Cells: The Living Units

Size: px
Start display at page:

Download "Cells: The Living Units"

Transcription

1 Chapter 3 Part A Cells: The Living Units Annie Leibovitz/Contact Press Images PowerPoint Lecture Slides prepared by Karen Dunbar Kareiva Ivy Tech Community College

2 Why This Matters Understanding the structure of the body s cells explains why the permeability of the plasma membrane can affect treatment

3 Video: Why This Matters

4 3.1 Cells: The Living Units Cell theory A cell is the structural and functional unit of life How well the entire organism functions depends on individual and combined activities of all of its cells Structure and function are complementary Biochemical functions of cells are dictated by shape of cell and specific subcellular structures Continuity of life has cellular basis Cells can arise only from other preexisting cells

5 3.1 Cells: The Living Units Cell diversity Over 200 different types of human cells Types differ in size, shape, and subcellular components; these differences lead to differences in functions

6 Figure 3.1 Cell diversity. Erythrocytes Epithelial cells Fibroblasts Skeletal muscle cell Smooth muscle cells Cells that connect body parts, form linings, or transport gases Cells that move organs and body parts Macrophage Fat cell Nerve cell Cell that stores nutrients Cell that fights disease Cell that gathers information and controls body functions Cell of reproduction Sperm

7 3.1 Cells: The Living Units Generalized cell All cells have some common structures and functions Human cells have three basic parts: 1. Plasma membrane: flexible outer boundary 2. Cytoplasm: intracellular fluid containing organelles 3. Nucleus: DNA containing control center

8 Figure 3.2 Structure of the generalized cell. Chromatin Nucleolus Nuclear envelope Nucleus Smooth endoplasmic reticulum Cytoplasm Plasma membrane Mitochondrion Lysosome Centrioles Centrosome matrix Cytoskeletal elements Microtubule Intermediate filaments Peroxisome Rough endoplasmic reticulum Ribosomes Golgi apparatus Secretion being released from cell by exocytosis

9 Extracellular Materials Substances found outside cells Classes of extracellular materials include: Extracellular fluids (body fluids), such as: Interstitial fluid: cells are submersed (bathed) in this fluid Blood plasma: fluid of the blood Cerebrospinal fluid: fluid surrounding nervous system organs Cellular secretions (e.g., saliva, mucus) Extracellular matrix: substance that acts as glue to hold cells together

10 Part 1 Plasma Membrane Acts as an active barrier separating intracellular fluid (ICF) from extracellular fluid (ECF) Plays dynamic role in cellular activity by controlling what enters and what leaves cell Also known as the cell membrane

11 3.2 Structure of Plasma Membrane Consists of membrane lipids that form a flexible lipid bilayer Specialized membrane proteins float through this fluid membrane, resulting in constantly changing patterns Referred to as fluid mosaic (made up of many pieces) pattern Surface sugars form glycocalyx Membrane structures help to hold cells together through cell junctions

12 Figure 3.3 The plasma membrane. Extracellular fluid (watery environment outside cell) Glycocalyx (carbohydrates) Lipid bilayer containing proteins Outward-facing layer of phospholipids Inward-facing layer of phospholipids Polar head of phospholipid molecule Nonpolar tail of phospholipid molecule Cholesterol Glycolipid Glycoprotein Functions of the Plasma Membrane: Mechanical barrier: Separates two of the body s fluid compartments. Selective permeability: Determines manner in which substances enter or exit the cell. Electrochemical gradient: Generates and helps to maintain the electrochemical gradient required for muscle and neuron function. Integral proteins Communication: Allows cell-to-cell recognition (e.g., of egg by sperm) and interaction. Cell signaling: Plasma membrane proteins interact with specific chemical messengers and relay messages to the cell interior. Filament of cytoskeleton Peripheral proteins Cytoplasm (watery environment inside cell)

13 Animation: Membrane Structure

14 Membrane Lipids Lipid bilayer is made up of: 75% phospholipids, which consist of two parts: Phosphate heads: are polar (charged), so are hydrophilic (water-loving) Fatty acid tails: are nonpolar (no charge), so are hydrophobic (water-hating) 5% glycolipids Lipids with sugar groups on outer membrane surface 20% cholesterol Increases membrane stability

15 Membrane Proteins Allow cell communication with environment Make up about half the mass of plasma membrane Most have specialized membrane functions Some float freely, and some are tethered to intracellular structures Two types: Integral proteins; peripheral proteins

16 Membrane Proteins (cont.) Integral proteins Firmly inserted into membrane Most are transmembrane proteins (span membrane) Have both hydrophobic and hydrophilic regions Hydrophobic areas interact with lipid tails Hydrophilic areas interact with water Function as transport proteins (channels and carriers), enzymes, or receptors

17 Membrane Proteins (cont.) Peripheral proteins Loosely attached to integral proteins Include filaments on intracellular surface used for plasma membrane support Function as: Enzymes Motor proteins for shape change during cell division and muscle contraction Cell-to-cell connections

18 Figure 3.4 Membrane proteins perform many tasks. Transport A protein (left) that spans the membrane may provide a hydrophilic channel across the membrane that is selective for a particular solute. Some transport proteins (right) hydrolyze ATP as an energy source to actively pump substances across the membrane. Enzymes Enzymatic activity A membrane protein may be an enzyme with its active site exposed to substances in the adjacent solution. A team of several enzymes in a membrane may catalyze sequential steps of a metabolic pathway as indicated (left to right) here. ATP Receptor Signal Receptors for signal transduction A membrane protein exposed to the outside of the cell may have a binding site that fits the shape of a specific chemical messenger, such as a hormone. When bound, the chemical messenger may cause a change in shape in the protein that initiates a chain of chemical reactions in the cell. CAMs Intercellular joining Membrane proteins of adjacent cells may be hooked together in various kinds of intercellular junctions. Some membrane proteins (cell adhesion molecules or CAMs) of this group provide temporary binding sites that guide cell migration and other cell-to-cell interactions. Attachment to the cytoskeleton and extracellular matrix Elements of the cytoskeleton (cell s internal supports) and the extracellular matrix (fibers and other substances outside the cell) may anchor to membrane proteins, which helps maintain cell shape and fix the location of certain membrane proteins. Others play a role in cell movement or bind adjacent cells together. Cell-cell recognition Some glycoproteins (proteins bonded to short chains of sugars which help to make up the glycocalyx) serve as identification tags that are specifically recognized by other cells. Glycoprotein

19 Figure 3.4a Membrane proteins perform many tasks. Transport A protein (left) that spans the membrane may provide a hydrophilic channel across the membrane that is selective for a particular solute. Some transport proteins (right) hydrolyze ATP as an energy source to actively pump substances across the membrane. ATP

20 Animation: Transport Proteins

21 Figure 3.4b Membrane proteins perform many tasks. Receptor Signal Receptors for signal transduction A membrane protein exposed to the outside of the cell may have a binding site that fits the shape of a specific chemical messenger, such as a hormone. When bound, the chemical messenger may cause a change in shape in the protein that initiates a chain of chemical reactions in the cell.

