cancer statistics in an effort to reduce the burden of cancer among the

More information

PREVIEW OF REGISTRY-SPECIFIC AND AGGREGATED RELATIVE SURVIVAL ESTIMATES IN CANCER IN NORTH AMERICA

PREVIEW OF REGISTRY-SPECIFIC AND AGGREGATED RELATIVE SURVIVAL ESTIMATES IN CANCER IN NORTH AMERICA PREVIEW OF REGISTRY-SPECIFIC AND AGGREGATED RELATIVE SURVIVAL ESTIMATES IN CANCER IN NORTH AMERICA CINA SURVIVAL Authors: Chris Johnson, Deborah Hurley, Angela Mariotto, Reda Wilson, Donna Turner, Hannah

More information

Virginia Journal of Science Volume 59, Number 4 Winter 2008

Virginia Journal of Science Volume 59, Number 4 Winter 2008 Virginia Journal of Science Volume 59, Number 4 Winter 2008 II A Comparison of Different Methods for Predicting Cancer Mortality Counts at the State Level Corinne Wilson Department of Mathematics and Statistics

More information

Cancer Statistics, 2016

Cancer Statistics, 2016 CA CANCER J CLIN 2016;66:7 30 Cancer Statistics, 2016 Rebecca L. Siegel, MPH 1 ; Kimberly D. Miller, MPH 2 ; Ahmedin Jemal, DVM, PhD 3 Each year, the American Cancer Society estimates the numbers of new

More information

Cancer incidence and mortality patterns among specific Asian and Pacific Islander populations in the U.S.

Cancer incidence and mortality patterns among specific Asian and Pacific Islander populations in the U.S. Cancer Causes Control (2008) 19:227 256 DOI 10.1007/s10552-007-9088-3 ORIGINAL PAPER Cancer incidence and mortality patterns among specific Asian and Pacific Islander populations in the U.S. Barry A. Miller

More information

CANCER RATES AND TRENDS IN NORTHEASTERN MINNESOTA. MCSS Epidemiology Report 97:1. September 1997

CANCER RATES AND TRENDS IN NORTHEASTERN MINNESOTA. MCSS Epidemiology Report 97:1. September 1997 CANCER RATES AND TRENDS IN NORTHEASTERN MINNESOTA MCSS Epidemiology Report 97: September 997 Minnesota Cancer Surveillance System Chronic Disease And Environmental Epidemiology Section Minnesota Department

More information

Wisconsin Cancer Health Disparities Surveillance Reports: Trends in Cancer Disparities Among African Americans and Whites in Wisconsin

Wisconsin Cancer Health Disparities Surveillance Reports: Trends in Cancer Disparities Among African Americans and Whites in Wisconsin Wisconsin Cancer Health Disparities Surveillance Reports: s in Cancer Disparities Among s and s in Wisconsin 29 1 Authors: Nathan R. Jones, PhD 1,2 Amy A. Williamson, MPP 1,2 Paul D. Creswell, BA 1,2 Rick

More information

Brief Update on Cancer Occurrence in East Metro Communities

Brief Update on Cancer Occurrence in East Metro Communities Brief Update on Cancer Occurrence in East Metro Communities FEBRUARY, 2018 Brief Update on Cancer Occurrence in East Metro Communities Minnesota Department of Health Minnesota Cancer Reporting System PO

More information

CANCER INCIDENCE NEAR THE BROOKHAVEN LANDFILL

CANCER INCIDENCE NEAR THE BROOKHAVEN LANDFILL CANCER INCIDENCE NEAR THE BROOKHAVEN LANDFILL CENSUS TRACTS 1591.03, 1591.06, 1592.03, 1592.04 AND 1593.00 TOWN OF BROOKHAVEN, SUFFOLK COUNTY, NEW YORK, 1983-1992 WITH UPDATED INFORMATION ON CANCER INCIDENCE

More information

Report on Cancer Statistics in Alberta. Breast Cancer

Report on Cancer Statistics in Alberta. Breast Cancer Report on Cancer Statistics in Alberta Breast Cancer November 2009 Surveillance - Cancer Bureau Health Promotion, Disease and Injury Prevention Report on Cancer Statistics in Alberta - 2 Purpose of the

