Michaelis Menten Kinetics- Enzyme Inhibition

Size: px
Start display at page:

Download "Michaelis Menten Kinetics- Enzyme Inhibition"

Transcription

1 Michaelis Menten Kinetics- Enzyme Inhibition Dr. M. Vijayalakshmi School of Chemical and Biotechnology SASTRA University Joint Initiative of IITs and IISc Funded by MHRD Page 1 of 9

2 Table of Contents 1 INTRODUCTION COMPETITIVE INHIBITION UNCOMPETITIVE INHIBITION NON-COMPETITIVE INHIBITION MIXED INHIBITION REFERENCES TEXT BOOKS... 9 Joint Initiative of IITs and IISc Funded by MHRD Page 2 of 9

3 1 Introduction Enzyme inhibition can happen when the inhibitors (structural analogs of substrate) binds to the active site of the enzyme and prevents the catalysis. Enzyme inhibition is specific and is different from the alteration of structure of enzyme and reduction of reaction rate by environmental factors such as ph, temperature, presence of hydrophobic compounds, detergents etc., which are non specific. For e.g. consider sudden addition of an acid or base to the reaction mix which changes the ph and thereby influences the rate of the reaction. These are often confused with inhibition as they also reduce the turnover rate of enzymes. In general, the binding of enzyme to the inhibitor is reversible but few of them bind covalently and become irreversible. The reversible and irreversible inhibitors have different kinetics. Michaelis-Menten kinetics explains the inhibition of enzyme in a single substrate complex, but the complexity increases with the number of substrates. The inhibitors also depend on their homology with the substrate apart from the nature of binding site and binding affinity. Some inhibitors even bind stronger than the natural substrate because of specific interactions and act as antagonists. Most therapeutic drug molecules act in this way. Yet there are different forms of inhibition based on the affinity of inhibitor to the enzyme and substrate. 1.1 Competitive inhibition Competitive inhibition occurs when the inhibitor is highly homologous to the substrate molecule and competes with substrate to bind to the free enzyme. So, either one of them can bind with an enzyme and not both together Fig 1. In this condition, there is a need for excess substrate to overcome the competition with inhibitor. Classical example for competitive inhibition is the molecule methotrexate which inhibits the action of dihydrofolate reductase to convert dihydrofolate to tetrahydrofolate. Joint Initiative of IITs and IISc Funded by MHRD Page 3 of 9

4 E + S E.S E + P + I E.I Fig 1. Schematic representation of competitive inhibition The rate of product formation in the reaction is given by, And from the Michaelis-Menten kinetics, Similarly, rate of formation of enzyme inhibitor complex will give, The total enzyme concentration in the system will be the sum of the concentration of three forms in which the enzymes exists: Joint Initiative of IITs and IISc Funded by MHRD Page 4 of 9

5 Hence in competitive inhibition, only the K m is influenced and not the maximum velocity (V max ). 1.2 Uncompetitive inhibition Uncompetitive inhibition occurs when the inhibitor does not bind to the free enzyme and instead binds to the already formed enzyme substrate complex and makes the complex inactive Fig 2. This phenomenon of inhibition is commonly observed in multimeric enzymes. E + S E.S E + P + I E.S.I The rate of product formation in the reaction is given by, And from the Michaelis-Menten kinetics, Joint Initiative of IITs and IISc Funded by MHRD Page 5 of 9

6 Similarly, rate of formation of enzyme-substrate-inhibitor complex will give, Fig 2. Schematic representation of uncompetitive inhibition The total enzyme concentration in the system will be the sum of the concentration of three forms in which the enzymes exists: Joint Initiative of IITs and IISc Funded by MHRD Page 6 of 9

7 In uncompetitive inhibition, both K m as well as maximum velocity (V max ) is influenced. 1.3 Non-Competitive inhibition Non-Competitive inhibition is where; the inhibitor binds to the different site in the enzyme. So, in contrast to competitive inhibition, they can bind along with substrate to the enzyme and here both EI and ESI is inactive Fig 3. E + S E.S E + P k i + I K ii + I +S E.I E.S.I Fig 3. Schematic representation of non competitive inhibition The rate of product formation in the reaction is given by, And from the Michaelis-Menten kinetics, Joint Initiative of IITs and IISc Funded by MHRD Page 7 of 9