22 Animation: Receptor Proteins

23 Figure 3.4c Membrane proteins perform many tasks. Attachment to the cytoskeleton and extracellular matrix Elements of the cytoskeleton (cell s internal supports) and the extracellular matrix (fibers and other substances outside the cell) may anchor to membrane proteins, which helps maintain cell shape and fix the location of certain membrane proteins. Others play a role in cell movement or bind adjacent cells together.

24 Animation: Structural Proteins

25 Figure 3.4d Membrane proteins perform many tasks. Enzymes Enzymatic activity A membrane protein may be an enzyme with its active site exposed to substances in the adjacent solution. A team of several enzymes in a membrane may catalyze sequential steps of a metabolic pathway as indicated (left to right) here.

26 Animation: Enzymes

27 Figure 3.4e Membrane proteins perform many tasks. Intercellular joining Membrane proteins of adjacent cells may be hooked together in various kinds of intercellular junctions. Some membrane proteins (cell adhesion molecules or CAMs) of this group provide temporary binding sites that guide cell migration and other cell-to-cell interactions. CAMs

28 Figure 3.4f Membrane proteins perform many tasks. Cell-cell recognition Some glycoproteins (proteins bonded to short chains of sugars which help to make up the glycocalyx) serve as identification tags that are specifically recognized by other cells. Glycoprotein

29 Glycocalyx Consists of sugars (carbohydrates) sticking out of cell surface Some sugars are attached to lipids (glycolipids) and some to proteins (glycoproteins) Every cell type has different patterns of this sugar coating Functions as specific biological markers for cellto-cell recognition Allows immune system to recognize self vs. nonself

30 Clinical Homeostatic Imbalance 3.1 Glycocalyx of some cancer cells can change so rapidly that the immune system cannot recognize the cell as being damaged. Mutated cell is not destroyed by immune system so it is able to replicate

31 Cell Junctions Some cells are free (not bound to any other cells) Examples: blood cells, sperm cells Most cells are bound together to form tissues and organs Three ways cells can be bound to each other Tight junctions Desmosomes Gap junctions

32 Cell Junctions (cont.) Tight junctions Integral proteins on adjacent cells fuse to form an impermeable junction that encircles whole cell Prevent fluids and most molecules from moving in between cells Where might these be useful in body?

33 Figure 3.5a Cell junctions. Plasma membranes of adjacent cells Microvilli Intercellular space Basement membrane Interlocking junctional proteins Intercellular space Tight junctions: Impermeable junctions that form continuous seals around the cells prevent molecules from passing through the intercellular space.

34 Cell Junctions (cont.) Desmosomes Rivet-like cell junction formed when linker proteins (cadherins) of neighboring cells interlock like the teeth of a zipper Linker protein is anchored to its cell through thickened button-like areas on inside of plasma membrane called plaques Keratin filaments connect plaques intercellularly for added anchoring strength Desmosomes allow give between cells, reducing the possibility of tearing under tension Where might these be useful in body?

35 Figure 3.5b Cell junctions. Plasma membranes of adjacent cells Microvilli Intercellular space Basement membrane Intercellular space Plaque Intermediate filament (keratin) Linker proteins (cadherins) Desmosomes: Anchoring junctions that bind adjacent cells together act like molecular Velcro and also help form an internal tension-reducing network of fibers.

36 Cell Junctions (cont.) Gap junctions Transmembrane proteins (connexons) form tunnels that allow small molecules to pass from cell to cell Used to spread ions, simple sugars, or other small molecules between cells Allows electrical signals to be passed quickly from one cell to next cell Used in cardiac and smooth muscle cells

37 Figure 3.5c Cell junctions. Plasma membranes of adjacent cells Microvilli Intercellular space Basement membrane Intercellular space Channel between cells (formed by connexons) Gap junctions: Communicating junctions that allow ions and small molecules to pass are particularly important for communication in heart cells and embryonic cells.

38 How do substances move across the plasma membrane? Plasma membranes are selectively permeable Some molecules pass through easily; some do not Two ways substances cross membrane Passive processes: no energy required Active processes: energy (ATP) required

39 3.3 Passive Membrane Transport Passive transport requires no energy Two types of passive transport Diffusion Simple diffusion Carrier- and channel-mediated facilitated diffusion Osmosis Filtration Type of transport that usually occurs across capillary walls

40 Diffusion Collisions between molecules in areas of high concentration cause them to be scattered into areas with less concentration Difference is called concentration gradient Diffusion is movement of molecules down their concentration gradients (from high to low) Energy is not required Speed of diffusion is influenced by size of molecule and temperature

41 Figure 3.6 Diffusion. Dye pellet Diffusion occurring Dye evenly distributed

42 Diffusion (cont.) Molecules have natural drive to diffuse down concentration gradients that exist between extracellular and intracellular areas Plasma membranes stop diffusion and create concentration gradients by acting as selectively permeable barriers

43 Clinical Homeostatic Imbalance 3.2 If plasma membrane is severely damaged, substances diffuse freely into and out of cell, compromising concentration gradients Example: burn patients lose precious fluids, proteins, and ions that weep from damaged cells

44 Diffusion (cont.) Nonpolar, hydrophobic lipid core of plasma membrane blocks diffusion of most molecules Molecules that are able to passively diffuse through membrane include: Lipid-soluble and nonpolar substances Very small molecules that can pass through membrane or membrane channels Larger molecules assisted by carrier molecules

45 Diffusion (cont.) Simple diffusion Nonpolar lipid-soluble (hydrophobic) substances diffuse directly through phospholipid bilayer Examples: oxygen, carbon dioxide, fat-soluble vitamins

46 Animation: Diffusion

47 Figure 3.7a Diffusion through the plasma membrane. Extracellular fluid Lipidsoluble solutes Cytoplasm Simple diffusion of fat-soluble molecules directly through the phospholipid bilayer

48 Diffusion (cont.) Facilitated diffusion Certain hydrophobic molecules (e.g., glucose, amino acids, and ions) are transported passively down their concentration gradient by: Carrier-mediated facilitated diffusion Substances bind to protein carriers Channel-mediated facilitated diffusion Substances move through water-filled channels