More information

Cancer Statistics, 2007 Ahmedin Jemal, Rebecca Siegel, Elizabeth Ward, Taylor Murray, Jiaquan Xu and Michael J. Thun

Cancer Statistics, 2007 Ahmedin Jemal, Rebecca Siegel, Elizabeth Ward, Taylor Murray, Jiaquan Xu and Michael J. Thun Ahmedin Jemal, Rebecca Siegel, Elizabeth Ward, Taylor Murray, Jiaquan Xu and Michael J. Thun CA Cancer J Clin 2007;57;43-66 This information is current as of August 3, 2007 The online version of this article,

More information

Cancer in New Mexico 2017

Cancer in New Mexico 2017 Cancer in New Mexico 0 Please contact us! Phone: 0-- E-Mail: nmtr-info@salud.unm.edu URL: nmtrweb.unm.edu TABLE OF CONTENTS Introduction... New Cases of Cancer Estimated Number of New Cancer Cases Description

More information

What is the Impact of Cancer on African Americans in Indiana? Average number of cases per year. Rate per 100,000. Rate per 100,000 people*

What is the Impact of Cancer on African Americans in Indiana? Average number of cases per year. Rate per 100,000. Rate per 100,000 people* What is the Impact of Cancer on African Americans in Indiana? Table 13. Burden of Cancer among African Americans Indiana, 2008 2012 Average number of cases per year Rate per 100,000 people* Number of cases

More information

Cancer in North America, Executive Summary

Cancer in North America, Executive Summary Cancer Incidence in the United States Coverage Cancer in North America, 1996-2000 Executive Summary NAACCR s combined incidence rates for the United States represent the experience of 68 percent of the

More information

CCSS Concept Proposal Working Group: Biostatistics and Epidemiology

CCSS Concept Proposal Working Group: Biostatistics and Epidemiology Draft date: June 26, 2010 CCSS Concept Proposal Working Group: Biostatistics and Epidemiology Title: Conditional Survival in Pediatric Malignancies: A Comparison of CCSS and SEER Data Proposed Investigators:

More information

Key Words. SEER Cancer Survival Incidence Mortality Prevalence

Key Words. SEER Cancer Survival Incidence Mortality Prevalence The Oncologist Cancer Survival and Incidence from the Surveillance, Epidemiology, and End Results (SEER) Program LYNN A. GLOECKLER RIES, MARSHA E. REICHMAN, DENISE RIEDEL LEWIS, BENJAMIN F. HANKEY, BRENDA

More information

Report on Cancer Statistics in Alberta. Melanoma of the Skin

Report on Cancer Statistics in Alberta. Melanoma of the Skin Report on Cancer Statistics in Alberta Melanoma of the Skin November 29 Surveillance - Cancer Bureau Health Promotion, Disease and Injury Prevention Report on Cancer Statistics in Alberta - 2 Purpose of

More information

Cancer in New Mexico 2014

Cancer in New Mexico 2014 Cancer in New Mexico 2014 Please contact us! Phone: 505-272-5541 E-Mail: info@nmtr.unm.edu http://som.unm.edu/nmtr/ TABLE OF CONTENTS Introduction... 1 New Cases of Cancer: Estimated Number of New Cancer

More information

Trends in Cancer CONS Disparities between. W African Americans and Whites in Wisconsin. Carbone Cancer Center. July 2014

Trends in Cancer CONS Disparities between. W African Americans and Whites in Wisconsin. Carbone Cancer Center. July 2014 Photo Illustration by Lois Bergerson/UW SMPH Media Solutions Trends in Cancer CONS IN IS Disparities between W s and s in Wisconsin July 214 Carbone Cancer Center Dane County Cancer Profile 214 UNIVERSITY

More information

NIH Public Access Author Manuscript Cancer. Author manuscript; available in PMC 2006 December 17.