8 Similarly, rate of formation of enzyme-substrate-inhibitor complex will give, The total enzyme concentration in the system will be the sum of the concentration of four forms in which the enzymes exists: Non competitive inhibition influences the maximum velocity while the K m does not changes. V max is changed because high substrate concentration cannot prevent the binding of inhibitor. 1.4 Mixed inhibition Another mode of inhibition which is similar to that of non competitive inhibition but with an active ESI complex is termed the mixed inhibition. Such inhibition is common in metabolic feedback pathways. Enzymes showing this form of inhibition are generally allosteric in nature. Joint Initiative of IITs and IISc Funded by MHRD Page 8 of 9

9 2 References 2.1 Text Books 1. Bisswanger H, Enzyme Kinetics, Principles and Methods, WILEY-VCH, (2002). 2. J. D. Murray, Mathematical Biology, Springer-Verlag, (1989). 3. Berg JM, Tymoczko JL, Stryer L. Biochemistry, 5/e, W H Freeman, (2002). Joint Initiative of IITs and IISc Funded by MHRD Page 9 of 9

VELOCITY OF ENZYME-CATALYZED REACTIONS.

VELOCITY OF ENZYME-CATALYZED REACTIONS. Lecture 12: Enzymes: Inhibition [PDF] Reading: Berg, Tymoczko & Stryer, Chapter 8, pp. 225-236 Problems: pp. 238-239, chapter 8, #1, 2, 4a,b, 5a,b, 7, 10 Updated on: 2/21/07 at 9:00 pm (deleted problems

More information

Lecture 12 Enzymes: Inhibition

Lecture 12 Enzymes: Inhibition Lecture 12 Enzymes: Inhibition Reading: Berg, Tymoczko & Stryer, 6th ed., Chapter 8, pp. 225-236 Problems: pp. 238-239, chapter 8, #1, 2, 4a,b, 5a,b, 7, 10 Jmol structure: cyclooxygenase/non-steroidal

More information

FIRST BIOCHEMISTRY EXAM Tuesday 25/10/ MCQs. Location : 102, 105, 106, 301, 302

FIRST BIOCHEMISTRY EXAM Tuesday 25/10/ MCQs. Location : 102, 105, 106, 301, 302 FIRST BIOCHEMISTRY EXAM Tuesday 25/10/2016 10-11 40 MCQs. Location : 102, 105, 106, 301, 302 The Behavior of Proteins: Enzymes, Mechanisms, and Control General theory of enzyme action, by Leonor Michaelis

More information

Biochem sheet (5) done by: razan krishan corrected by: Shatha Khtoum DATE :4/10/2016

Biochem sheet (5) done by: razan krishan corrected by: Shatha Khtoum DATE :4/10/2016 Biochem sheet (5) done by: razan krishan corrected by: Shatha Khtoum DATE :4/10/2016 Note about the last lecture: you must know the classification of enzyme Sequentially. * We know that a substrate binds

More information

Biochemistry Department. Level 1 Lecture No : 3 Date : 1 / 10 / Enzymes kinetics

Biochemistry Department. Level 1 Lecture No : 3 Date : 1 / 10 / Enzymes kinetics Biochemistry Department Level 1 Lecture No : 3 Date : 1 / 10 / 2017 Enzymes kinetics 1 Intended Learning Outcomes By the end of this lecture, the student will be able to: 1.Understand what is meant by

More information

LECTURE 4: REACTION MECHANISM & INHIBITORS

LECTURE 4: REACTION MECHANISM & INHIBITORS LECTURE 4: REACTION MECHANISM & INHIBITORS Chymotrypsin 1 LECTURE OUTCOMES After mastering the present lecture materials, students will be able to 1. to explain reaction mechanisms of between enzyme and

More information

3/17/2011. Enzyme Inhibition (Mechanism)