49 Diffusion (cont.) Carrier-mediated facilitated diffusion Carriers are transmembrane integral proteins Carriers transport specific polar molecules, such as sugars and amino acids, that are too large for membrane channels Example of specificity: glucose carriers will carry only glucose molecules, nothing else Binding of molecule causes carrier to change shape, moving molecule in process Binding is limited by number of carriers present Carriers are saturated when all are bound to molecules and are busy transporting

50 Figure 3.7b Diffusion through the plasma membrane. Lipid-insoluble solutes (such as sugars or amino acids) Shape change releases solutes Carrier-mediated facilitated diffusion via protein carrier specific for one chemical; binding of substrate causes transport protein to change shape

51 Diffusion (cont.) Channel-mediated facilitated diffusion Channels with aqueous-filled cores are formed by transmembrane proteins Channels transport molecules such as ions or water (osmosis) down their concentration gradient Specificity based on pore size and/or charge Water channels are called aquaporins Two types: Leakage channels Always open Gated channels Controlled by chemical or electrical signals

52 Figure 3.7c Diffusion through the plasma membrane. Small lipidinsoluble solutes Channel-mediated facilitated diffusion through a channel protein; mostly ions selected on basis of size and charge

53 Diffusion (cont.) Osmosis Movement of solvent, such as water, across a selectively permeable membrane Water diffuses through plasma membranes Through lipid bilayer (even though water is polar, it is so small that some molecules can sneak past nonpolar phospholipid tails) Through specific water channels called aquaporins (AQPs) Flow occurs when water (or other solvent) concentration is different on the two sides of a membrane

54 Figure 3.7d Diffusion through the plasma membrane. Water molecules Lipid bilayer Aquaporin Osmosis, diffusion of a solvent such as water through a specific channel protein (aquaporin) or through the lipid bilayer

55 Diffusion (cont.) Osmolarity: measure of total concentration of solute particles Water concentration varies with number of solute particles because solute particles displace water molecules When solute concentration goes up, water concentration goes down, and vice versa Water moves by osmosis from areas of low solute (high water) concentration to high areas of solute (low water) concentration

56 Diffusion (cont.) When solutions of different osmolarity are separated by a membrane permeable to all molecules, both solutes and water cross membrane until equilibrium is reached Equilibrium: Same concentration of solutes and water molecules on both sides, with equal volume on both sides

57 Figure 3.8a Influence of membrane permeability on diffusion and osmosis. Membrane permeable to both solutes and water Solute and water molecules move down their concentration gradients in opposite directions. Fluid volume remains the same in both compartments. Left compartment: Solution with lower osmolarity Right compartment: Solution with greater osmolarity Both solutions have the same osmolarity: volume unchanged H 2 O Solute Freely permeable membrane Solute molecules (sugar)

58 Diffusion (cont.) When solutions of different osmolarity are separated by a membrane that is permeable only to water, not solutes, osmosis will occur until equilibrium is reached Same concentration of solutes and water molecules on both sides, with unequal volumes on both sides

59 Figure 3.8b Influence of membrane permeability on diffusion and osmosis. Membrane permeable to water, impermeable to solutes Solute molecules are prevented from moving but water moves by osmosis. Volume increases in the compartment with the higher osmolarity. Left compartment Right compartment Both solutions have identical osmolarity, but volume of the solution on the right is greater because only water is free to move H 2 O Selectively permeable membrane Solute molecules (sugar)

60 Diffusion (cont.) Movement of water causes pressures: Hydrostatic pressure: pressure of water inside cell pushing on membrane Osmotic pressure: tendency of water to move into cell by osmosis The more solutes inside a cell, the higher the osmotic pressure

61 Animation: Osmosis

62 Diffusion (cont.) A living cell has limits to how much water can enter it Water can also leave a cell, causing cell to shrink Change in cell volume can disrupt cell function, especially in neurons

63 Diffusion (cont.) Tonicity Ability of a solution to change the shape or tone of cells by altering the cells internal water volume Isotonic solution has same osmolarity as inside the cell, so volume remains unchanged Hypertonic solution has higher osmolarity than inside cell, so water flows out of cell, resulting in cell shrinking Shrinking is referred to as crenation Hypotonic solution has lower osmolarity than inside cell, so water flows into cell, resulting in cell swelling Can lead to cell bursting, referred to as lysing

64 Figure 3.9 The effect of solutions of varying tonicities on living red blood cells. Isotonic solutions Hypertonic solutions Hypotonic solutions Cells retain their normal size and shape in isotonic solutions (same solute/water concentration as inside cells; water moves in and out). Cells lose water by osmosis and shrink in a hypertonic solution (contains a higher concentration of nonpenetrating solutes than are present inside the cells). Cells take on water by osmosis until they become bloated and burst (lyse) in a hypotonic solution (contains a lower concentration of nonpenetrating solutes than are present inside cells).

65 Clinical Homeostatic Imbalance 3.3 Intravenous solutions of different tonicities can be given to patients suffering different ailments Isotonic solutions are most commonly given when blood volume needs to be increased quickly Hypertonic solutions are given to edematous (swollen) patients to pull water back into blood Hypotonic solutions should not be given because they can result in dangerous lysing of red and white blood cells

The Cell Membrane. Lecture 3a. Overview: Membranes. What is a membrane? Structure of the cell membrane. Fluid Mosaic Model. Membranes and Transport

The Cell Membrane. Lecture 3a. Overview: Membranes. What is a membrane? Structure of the cell membrane. Fluid Mosaic Model. Membranes and Transport Lecture 3a. The Cell Membrane Membranes and Transport Overview: Membranes Structure of cell membranes Functions of cell membranes How things get in and out of cells What is a membrane? Basically, a covering

More information

10/28/2013. Double bilayer of lipids with imbedded, dispersed proteins Bilayer consists of phospholipids, cholesterol, and glycolipids

10/28/2013. Double bilayer of lipids with imbedded, dispersed proteins Bilayer consists of phospholipids, cholesterol, and glycolipids Structure of a Generalized Cell MEMBRANES Figure 3.1 Plasma Membrane Fluid Mosaic Model Separates intracellular fluids from extracellular fluids Plays a dynamic role in cellular activity Glycocalyx is

More information

Ch. 3 CELLS AND TISSUES. Copyright 2010 Pearson Education, Inc.

Ch. 3 CELLS AND TISSUES. Copyright 2010 Pearson Education, Inc. Ch. 3 CELLS AND TISSUES Generalized Cell All cells: Human cells have three basic parts: Plasma membrane flexible outer boundary Cytoplasm intracellular fluid containing organelles Nucleus control center

More information

6 functions of membrane proteins integral & peripheral proteins Membrane Junctions

6 functions of membrane proteins integral & peripheral proteins Membrane Junctions Cells Cells are the structural units of all living organisms ranging from unicellular to multicellular organisms. Biochemical activities of cells are dictated by cell shape and specific subcellular structures.