NIH Public Access Author Manuscript Cancer. Author manuscript; available in PMC 2006 December 17. NIH Public Access Author Manuscript Published in final edited form as: Cancer. 2005 December 15; 104(12 Suppl): 2989 2998. 1999 2001 Cancer Mortality Rates for Asian and Pacific Islander Ethnic Groups

More information

CDRI Cancer Disparities Geocoding Project. November 29, 2006 Chris Johnson, CDRI

CDRI Cancer Disparities Geocoding Project. November 29, 2006 Chris Johnson, CDRI CDRI Cancer Disparities Geocoding Project November 29, 2006 Chris Johnson, CDRI cjohnson@teamiha.org CDRI Cancer Disparities Geocoding Project Purpose: To describe and understand variations in cancer incidence,

More information

Table of Contents. 2 P age. Susan G. Komen

Table of Contents. 2 P age. Susan G. Komen NEVADA Table of Contents Table of Contents... 2 Introduction... 3 About... 3 Susan G. Komen Affiliate Network... 3 Purpose of the State Community Profile Report... 4 Quantitative Data: Measuring Breast

More information

Report on Cancer Statistics in Alberta. Kidney Cancer

Report on Cancer Statistics in Alberta. Kidney Cancer Report on Cancer Statistics in Alberta Kidney Cancer November 29 Surveillance - Cancer Bureau Health Promotion, Disease and Injury Prevention Report on Cancer Statistics in Alberta - 2 Purpose of the Report

More information

Colorectal Cancer Statistics, 2017

Colorectal Cancer Statistics, 2017 Colorectal Cancer Statistics, 2017 Rebecca L. Siegel, MPH 1 ; Kimberly D. Miller, MPH 2 ; Stacey A. Fedewa, PhD 3 ; Dennis J. Ahnen, MD 4 ; Reinier G. S. Meester, PhD 5 ; Afsaneh Barzi, MD, PhD 6 ; Ahmedin

More information

Prediction of Cancer Incidence and Mortality in Korea, 2013

Prediction of Cancer Incidence and Mortality in Korea, 2013 pissn 1598-2998, eissn 256 Cancer Res Treat. 213;45(1):15-21 Special Article http://dx.doi.org/1.4143/crt.213.45.1.15 Open Access Prediction of Cancer Incidence and Mortality in Korea, 213 Kyu-Won Jung,

More information

Annual Report to the Nation on the Status of Cancer, , With a Special Section on Lung Cancer and Tobacco Smoking

Annual Report to the Nation on the Status of Cancer, , With a Special Section on Lung Cancer and Tobacco Smoking University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Public Health Resources Public Health Resources 4-21-1999 Annual Report to the Nation on the Status of Cancer, 1973 1996,

More information

The Relationship between and Geographic Distribution of Breast Cancer Statistics:

The Relationship between and Geographic Distribution of Breast Cancer Statistics: The Relationship between and Geographic Distribution of Breast Cancer Statistics: Diagnosis, Survival, and Mortality in Selected Areas in the United States, 1973-2004 1 Timothy Rooney Dr. Charles Becker,

More information

Conditional spectrum-based ground motion selection. Part II: Intensity-based assessments and evaluation of alternative target spectra

Conditional spectrum-based ground motion selection. Part II: Intensity-based assessments and evaluation of alternative target spectra EARTHQUAKE ENGINEERING & STRUCTURAL DYNAMICS Published online 9 May 203 in Wiley Online Library (wileyonlinelibrary.com)..2303 Conditional spectrum-based ground motion selection. Part II: Intensity-based

More information

Survival among Native American Adolescent and Young Adult Cancer Patients in California

Survival among Native American Adolescent and Young Adult Cancer Patients in California Survival among Native American Adolescent and Young Adult Cancer Patients in California Cyllene R. Morris, 1 Yi W. Chen, 1 Arti Parikh-Patel, 1 Kenneth W. Kizer, 1 Theresa H. Keegan 2 1 California Cancer

More information

Geographical Accuracy of Cell Phone Samples and the Effect on Telephone Survey Bias, Variance, and Cost

Geographical Accuracy of Cell Phone Samples and the Effect on Telephone Survey Bias, Variance, and Cost Geographical Accuracy of Cell Phone Samples and the Effect on Telephone Survey Bias, Variance, and Cost Abstract Benjamin Skalland, NORC at the University of Chicago Meena Khare, National Center for Health