3/17/2011. Enzyme Inhibition (Mechanism) LECTURE 4: Reaction Mechanism and nhibitors Kinetic data cannot unambiguously establish a reaction mechanism. Although a phenomenological description can be obtained the nature of the reaction intermediates

More information

Past Years Questions Chpater 6

Past Years Questions Chpater 6 Past Years Questions Chpater 6 **************************************** 1) Which of the following about enzymes is Incorrect? A) Most enzymes are proteins. B) Enzymes are biological catalysts. C) Enzymes

More information

BIOCHEMISTRY Unit 2 Part 4 ACTIVITY #7 (Chapter 8.4) Enzymes. A. Is this reaction dehydration synthesis or hydrolysis?

BIOCHEMISTRY Unit 2 Part 4 ACTIVITY #7 (Chapter 8.4) Enzymes. A. Is this reaction dehydration synthesis or hydrolysis? AP BIOLOGY BIOCHEMISTRY Unit 2 Part 4 ACTIVITY #7 (Chapter 8.4) NAME DATE PERIOD Enzymes 8.4 1. Enzymes are an important type of protein. For now, use this sketch to review what you know about enzymes.

More information

REGULATION OF ENZYME ACTIVITY. Medical Biochemistry, Lecture 25

REGULATION OF ENZYME ACTIVITY. Medical Biochemistry, Lecture 25 REGULATION OF ENZYME ACTIVITY Medical Biochemistry, Lecture 25 Lecture 25, Outline General properties of enzyme regulation Regulation of enzyme concentrations Allosteric enzymes and feedback inhibition

More information

Six Types of Enzyme Catalysts

Six Types of Enzyme Catalysts Six Types of Enzyme Catalysts Although a huge number of reactions occur in living systems, these reactions fall into only half a dozen types. The reactions are: 1. Oxidation and reduction. Enzymes that

More information

Student Biochemistry I Homework III Due 10/13/04 64 points total (48 points based on text; 16 points for Swiss-PDB viewer exercise)

Student Biochemistry I Homework III Due 10/13/04 64 points total (48 points based on text; 16 points for Swiss-PDB viewer exercise) Biochemistry I Homework III Due 10/13/04 64 points total (48 points based on text; 16 points for Swiss-PDB viewer exercise) 1). 20 points total T or F; if false, provide a brief rationale as to why. Only

More information

Margaret A. Daugherty. Announcements! Fall Michaelis Menton Kinetics and Inhibition. Lecture 14: Enzymes & Kinetics III

Margaret A. Daugherty. Announcements! Fall Michaelis Menton Kinetics and Inhibition. Lecture 14: Enzymes & Kinetics III Lecture 14: Enzymes & Kinetics III Michaelis Menton Kinetics and Inhibition Margaret A. Daugherty Fall 2004 Announcements! Monday 10/11 lecture: starts at 10:15; Taught by Dr. Stephen Everse o ffice our/review

More information

Enzymes: The Catalysts of Life

Enzymes: The Catalysts of Life Chapter 6 Enzymes: The Catalysts of Life Lectures by Kathleen Fitzpatrick Simon Fraser University Activation Energy and the Metastable State Many thermodynamically feasible reactions in a cell that could

More information

The MOLECULES of LIFE

The MOLECULES of LIFE The MOLECULES of LIFE Physical and Chemical Principles Solutions Manual Prepared by James Fraser and Samuel Leachman Chapter 16 Principles of Enzyme Catalysis Problems True/False and Multiple Choice 1.

More information

Figure 1 Original Advantages of biological reactions being catalyzed by enzymes:

Figure 1 Original Advantages of biological reactions being catalyzed by enzymes: Enzyme basic concepts, Enzyme Regulation I III Carmen Sato Bigbee, Ph.D. Objectives: 1) To understand the bases of enzyme catalysis and the mechanisms of enzyme regulation. 2) To understand the role of

More information

Nafith Abu Tarboush DDS, MSc, PhD

Nafith Abu Tarboush DDS, MSc, PhD Nafith Abu Tarboush DDS, MSc, PhD natarboush@ju.edu.jo www.facebook.com/natarboush Biochemical Kinetics: the science that studies rates of chemical reactions An example is the reaction (A P), The velocity,