More information

Cells: The Living Units

Cells: The Living Units Cells: The Living Units Introduction Life in general occurs in an aqueous environment All chemical processes essential to life occur within the aqueous environment of the cell and surrounding fluids contained

More information

Lecture Series 5 Cellular Membranes

Lecture Series 5 Cellular Membranes Lecture Series 5 Cellular Membranes Cellular Membranes A. Membrane Composition and Structure B. Animal Cell Adhesion C. Passive Processes of Membrane Transport D. Active Transport E. Endocytosis and Exocytosis

More information

A. Membrane Composition and Structure. B. Animal Cell Adhesion. C. Passive Processes of Membrane Transport. D. Active Transport

A. Membrane Composition and Structure. B. Animal Cell Adhesion. C. Passive Processes of Membrane Transport. D. Active Transport Cellular Membranes A. Membrane Composition and Structure Lecture Series 5 Cellular Membranes B. Animal Cell Adhesion E. Endocytosis and Exocytosis A. Membrane Composition and Structure The Fluid Mosaic

More information

Lecture Series 4 Cellular Membranes

Lecture Series 4 Cellular Membranes Lecture Series 4 Cellular Membranes Reading Assignments Read Chapter 11 Membrane Structure Review Chapter 21 pages 709-717 717 (Animal( Cell Adhesion) Review Chapter 12 Membrane Transport Review Chapter

More information

Chapter 7-3 Cell Boundaries

Chapter 7-3 Cell Boundaries Chapter 7-3 Cell Boundaries The Plasma Membrane: Cell Membrane Regulates what enters and leaves the cell. Provides protection and support. Highly selective barrier!!!! What the plasma membrane is made

More information

Title: Sep 10 7:59 PM (1 of 36) Ch 3 Cell Organelles and Transport

Title: Sep 10 7:59 PM (1 of 36) Ch 3 Cell Organelles and Transport Title: Sep 10 7:59 PM (1 of 36) Ch 3 Cell Organelles and Transport Title: Sep 10 8:02 PM (2 of 36) Cell organelles Nucleus: contains DNA Title: Sep 10 8:03 PM (3 of 36) Nuclear envelope double membrane

More information

Plasma Membrane Structure and Function

Plasma Membrane Structure and Function Plasma Membrane Structure and Function The plasma membrane separates the internal environment of the cell from its surroundings. The plasma membrane is a phospholipid bilayer with embedded proteins. The

More information

Cell Membranes Valencia college

Cell Membranes Valencia college 6 Cell Membranes Valencia college 6 Cell Membranes Chapter objectives: The Structure of a Biological Membrane The Plasma Membrane Involved in Cell Adhesion and Recognition Passive Processes of Membrane

More information

Diffusion across cell membrane

Diffusion across cell membrane The Cell Membrane and Cellular Transport Diffusion across cell membrane Cell membrane is the boundary between inside & outside separates cell from its environment Can it be an impenetrable boundary? NO!

More information

Chapter 8 Cells and Their Environment

Chapter 8 Cells and Their Environment Chapter Outline Chapter 8 Cells and Their Environment Section 1: Cell Membrane KEY IDEAS > How does the cell membrane help a cell maintain homeostasis? > How does the cell membrane restrict the exchange

More information

Cells and Their Environment Chapter 8. Cell Membrane Section 1

Cells and Their Environment Chapter 8. Cell Membrane Section 1 Cells and Their Environment Chapter 8 Cell Membrane Section 1 Homeostasis Key Idea: One way that a cell maintains homeostasis is by controlling the movement of substances across the cell membrane. Homeostasis

More information

Cell Membranes and Signaling

Cell Membranes and Signaling 5 Cell Membranes and Signaling Concept 5.1 Biological Membranes Have a Common Structure and Are Fluid A membrane s structure and functions are determined by its constituents: lipids, proteins, and carbohydrates.

More information

Phospholipids. Extracellular fluid. Polar hydrophilic heads. Nonpolar hydrophobic tails. Polar hydrophilic heads. Intracellular fluid (cytosol)

Phospholipids. Extracellular fluid. Polar hydrophilic heads. Nonpolar hydrophobic tails. Polar hydrophilic heads. Intracellular fluid (cytosol) Module 2C Membranes and Cell Transport All cells are surrounded by a plasma membrane. Eukaryotic cells also contain internal membranes and membrane- bound organelles. In this module, we will examine the

More information

Human Cell Biology. General Information About the Cell. Cell Structure and Function

Human Cell Biology. General Information About the Cell. Cell Structure and Function Human Cell Biology Cell Structure and Function Learn and Understand Plasma membrane is like a picket fence Each body cell lives within a fluid environment, constantly interacting with it following the

More information

Membrane Structure and Function - 1

Membrane Structure and Function - 1 Membrane Structure and Function - 1 The Cell Membrane and Interactions with the Environment Cells interact with their environment in a number of ways. Each cell needs to obtain oxygen and other nutrients

More information

MEMBRANE STRUCTURE AND FUNCTION

MEMBRANE STRUCTURE AND FUNCTION MEMBRANE STRUCTURE AND FUNCTION 2.4.2 Membranes organize the chemical activities of cells Membranes provide structural order for metabolism Form most of the cell's organelles Compartmentalize chemical

More information

CH 03 CELLS: THE LIVING UNITS

CH 03 CELLS: THE LIVING UNITS CH 03 CELLS: THE LIVING UNITS This chapter provides a review of critical information regarding cells the basic units of structure and function of all living things. CELL THEORY The cell theory resulted

More information

Membrane Structure and Membrane Transport of Small Molecules. Assist. Prof. Pinar Tulay Faculty of Medicine

Membrane Structure and Membrane Transport of Small Molecules. Assist. Prof. Pinar Tulay Faculty of Medicine Membrane Structure and Membrane Transport of Small Molecules Assist. Prof. Pinar Tulay Faculty of Medicine Introduction Cell membranes define compartments of different compositions. Membranes are composed

More information

Lecture Series 4 Cellular Membranes. Reading Assignments. Selective and Semi-permeable Barriers

Lecture Series 4 Cellular Membranes. Reading Assignments. Selective and Semi-permeable Barriers Lecture Series 4 Cellular Membranes Reading Assignments Read Chapter 11 Membrane Structure Review Chapter 12 Membrane Transport Review Chapter 15 regarding Endocytosis and Exocytosis Read Chapter 20 (Cell

More information

What do you remember about the cell membrane?