More information

Table of Contents. 2 P age. Susan G. Komen

Table of Contents. 2 P age. Susan G. Komen RHODE ISLAND Table of Contents Table of Contents... 2 Introduction... 3 About... 3 Susan G. Komen Affiliate Network... 3 Purpose of the State Community Profile Report... 4 Quantitative Data: Measuring

More information

Racial disparities in health outcomes and factors that affect health: Findings from the 2011 County Health Rankings

Racial disparities in health outcomes and factors that affect health: Findings from the 2011 County Health Rankings Racial disparities in health outcomes and factors that affect health: Findings from the 2011 County Health Rankings Author: Nathan R. Jones, PhD University of Wisconsin Carbone Cancer Center Introduction

More information

2018 Texas Cancer Registry Annual Report

2018 Texas Cancer Registry Annual Report 2018 Texas Cancer Registry Annual Report As Required by Texas Health and Safety Code Section 82.007 November 2018 Table of Contents Executive Summary... 1 1. Introduction... 2 2. Background... 3 Cancer

More information

Changes in Number of Cigarettes Smoked per Day: Cross-Sectional and Birth Cohort Analyses Using NHIS

Changes in Number of Cigarettes Smoked per Day: Cross-Sectional and Birth Cohort Analyses Using NHIS Changes in Number of Cigarettes Smoked per Day: Cross-Sectional and Birth Cohort Analyses Using NHIS David M. Burns, Jacqueline M. Major, Thomas G. Shanks INTRODUCTION Smoking norms and behaviors have

More information

Examining Subsequent Occurrence and Outcomes of Estrogen-related Cancers (Breast and Thyroid) in Missouri Women

Examining Subsequent Occurrence and Outcomes of Estrogen-related Cancers (Breast and Thyroid) in Missouri Women Examining Subsequent Occurrence and Outcomes of Estrogen-related Cancers (Breast and Thyroid) in Missouri Women Iris Zachary, PhD, MSHI, CTR; Jeannette Jackson-Thompson, MSPH, PhD; Chester Schmaltz, PhD

More information

Quantitative Data: Measuring Breast Cancer Impact in Local Communities

Quantitative Data: Measuring Breast Cancer Impact in Local Communities Quantitative Data: Measuring Breast Cancer Impact in Local Communities Quantitative Data Report Introduction The purpose of the quantitative data report for the Southwest Florida Affiliate of Susan G.

More information

County-Level Analysis of U.S. Licensed Psychologists and Health Indicators

County-Level Analysis of U.S. Licensed Psychologists and Health Indicators County-Level Analysis of U.S. Licensed Psychologists and Health Indicators American Psychological Association Center for Workforce Studies Luona Lin, Karen Stamm and Peggy Christidis March 2016 Recommended

More information

Table of Contents. 2 P a g e. Susan G. Komen

Table of Contents. 2 P a g e. Susan G. Komen NEW HAMPSHIRE Table of Contents Table of Contents... 2 Introduction... 3 About... 3 Susan G. Komen Affiliate Network... 3 Purpose of the State Community Profile Report... 4 Quantitative Data: Measuring

More information

Incidence of Primary Liver Cancer in American Indians and Alaska Natives

Incidence of Primary Liver Cancer in American Indians and Alaska Natives Incidence of Primary Liver Cancer in American Indians and Alaska Natives Stephanie C. Melkonian, PhD Epidemiologist Epidemiology and Applied Research Branch NAACCR Annual Conference June 21, 2017 Overview

More information

Prevalence of Autism Spectrum Disorders --- Autism and Developmental Disabilities Monitoring Network, United States, 2006

Prevalence of Autism Spectrum Disorders --- Autism and Developmental Disabilities Monitoring Network, United States, 2006 Surveillance Summaries December 18, 2009 / 58(SS10);1-20 Prevalence of Autism Spectrum Disorders --- Autism and Developmental Disabilities Monitoring Network, United States, 2006 Autism and Developmental

More information

Trends in COPD (Chronic Bronchitis and Emphysema): Morbidity and Mortality. Please note, this report is designed for double-sided printing

Trends in COPD (Chronic Bronchitis and Emphysema): Morbidity and Mortality. Please note, this report is designed for double-sided printing Trends in COPD (Chronic Bronchitis and Emphysema): Morbidity and Mortality Please note, this report is designed for double-sided printing American Lung Association Epidemiology and Statistics Unit Research