More information

رمضان كريم. 1Page كالشمس للدنيا

رمضان كريم. 1Page كالشمس للدنيا Slide # 17 ( michaelis- menten approach) : Most enzymes adopt a certain behavior that involves first order + zero order in their reactions When the German scientist studied the enzyme kinetics, he put

More information

ENZYMES: CLASSIFICATION, STRUCTURE

ENZYMES: CLASSIFICATION, STRUCTURE ENZYMES: CLASSIFICATION, STRUCTURE Enzymes - catalysts of biological reactions Accelerate reactions by a millions fold Common features for enzymes and inorganic catalysts: 1. Catalyze only thermodynamically

More information

Enzymes. Gibbs Free Energy of Reaction. Parameters affecting Enzyme Catalysis. Enzyme Commission Number

Enzymes. Gibbs Free Energy of Reaction. Parameters affecting Enzyme Catalysis. Enzyme Commission Number SCBC203 Enzymes Jirundon Yuvaniyama, Ph.D. Department of Biochemistry Faculty of Science Mahidol University Gibbs Free Energy of Reaction Free Energy A B + H 2 O A OH + B H Activation Energy Amount of

More information

Lecture 6: Allosteric regulation of enzymes

Lecture 6: Allosteric regulation of enzymes Chem*3560 Lecture 6: Allosteric regulation of enzymes Metabolic pathways do not run on a continuous basis, but are regulated according to need Catabolic pathways run if there is demand for ATP; for example

More information

Exams written in pencil or erasable ink will not be re-graded under any circumstances.

Exams written in pencil or erasable ink will not be re-graded under any circumstances. Biochemistry 461, Section I May 21, 1998 Final Exam Prof. Jason D. Kahn Your Printed ame: Your SS#: Your Signature: You have 120 minutes for this exam. The exam has 7 questions, worth 200 points. Do all

More information

Inhibition of enzymatic activity

Inhibition of enzymatic activity Inhibition of enzymatic activity Inhibitors are chemicals that reduce the rate of enzymatic reactions. Activators are chemicals that increase the rate of enzymatic reactions Inhibition may be a. irreversible

More information

Cofactors and coenzymes. Reversible, irreversible, competitive, and noncompetitive inhibitors. Allosteric enzymes. Feedback inhibition.

Cofactors and coenzymes. Reversible, irreversible, competitive, and noncompetitive inhibitors. Allosteric enzymes. Feedback inhibition. Enzyme regulation Cofactors and coenzymes. Reversible, irreversible, competitive, and noncompetitive inhibitors. Allosteric enzymes. Feedback inhibition. Introduction The genome of a typical organism,

More information

Name: Student Number

Name: Student Number UNIVERSITY OF GUELPH CHEM 454 ENZYMOLOGY Winter 2003 Quiz #1: February 13, 2003, 11:30 13:00 Instructor: Prof R. Merrill Instructions: Time allowed = 80 minutes. Total marks = 34. This quiz represents

More information

BIOCHEMISTRY I HOMEWORK III DUE 10/15/03 66 points total + 2 bonus points = 68 points possible Swiss-PDB Viewer Exercise Attached

BIOCHEMISTRY I HOMEWORK III DUE 10/15/03 66 points total + 2 bonus points = 68 points possible Swiss-PDB Viewer Exercise Attached BIOCHEMISTRY I HOMEWORK III DUE 10/15/03 66 points total + 2 bonus points = 68 points possible Swiss-PDB Viewer Exercise Attached 1). 20 points total T or F (2 points each; if false, briefly state why

More information

D.K.M.COLLEGE FOR WOMEN (AUTONOMOUS), VELLORE-1.