What do you remember about the cell membrane? Cell Membrane What do you remember about the cell membrane? Cell (Plasma) Membrane Separates the internal environment of the cell from the external environment All cells have a cell membrane Selectively

More information

Outline. Membrane Structure and Function. Membrane Models Fluid-Mosaic. Chapter 5

Outline. Membrane Structure and Function. Membrane Models Fluid-Mosaic. Chapter 5 Membrane Structure and Function Chapter 5 Membrane Models Fluid-Mosaic Outline Plasma Membrane Structure and Function Protein Functions Plasma Membrane Permeability! Diffusion! Osmosis! Transport Via Carrier

More information

(impermeable; freely permeable; selectively permeable)

(impermeable; freely permeable; selectively permeable) BIOL 2457 CHAPTER 3 Part 1 SI 1 1. A is the basic structure of life. 2. The gelatinous inside of the cell is called the. 3. Name the structure that increases the cell s surface area? 4. Name the structure

More information

The Plasma Membrane - Gateway to the Cell

The Plasma Membrane - Gateway to the Cell The Plasma Membrane - Gateway to the Cell 1 Photograph of a Cell Membrane 2 Cell Membrane The cell membrane is flexible and allows a unicellular organism to move 3 Homeostasis Balanced internal condition

More information

Cell Membrane: a Phospholipid Bilayer. Membrane Structure and Function. Fluid Mosaic Model. Chapter 5

Cell Membrane: a Phospholipid Bilayer. Membrane Structure and Function. Fluid Mosaic Model. Chapter 5 Membrane Structure and Function Chapter 5 Cell Membrane: a Phospholipid Bilayer Phospholipid Hydrophilic Head Hydrophobic Tail Lipid Bilayer Fluid Mosaic Model Mixture of saturated and unsaturated fatty

More information

Membrane Structure and Function

Membrane Structure and Function Membrane Structure and Function Chapter 7 Objectives Define the following terms: amphipathic molecules, aquaporins, diffusion Distinguish between the following pairs or sets of terms: peripheral and integral

More information

Modern Cell Theory. Plasma Membrane. Generalized Cell Structures. Cellular Form and Function. Three principle parts of a cell

Modern Cell Theory. Plasma Membrane. Generalized Cell Structures. Cellular Form and Function. Three principle parts of a cell Cellular Form and Function Concepts of cellular structure Cell surface Membrane transport Cytoplasm Modern Cell Theory All living organisms are composed of cells. the simplest structural and functional

More information

Cells. Unit 3 Cell Structure and Function. Cells. Plasma Membrane

Cells. Unit 3 Cell Structure and Function. Cells. Plasma Membrane Unit 3 Cell Structure and Function Cells Cell theory The cell is the basic unit of life The cells of all living things exhibit the seven characteristics of life All living things are made of cells Cells

More information

Chapter 4 Skeleton Notes: Membrane Structure & Function

Chapter 4 Skeleton Notes: Membrane Structure & Function Chapter 4 Skeleton Notes: Membrane Structure & Function Overview/Objectives 4.1 Plasma Membrane Structure & Function o Structure and Function of the PM o Major functions of proteins 4.2- Permeability of

More information

The Cell Membrane and Cellular Transportation

The Cell Membrane and Cellular Transportation The Cell Membrane and Cellular Transportation Oct 20 7:07 PM Cell Membrane Forms a barrier between the cell and the external environment. Has three main functions: 1) helps the cell retain the molecules

More information

Cytoskeleton. Provide shape and support for the cell. Other functions of the cytoskeleton. Nucleolus. Nucleus

Cytoskeleton. Provide shape and support for the cell. Other functions of the cytoskeleton. Nucleolus. Nucleus Chapter 4: Cell Structure and Function Cytoskeleton The cytoskeleton is a network of fibers that organizes structures and activities in the cell. Microtubules (the largest) Intermediate fibers Microfilaments

More information

Chapter 7: Membranes

Chapter 7: Membranes Chapter 7: Membranes Roles of Biological Membranes The Lipid Bilayer and the Fluid Mosaic Model Transport and Transfer Across Cell Membranes Specialized contacts (junctions) between cells What are the

More information

Structure & Function of Cells

Structure & Function of Cells Anatomy & Physiology 101-805 Unit 4 Structure & Function of Cells Paul Anderson 2011 Anatomy of a Generalised Cell Attached or bound ribosomes Cilia Cytosol Centriole Mitochondrion Rough endoplasmic reticulum

More information

Study Guide for Biology Chapter 5

Study Guide for Biology Chapter 5 Class: Date: Study Guide for Biology Chapter 5 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which of the following led to the discovery of cells? a.

More information

Cell membrane & Transport. Dr. Ali Ebneshahidi Ebneshahidi

Cell membrane & Transport. Dr. Ali Ebneshahidi Ebneshahidi Cell membrane & Transport Dr. Ali Ebneshahidi Cell Membrane To enclose organelles and other contents in cytoplasm. To protect the cell. To allow substances into and out of the cell. To have metabolic reactions

More information

Lecture Series 4 Cellular Membranes

Lecture Series 4 Cellular Membranes Lecture Series 4 Cellular Membranes Reading Assignments Read Chapter 11 Membrane Structure Review Chapter 12 Membrane Transport Review Chapter 15 regarding Endocytosis and Exocytosis Read Chapter 20 (Cell

More information

Cell Boundaries. Chapter 7.3 Strand: B2.5h

Cell Boundaries. Chapter 7.3 Strand: B2.5h Cell Boundaries Chapter 7.3 Strand: B2.5h Review: Cell Membrane What is the role of the cell membrane within a cell? The cell membrane regulates what enters and leaves the cell and also provides protection

More information

The Cell. Biology 105 Lecture 4 Reading: Chapter 3 (pages 47 62)

The Cell. Biology 105 Lecture 4 Reading: Chapter 3 (pages 47 62) The Cell Biology 105 Lecture 4 Reading: Chapter 3 (pages 47 62) Outline I. Prokaryotic vs. Eukaryotic II. Eukaryotic A. Plasma membrane transport across B. Main features of animal cells and their functions

More information

Chapter 3: Cells. I. Overview

Chapter 3: Cells. I. Overview Chapter 3: Cells I. Overview A. Characteristics 1. Basic structural/functional unit 2. Diameter is too small to see by the naked eye 3. Can be over 3 feet long 4. Trillions of cells in over 200 basic types

More information

The Plasma Membrane - Gateway to the Cell

The Plasma Membrane - Gateway to the Cell The Plasma Membrane - Gateway to the Cell 1 Photograph of a Cell Membrane 2 Cell Membrane The cell membrane is flexible and allows a unicellular organism to move 3 Homeostasis Balanced internal condition

More information

Membrane Structure and Function

Membrane Structure and Function Chapter 7 Membrane Structure and Function PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from