More information

Cancer Facts & Figures for African Americans

Cancer Facts & Figures for African Americans Cancer Facts & Figures for African Americans 219-221 Contents Cancer Statistics 1 Figure 1. Non-Hispanic Black Population as a Percentage of Total County Population, 216 1 Table 1. Leading Causes of Death

More information

Spatiotemporal models for disease incidence data: a case study

Spatiotemporal models for disease incidence data: a case study Spatiotemporal models for disease incidence data: a case study Erik A. Sauleau 1,2, Monica Musio 3, Nicole Augustin 4 1 Medicine Faculty, University of Strasbourg, France 2 Haut-Rhin Cancer Registry 3

More information

Cancer Facts & Figures for African Americans

Cancer Facts & Figures for African Americans Cancer Facts & Figures for African Americans What is the Impact of Cancer on African Americans in Indiana? Table 12. Burden of Cancer among African Americans Indiana, 2004 2008 Average number of cases

More information

Breast Cancer Trends Among Black and White Women in the United States Ismail Jatoi, William F. Anderson, Sowmya R. Rao, and Susan S.

Breast Cancer Trends Among Black and White Women in the United States Ismail Jatoi, William F. Anderson, Sowmya R. Rao, and Susan S. VOLUME 23 NUMBER 31 NOVEMBER 1 2005 JOURNAL OF CLINICAL ONCOLOGY O R I G I N A L R E P O R T Breast Cancer Trends Among Black and White Women in the United States Ismail Jatoi, William F. Anderson, Sowmya

More information

Greater Atlanta Affiliate of Susan G. Komen Quantitative Data Report

Greater Atlanta Affiliate of Susan G. Komen Quantitative Data Report Greater Atlanta Affiliate of Susan G. Komen Quantitative Data Report 2015-2019 Contents 1. Purpose, Intended Use, and Summary of Findings... 4 2. Quantitative Data... 6 2.1 Data Types... 6 2.2 Breast Cancer

More information

Multiple Mediation Analysis For General Models -with Application to Explore Racial Disparity in Breast Cancer Survival Analysis

Multiple Mediation Analysis For General Models -with Application to Explore Racial Disparity in Breast Cancer Survival Analysis Multiple For General Models -with Application to Explore Racial Disparity in Breast Cancer Survival Qingzhao Yu Joint Work with Ms. Ying Fan and Dr. Xiaocheng Wu Louisiana Tumor Registry, LSUHSC June 5th,

More information

North America:

North America: Cancer Cancer in in North North America: America: 2010-2014 2010-2014 Cancer in North 2010-2014 Volume Volume One: Combined Four:America: Cancer Cancer Survival Incidence Volume Three: Two: Registry-specific

More information

Background. Background. AYA Overview. Epidemiology of AYA Cancers in Texas

Background. Background. AYA Overview. Epidemiology of AYA Cancers in Texas Texas Cancer Registry: Who We Are Epidemiology of AYA Cancers in Texas Melanie Williams, Ph.D. Texas Cancer Registry Cancer Epidemiology and Surveillance Branch Texas Department of State Health Services

More information

Introduction Female Breast Cancer, U.S. 9/23/2015. Female Breast Cancer Survival, U.S. Female Breast Cancer Incidence, New Jersey

Introduction Female Breast Cancer, U.S. 9/23/2015. Female Breast Cancer Survival, U.S. Female Breast Cancer Incidence, New Jersey Disparities in Female Breast Cancer Stage at Diagnosis in New Jersey a Spatial Temporal Analysis Lisa M. Roche, MPH, PhD 1, Xiaoling Niu, MS 1, Antoinette M. Stroup, PhD, 2 Kevin A. Henry, PhD 3 1 Cancer

More information

Epidemiology in Texas 2006 Annual Report. Cancer

Epidemiology in Texas 2006 Annual Report. Cancer Epidemiology in Texas 2006 Annual Report Cancer Epidemiology in Texas 2006 Annual Report Page 94 Cancer Incidence and Mortality in Texas, 2000-2004 The Texas Department of State Health Services Texas Cancer