More information

3UNIT. Photosynthesis and. Cellular Respiration. Unit PreQuiz? General Outcomes. Unit 3 Contents. Focussing Questions

3UNIT. Photosynthesis and. Cellular Respiration. Unit PreQuiz?   General Outcomes. Unit 3 Contents. Focussing Questions 3UNIT Photosynthesis and Cellular Respiration General Outcomes In this unit, you will relate photosynthesis to the storage of energy in organic compounds explain the role of cellular respiration in releasing

More information

Modern Cell Theory. Plasma Membrane. Generalized Cell Structures. Cellular Form and Function. Three principle parts of a cell

Modern Cell Theory. Plasma Membrane. Generalized Cell Structures. Cellular Form and Function. Three principle parts of a cell Cellular Form and Function Concepts of cellular structure Cell surface Membrane transport Cytoplasm Modern Cell Theory All living organisms are composed of cells. the simplest structural and functional

More information

Phospholipid Bilayer Hydrophilic head Hydrophobic tail Molecules with hydrophilic and hydrophobic parts are called Ampipathic molecules

Phospholipid Bilayer Hydrophilic head Hydrophobic tail Molecules with hydrophilic and hydrophobic parts are called Ampipathic molecules Plasma Membrane The membrane at the boundary of every cell Functions as a selective barrier for the passage of materials in and out of cells Membrane Composition Phospholipids Proteins Carbohydrates Cholesterol

More information

Human Anatomy & Physiology

Human Anatomy & Physiology PowerPoint Lecture Slides prepared by Barbara Heard, Atlantic Cape Community College Ninth Edition Human Anatomy & Physiology C H A P T E R 3 Annie Leibovitz/Contact Press Images 2013 Pearson Education,

More information

Chapter 3: Exchanging Materials with the Environment. Cellular Transport Transport across the Membrane

Chapter 3: Exchanging Materials with the Environment. Cellular Transport Transport across the Membrane Chapter 3: Exchanging Materials with the Environment Cellular Transport Transport across the Membrane Transport? Cells need things water, oxygen, balance of ions, nutrients (amino acids, sugars..building

More information

Cells & Tissues. Chapter 3

Cells & Tissues. Chapter 3 Cells & Tissues Chapter 3 Cell Theory Cell is structural and functional unit of life Activity of an organism is dependent upon its cells Principle of Complementarity functions of cells are dependent upon

More information

(d) are made mainly of lipids and of proteins that lie like thin sheets on the membrane surface

(d) are made mainly of lipids and of proteins that lie like thin sheets on the membrane surface Which of the following statements is no true? Biological membranes (a) are composed partly of amphipathic lipids (b) have hydrophobic and hydrophilic regions (c) are typically in a fluid state (d) are

More information

Biology 12 Cell Structure and Function. Typical Animal Cell

Biology 12 Cell Structure and Function. Typical Animal Cell Biology 12 Cell Structure and Function Typical Animal Cell Vacuoles: storage of materials and water Golgi body: a series of stacked disk shaped sacs. Repackaging centre stores, modifies, and packages proteins

More information

3.2.3 Transport across cell membranes

3.2.3 Transport across cell membranes alevelbiology.co.uk 3.2.3 Transport across cell membranes SPECIFICATION The basic structure of all cell membranes, including cell-surface membranes and the membranes around the cell organelles of eukaryotes,

More information

Membrane Structure & Function (Learning Objectives)

Membrane Structure & Function (Learning Objectives) Membrane Structure & Function (Learning Objectives) Review the basic function and biochemical composition of the plasma membrane. Learn the fluid state of membranes and the movement of its lipids and proteins.

More information

Ch7: Membrane Structure & Function

Ch7: Membrane Structure & Function Ch7: Membrane Structure & Function History 1915 RBC membranes studied found proteins and lipids 1935 membrane mostly phospholipids 2 layers 1950 electron microscopes supported bilayer idea (Sandwich model)

More information

1. or is the study of cellular structure and function. 2. What is the purpose and characteristics of the plasma membrane?

1. or is the study of cellular structure and function. 2. What is the purpose and characteristics of the plasma membrane? Chapter 3 Reading Guide The Cellular Level of Organization Name 1. or is the study of cellular structure and function. Section 3.1 Parts of a Cell 2. What is the purpose and characteristics of the plasma

More information

Chapter 4: Cell Membrane Structure and Function

Chapter 4: Cell Membrane Structure and Function Chapter 4: Cell Membrane Structure and Function Plasma Membrane: Thin barrier separating inside of cell (cytoplasm) from outside environment Function: 1) Isolate cell s contents from outside environment

More information

Cell Structure and Function

Cell Structure and Function Cell Structure and Function Agre and cells in the news Cells Smallest living unit Most are microscopic Discovery of Cells Robert Hooke (mid-1600s) Observed sliver of cork Saw row of empty boxes Coined

More information

AP Biology Cells: Chapters 4 & 5

AP Biology Cells: Chapters 4 & 5 AP Biology Cells: Chapters 4 & 5 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The was the first unifying principle of biology. a. spontaneous generation

More information

Hole s Human Anatomy and Physiology Tenth Edition. Chapter 3

Hole s Human Anatomy and Physiology Tenth Edition. Chapter 3 PowerPoint Lecture Outlines to accompany Hole s Human Anatomy and Physiology Tenth Edition Shier w Butler w Lewis Chapter 3 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction

More information

Plasma Membrane Function

Plasma Membrane Function Plasma Membrane Function Cells have to maintain homeostasis, they do this by controlling what moves across their membranes Structure Double Layer of phospholipids Head (polar) hydrophiliclikes water -

More information

Cellular Structure and Function. Chapter 7

Cellular Structure and Function. Chapter 7 Cellular Structure and Function. Chapter 7 Cell Discovery and Theory. A cell is the basic structural and functional unit of all living organisms. The human body is made of trillions of cells that are too

More information

Notes Chapter 7 Cell Structure and Function Hooke looked at cork under a simple microscope and found tiny chambers he named cells.

Notes Chapter 7 Cell Structure and Function Hooke looked at cork under a simple microscope and found tiny chambers he named cells. Notes Chapter 7 Cell Structure and Function 7.1 Cell discovery and Theory 1665 Hooke looked at cork under a simple microscope and found tiny chambers he named cells. Cells are the basic structural and

More information

E - Horton AP Biology

E - Horton AP Biology E - Bio @ Horton AP Biology Unit Cell Biology Notes Membrane Structure and Function A. Early Observations 1. At turn of the century, researchers noted lipid-soluble molecules entered cells more rapidly

More information

Chapter 3: Cytology. Cytology is the study of cells. Cells are the basic units of life. We are made up of trillions of cells.