More information

Prediction of Cancer Incidence and Mortality in Korea, 2018

Prediction of Cancer Incidence and Mortality in Korea, 2018 pissn 1598-2998, eissn 256 Cancer Res Treat. 218;5(2):317-323 Special Article https://doi.org/1.4143/crt.218.142 Open Access Prediction of Cancer Incidence and Mortality in Korea, 218 Kyu-Won Jung, MS

More information

Mammogram Analysis: Tumor Classification

Mammogram Analysis: Tumor Classification Mammogram Analysis: Tumor Classification Literature Survey Report Geethapriya Raghavan geeragh@mail.utexas.edu EE 381K - Multidimensional Digital Signal Processing Spring 2005 Abstract Breast cancer is

More information

Reveal Relationships in Categorical Data

Reveal Relationships in Categorical Data SPSS Categories 15.0 Specifications Reveal Relationships in Categorical Data Unleash the full potential of your data through perceptual mapping, optimal scaling, preference scaling, and dimension reduction

More information

Perinatal Health in the Rural United States, 2005

Perinatal Health in the Rural United States, 2005 Perinatal Health in the Rural United States, 2005 Policy Brief Series #138: LOW BIRTH WEIGHT RATES IN THE RURAL UNITED STATES, 2005 #139: LOW BIRTH WEIGHT RATES AMONG RACIAL AND ETHNIC GROUPS IN THE RURAL

More information

Cancer Prediction Accounting for Geographic Disparity in Incidence and Survival

Cancer Prediction Accounting for Geographic Disparity in Incidence and Survival Cancer Prediction Accounting for Geographic Disparity in Incidence and Survival Stefan Peterson (RCC Syd, Region Skåne) Ulf Strömberg (Lund University and FoUU Halland) Anders Holmén (FoUU Halland) May

More information

Cancer Incidence Predictions (Finnish Experience)

Cancer Incidence Predictions (Finnish Experience) Cancer Incidence Predictions (Finnish Experience) Tadeusz Dyba Joint Research Center EPAAC Workshop, January 22-23 2014, Ispra Rational for making cancer incidence predictions Administrative: to plan the

More information

DATAWATCH 121. Increasing The Odds For Cancer Survival

DATAWATCH 121. Increasing The Odds For Cancer Survival DATAWATCH 121 Increasing The Odds For Cancer Survival Conquering cancer, the nation's second leading cause of death, is a high priority in the United States. Although the federal government's "war on cancer,"

More information

Cancer in the Northern Territory :

Cancer in the Northern Territory : Cancer in the Northern Territory 1991 21: Incidence, mortality and survival Xiaohua Zhang John Condon Karen Dempsey Lindy Garling Acknowledgements The authors are grateful to the many people, who have

More information

NAACCR CINA Database Studies

NAACCR CINA Database Studies IRB # Study 03-01 2003-Urban-rural variation in the incidence of selected cancer sites, United States, 1995-1999. 1995-1999 Holly Howe Terminated Standard 6 /1 /2005 03-02 2003-Mini-Proposal: Urban-Rural

More information

NEZ PERCE COUNTY CANCER PROFILE

NEZ PERCE COUNTY CANCER PROFILE NEZ PERCE COUNTY CANCER PROFILE A fact sheet from the Cancer Data Registry of Idaho, Idaho Hospital Association. Cancer Incidence 2010-2014 Cancer Mortality 2011-2015 BRFSS 2011-2015 CANCER Cancer is a

More information

KOOTENAI COUNTY CANCER PROFILE

KOOTENAI COUNTY CANCER PROFILE KOOTENAI COUNTY CANCER PROFILE A fact sheet from the Cancer Data Registry of Idaho, Idaho Hospital Association. Cancer Incidence 2010-2014 Cancer Mortality 2011-2015 BRFSS 2011-2015 CANCER Cancer is a

More information

BOUNDARY COUNTY CANCER PROFILE

BOUNDARY COUNTY CANCER PROFILE BOUNDARY COUNTY CANCER PROFILE A fact sheet from the Cancer Data Registry of Idaho, Idaho Hospital Association. Cancer Incidence 2010-2014 Cancer Mortality 2011-2015 BRFSS 2011-2015 CANCER Cancer is a

More information

Adjuvant Chemotherapy for Patients with Stage III Colon Cancer: Results from a CDC-NPCR Patterns of Care Study

Adjuvant Chemotherapy for Patients with Stage III Colon Cancer: Results from a CDC-NPCR Patterns of Care Study COLON CANCER ORIGINAL RESEARCH Adjuvant Chemotherapy for Patients with Stage III Colon Cancer: Results from a CDC-NPCR Patterns of Care Study Rosemary D. Cress 1, Susan A. Sabatino 2, Xiao-Cheng Wu 3,

More information

BLACK-WHITE DIFFERENCES IN SURVIVAL FROM LATE-STAGE PROSTATE CANCER

BLACK-WHITE DIFFERENCES IN SURVIVAL FROM LATE-STAGE PROSTATE CANCER BLACK-WHITE DIFFERENCES IN SURVIVAL FROM LATE-STAGE PROSTATE CANCER Objective: To examine differences between African Americans (Blacks) and non-hispanic Whites in risk of death after diagnosis of laterstage

More information

Impact and implications of Cancer Death Status Reporting Delay on Population- Based Relative Survival Analysis with Presumed-Alive Assumption

Impact and implications of Cancer Death Status Reporting Delay on Population- Based Relative Survival Analysis with Presumed-Alive Assumption Impact and implications of Cancer Death Status Reporting Delay on Population- Based Relative Survival Analysis with Presumed-Alive Assumption X Dong, Y Ren, R Wilson, and K Zhang NAACCR 6-20-2017 Introduction

More information

Canada: Equitable Cancer Care Access and Outcomes? Historic Observational Evidence: Incidence Versus Survival, Canada Versus the United States

Canada: Equitable Cancer Care Access and Outcomes? Historic Observational Evidence: Incidence Versus Survival, Canada Versus the United States Canada: Equitable Cancer Care Access and Outcomes? Historic Observational Evidence: Incidence Versus Survival, Canada Versus the United States This work is funded by the: Canadian Institutes of Health

More information

Mammogram Analysis: Tumor Classification

Mammogram Analysis: Tumor Classification Mammogram Analysis: Tumor Classification Term Project Report Geethapriya Raghavan geeragh@mail.utexas.edu EE 381K - Multidimensional Digital Signal Processing Spring 2005 Abstract Breast cancer is the

More information

ADAMS COUNTY CANCER PROFILE

ADAMS COUNTY CANCER PROFILE ADAMS COUNTY CANCER PROFILE A fact sheet from the Cancer Data Registry of Idaho, Idaho Hospital Association. Cancer Incidence 2010-2014 Cancer Mortality 2011-2015 BRFSS 2011-2015 CANCER Cancer is a group

More information

ELIMINATING HEALTH DISPARITIES IN AN URBAN AREA. VIRGINIA A. CAINE, M.D., DIRECTOR MARION COUNTY HEALTH DEPARTMENT INDIANAPOLIS, INDIANA May 1, 2002

ELIMINATING HEALTH DISPARITIES IN AN URBAN AREA. VIRGINIA A. CAINE, M.D., DIRECTOR MARION COUNTY HEALTH DEPARTMENT INDIANAPOLIS, INDIANA May 1, 2002 ELIMINATING HEALTH DISPARITIES IN AN URBAN AREA VIRGINIA A. CAINE, M.D., DIRECTOR MARION COUNTY HEALTH DEPARTMENT INDIANAPOLIS, INDIANA May 1, 2002 Racial and ethnic disparities in health care are unacceptable

More information

BONNER COUNTY CANCER PROFILE

BONNER COUNTY CANCER PROFILE BONNER COUNTY CANCER PROFILE A fact sheet from the Cancer Data Registry of Idaho, Idaho Hospital Association. Cancer Incidence 2010-2014 Cancer Mortality 2011-2015 BRFSS 2011-2015 CANCER Cancer is a group

More information

BINGHAM COUNTY CANCER PROFILE

BINGHAM COUNTY CANCER PROFILE BINGHAM COUNTY CANCER PROFILE A fact sheet from the Cancer Data Registry of Idaho, Idaho Hospital Association. Cancer Incidence 2011-2015 Cancer Mortality 2012-2016 BRFSS 2011-2016 CANCER Cancer is a group

More information