Chapter 3: Cytology. Cytology is the study of cells. Cells are the basic units of life. We are made up of trillions of cells. PLEASE NOTE THAT THE ITEMS IN THE TEXT THAT ARE HIGHLIGHTED IN YELLOW ARE THOSE THAT ARE TOUCHED ON IN THE READING ASSIGNMENT (PAGES 90-99) AND IN THE LECTURE. ESPECIALLY KNOW THIS MATERIAL FOR THE FIRST

More information

Microanatomy-Cytology (cells)

Microanatomy-Cytology (cells) Microanatomy-Cytology (cells) Levels of Organization least complex most complex Chemical level>cellular level>tissue level>organ level>organ system level>organism level Cytology Cytology-the study of the

More information

Membranes. Chapter 5

Membranes. Chapter 5 Membranes Chapter 5 Membrane Structure The fluid mosaic model of membrane structure contends that membranes consist of: -phospholipids arranged in a bilayer -globular proteins inserted in the lipid bilayer

More information

Cell Membrane-Structure and Function

Cell Membrane-Structure and Function Cell Membrane-Structure and Function BIO 250 Living things are composed of cells and cell products (extracellular) Cells are the basic unit of structure They are the basic unit of function They vary in

More information

CHAPTER 8 MEMBRANE STUCTURE AND FUNCTION

CHAPTER 8 MEMBRANE STUCTURE AND FUNCTION CHAPTER 8 MEMBRANE STUCTURE AND FUNCTION Plasma Membrane Plasma membrane is selectively permeable, (allowing some substances to cross more easily than others) PM is flexible bends and changes shape

More information

Membrane Structure. Membrane Structure. Membrane Structure. Membranes

Membrane Structure. Membrane Structure. Membrane Structure. Membranes Membrane Structure Membranes Chapter 5 The fluid mosaic model of membrane structure contends that membranes consist of: -phospholipids arranged in a bilayer -globular proteins inserted in the lipid bilayer

More information

The Plasma Membrane. 5.1 The Nature of the Plasma Membrane. Phospholipid Bilayer. The Plasma Membrane

The Plasma Membrane. 5.1 The Nature of the Plasma Membrane. Phospholipid Bilayer. The Plasma Membrane 5.1 The Nature of the Plasma Membrane The Plasma Membrane Four principal components in animals Phospholipid bilayer Molecules of cholesterol interspersed within the bilayer. Membrane proteins embedded

More information

Cytology I Study of Cells

Cytology I Study of Cells Cytology I Study of Cells Biology 20 Which cell type has organelles such as mitochondria, nuclues, Golgi bodies, etc? A) prokaryotic B) eukaryotic C) bacterial D) viral E) none of these Cellular Basis

More information

Plasma Membrane & Movement of Materials in Cells

Plasma Membrane & Movement of Materials in Cells Plasma Membrane & Movement of Materials in Cells Why do cells need to control what enters and exits? Plasma membrane boundary between the cell and its environment Homeostasis maintaining the cells environment

More information

CELL MEMBRANES. CELL MEMBRANE- Structure and Function

CELL MEMBRANES. CELL MEMBRANE- Structure and Function BIOLOGY 12 CELL MEMBRANES NAME: INTRODUCTION 1. The cell membrane the passage of molecules into and out of the cell. 2. Some types of molecules, particularly molecules, pass freely across the cell membrane

More information

Chapter 7: Membrane Structure and Function

Chapter 7: Membrane Structure and Function Chapter 7: Membrane Structure and Function Concept 7.1 Cellular membranes are fluid mosaics of lipids and proteins 1. Phospholipids are amphipathic. Explain what this means. Name Period Amphipathic means

More information

I. Fluid Mosaic Model A. Biological membranes are lipid bilayers with associated proteins

I. Fluid Mosaic Model A. Biological membranes are lipid bilayers with associated proteins Lecture 6: Membranes and Cell Transport Biological Membranes I. Fluid Mosaic Model A. Biological membranes are lipid bilayers with associated proteins 1. Characteristics a. Phospholipids form bilayers

More information

Cells and Tissues 3PART A. PowerPoint Lecture Slide Presentation by Patty Bostwick-Taylor, Florence-Darlington Technical College

Cells and Tissues 3PART A. PowerPoint Lecture Slide Presentation by Patty Bostwick-Taylor, Florence-Darlington Technical College PowerPoint Lecture Slide Presentation by Patty Bostwick-Taylor, Florence-Darlington Technical College Cells and Tissues 3PART A Cells and Tissues Carry out all chemical activities needed to sustain life

More information

Lecture Overview. Cell Membrane. Marieb s Human Anatomy and Physiology. Chapter 3 Cell Membranes Movement Across the Cell Membrane Lecture 7

Lecture Overview. Cell Membrane. Marieb s Human Anatomy and Physiology. Chapter 3 Cell Membranes Movement Across the Cell Membrane Lecture 7 Marieb s Human Anatomy and Physiology Marieb Hoehn Chapter 3 Cell Membranes Movement Across the Cell Membrane Lecture 7 1 The cell membrane Lecture Overview Osmotic pressure and tonicity Movement of substances

More information

Chaffey College: Anatomy and Physiology Chapter 3: Cells - The Living Units

Chaffey College: Anatomy and Physiology Chapter 3: Cells - The Living Units Cell Theory Chaffey College: Anatomy and Physiology Chapter 3: Cells - The Living Units The cell is the basic structural and functional unit of life Organismal activity depends on individual and collective

More information

Chapter 7: Membrane Structure & Function

Chapter 7: Membrane Structure & Function Chapter 7: Membrane Structure & Function 1. Membrane Structure 2. Transport Across Membranes 1. Membrane Structure Chapter Reading pp. 125-129 What are Biological Membranes? Hydrophilic head WATER They

More information

Chapter 7: Membrane Structure & Function. 1. Membrane Structure. What are Biological Membranes? 10/21/2015. Why phospholipids? 1. Membrane Structure

Chapter 7: Membrane Structure & Function. 1. Membrane Structure. What are Biological Membranes? 10/21/2015. Why phospholipids? 1. Membrane Structure Chapter 7: Membrane Structure & Function 1. Membrane Structure 2. Transport Across Membranes 1. Membrane Structure Chapter Reading pp. 125-129 What are Biological Membranes? Hydrophilic head WATER They

More information

Draw and label a diagram to show the structure of membranes

Draw and label a diagram to show the structure of membranes 2.4 Membranes 2.4.1 - Draw and label a diagram to show the structure of membranes Phospholipid Bilayer - This is arranged with the hydrophilic phosphate heads facing outwards, and the hydrophobic fatty

More information

Chapter 4. Membrane Structure and Function. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chapter 4. Membrane Structure and Function. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 4 Membrane Structure and Function Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 4.1 Plasma Membrane Structure and Function Regulates the entrance

More information

Membranes. Chapter 5. Membrane Structure

Membranes. Chapter 5. Membrane Structure Membranes Chapter 5 Membrane Structure Lipid Bilayer model: - double phospholipid layer - Gorter & Grendel: 1925 Fluid Mosaic model: consist of -phospholipids arranged in a bilayer -globular proteins inserted

More information

MEMBRANE STRUCTURE AND TRAFFIC. Cell Membrane Structure and Function

MEMBRANE STRUCTURE AND TRAFFIC. Cell Membrane Structure and Function MEMBRANE STRUCTURE AND TRAFFIC Cell Membrane Structure and Function 4.1 How Is the Structure of a Membrane Related to Its Function? 4.1.1 The Plasma Membrane Isolates the Cell While Allowing Communication

More information

Transport: Cell Membrane Structure and Function. Biology 12 Chapter 4

Transport: Cell Membrane Structure and Function. Biology 12 Chapter 4 Transport: Cell Membrane Structure and Function Biology 12 Chapter 4 FLUID-MOSAIC MODEL OF MEMBRANE STRUCTURE The cell membrane (plasma membrane) is made of two layers of phospholipid molecules (bilayer)

More information

Biology. Membranes.

Biology. Membranes. 1 Biology Membranes 2015 10 28 www.njctl.org 2 Vocabulary active transport carrier protein channel protein concentration gradient diffusion enzymatic activity facilitated diffusion fluid mosaic hypertonic

More information

Cells. 1. Smallest living structures. 2. Basic structural and functional units of the body. 3. Derived from pre-existing cells. 4. Homeostasis.

Cells. 1. Smallest living structures. 2. Basic structural and functional units of the body. 3. Derived from pre-existing cells. 4. Homeostasis. Cells The Cell The human body has about 75 trillion cells All tissues and organs are made up of cells Smallest functional unit of life Cytology Histology Cytology Epithelial cells Fibroblasts Erythrocytes

More information

Maintained by plasma membrane controlling what enters & leaves the cell

Maintained by plasma membrane controlling what enters & leaves the cell CELL TRANSPORT AND HOMEOSTASIS Homeostasis Balanced internal condition of cells Also called equilibrium Maintained by plasma membrane controlling what enters & leaves the cell Functions of Plasma Membrane

More information

Homeostasis, Transport & The Cell Membrane. Chapter 4-2 (pg 73 75) Chapter 5

Homeostasis, Transport & The Cell Membrane. Chapter 4-2 (pg 73 75) Chapter 5 Homeostasis, Transport & The Cell Membrane Chapter 4-2 (pg 73 75) Chapter 5 Unit 5: Lecture 1 Topic: The Cell Membrane Covers: Chapter 5, pages 95-96 Chapter 4, pages 73-75 The Cell Membrane The chemistry

More information

Unit 1 Matter & Energy for Life

Unit 1 Matter & Energy for Life Unit 1 Matter & Energy for Life Chapter 2 Interaction of Cell Structure Biology 2201 Primary Membrane Function: Homeostasis Conditions in the cell must remain more or less constant under many different

More information

Gateway to the Cell 11/1/2012. The cell membrane is flexible and allows a unicellular organism to move FLUID MOSAIC MODEL

Gateway to the Cell 11/1/2012. The cell membrane is flexible and allows a unicellular organism to move FLUID MOSAIC MODEL Gateway to the Cell The cell membrane is flexible and allows a unicellular organism to move Isolates the cell, yet allows communication with its surroundings fluid mosaics = proteins (and everything else)

More information

Anatomy Chapter 2 - Cells

Anatomy Chapter 2 - Cells Cells Cells are the basic living structural, functional unit of the body Cytology is the branch of science that studies cells The human body has 100 trillion cells 200 different cell types with a variety

More information

Membrane Structure and Function. Selectively permeable membranes are key to the cell's ability to function

Membrane Structure and Function. Selectively permeable membranes are key to the cell's ability to function Membrane Structure and Function Selectively permeable membranes are key to the cell's ability to function Amphipathic Molecules Have both hydrophilic and hydrophobic regions Phospholipids have hydrophilic

More information

[S] [S] Hypertonic [H O] [H 2 O] g. Osmosis is the diffusion of water through membranes! 15. Osmosis. Concentrated sugar solution

[S] [S] Hypertonic [H O] [H 2 O] g. Osmosis is the diffusion of water through membranes! 15. Osmosis. Concentrated sugar solution Concentrated sugar solution Sugar molecules (Water molecules not shown) 100ml 100ml Hypertonic [S] g [H2 Hypotonic [H O] 2 O] [H 2 O] g Semipermeable Dilute sugar solution (100ml) Time 125ml Osmosis 75ml

More information

Essentials of Anatomy and Physiology, 9e (Marieb) Chapter 3 Cells and Tissues. Short Answer. Figure 3.1

Essentials of Anatomy and Physiology, 9e (Marieb) Chapter 3 Cells and Tissues. Short Answer. Figure 3.1 Essentials of Anatomy and Physiology, 9e (Marieb) Chapter 3 Cells and Tissues Short Answer Figure 3.1 Using Figure 3.1, match the following: 1) The illustration of simple cuboidal epithelium is. Answer:

More information

The Plasma membrane. MEMBRANE PROTEINS: allows to communicate with the environment

The Plasma membrane. MEMBRANE PROTEINS: allows to communicate with the environment The Plasma membrane The plasma membrane, also called the cell membrane separates the intracellular fluid within the cell and the extracellular fluids outside the cell. STRUCTURE OF PLASMA MEMBRANE FLUID

More information

Membrane Structure and Function

Membrane Structure and Function Membrane Structure and Function Check Your Gummy Bears Ø Take Day One measurements l Same measurements you took yesterday Ø What type solution was the gummy bear in? Hyper, Hypo, or Isotonic? Ø Put your

More information

Recall basic cell physiology

Recall basic cell physiology (a) Chemical level: a molecule in the membrane that encloses a cell (b) Cellular level: a cell in the stomach lining (c) Tissue level: layers of tissue in the stomach wall (d) Organ level: the stomach

More information

Boundary Lipid bilayer Selectively Permeable Fluid mosaic of lipids and proteins Contains embedded proteins

Boundary Lipid bilayer Selectively Permeable Fluid mosaic of lipids and proteins Contains embedded proteins 1 Boundary Lipid bilayer Selectively Permeable Fluid mosaic of lipids and proteins Contains embedded proteins 2 Phosphate head hydrophilic Fatty acid tails hydrophobic Amphipathic Phosphate attracted to

More information