D.K.M.COLLEGE FOR WOMEN (AUTONOMOUS), VELLORE-1. III B.Sc BIOCHEMISTRY S.NO SEMESTER ODD/ EVEN TITLE OF THE PAPER 1 V ODD ENZYME AND ENZYME TECHNIQUES 2 V ODD HUMAN PHYSIOLOGY 3 V ODD GENETICS AND MOLECULAR BIOLOGY 4 V ODD BIOSTATISTICS 5 V ODD HORMONAL

More information

Chem Lecture 4 Enzymes

Chem Lecture 4 Enzymes Chem 452 - Lecture 4 Enzymes 111017 Enzymes are biological catalysts. Nearly every reaction that takes place in a living cell is catalyzed by an enzyme. Most enzymes are proteins. Beside their role in

More information

Written Answers. (i) No inhibitor. (ii) Noncompetitive inhibitor. (iii) Competitive inhibitor. (iv) Mixed inhibitor

Written Answers. (i) No inhibitor. (ii) Noncompetitive inhibitor. (iii) Competitive inhibitor. (iv) Mixed inhibitor Written Answers 1. (a) If the K M of an enzyme for its substrate remains constant as the concentration of the inhibitor increases, what can be said about the mode of inhibition? (b) The kinetic data for

More information

CHM333 LECTURES 16 & 17: 2/22 25/13 SPRING 2013 Professor Christine Hrycyna

CHM333 LECTURES 16 & 17: 2/22 25/13 SPRING 2013 Professor Christine Hrycyna ENZYME INHIBITION - INHIBITORS: Interfere with the action of an enzyme Decrease the rates of their catalysis Inhibitors are a great focus of many drug companies want to develop compounds to prevent/control

More information

THE UNIVERSITY OF MANITOBA. DATE: Oct. 22, 2002 Midterm EXAMINATION. PAPER NO.: PAGE NO.: 1of 6 DEPARTMENT & COURSE NO.: 2.277/60.

THE UNIVERSITY OF MANITOBA. DATE: Oct. 22, 2002 Midterm EXAMINATION. PAPER NO.: PAGE NO.: 1of 6 DEPARTMENT & COURSE NO.: 2.277/60. PAPER NO.: PAGE NO.: 1of 6 GENERAL INSTRUCTIONS You must mark the answer sheet with pencil (not pen). Put your name and enter your student number on the answer sheet. The examination consists of multiple

More information

Chapter 10. Regulatory Strategy

Chapter 10. Regulatory Strategy Chapter 10 Regulatory Strategy Regulation of enzymatic activity: 1. Allosteric Control. Allosteric proteins have a regulatory site(s) and multiple functional sites Activity of proteins is regulated by

More information

ENZYME INHIBITION. CHM333 LECTURES 16 & 17: 10/9 16/09 FALL 2009 Professor Christine Hrycyna

ENZYME INHIBITION. CHM333 LECTURES 16 & 17: 10/9 16/09 FALL 2009 Professor Christine Hrycyna ENZYME INHIBITION - INHIBITORS: Interfere with the action of an enzyme Decrease the rates of their catalysis Inhibitors are a great focus of many drug companies want to develop compounds to prevent/control

More information

Enzymes. Enzyme. Aim: understanding the basic concepts of enzyme catalysis and enzyme kinetics

Enzymes. Enzyme. Aim: understanding the basic concepts of enzyme catalysis and enzyme kinetics Enzymes Substrate Enzyme Product Aim: understanding the basic concepts of enzyme catalysis and enzyme kinetics Enzymes are efficient Enzyme Reaction Uncatalysed (k uncat s -1 ) Catalysed (k cat s -1 )

More information

Chapter 11: Enzyme Catalysis

Chapter 11: Enzyme Catalysis Chapter 11: Enzyme Catalysis Matching A) high B) deprotonated C) protonated D) least resistance E) motion F) rate-determining G) leaving group H) short peptides I) amino acid J) low K) coenzymes L) concerted

More information

CHM 341 C: Biochemistry I. Test 2: October 24, 2014

CHM 341 C: Biochemistry I. Test 2: October 24, 2014 CHM 341 C: Biochemistry I Test 2: ctober 24, 2014 This test consists of 14 questions worth points. Make sure that you read the entire question and answer each question clearly and completely. To receive

More information

DEPARTMENT: Chemistry

DEPARTMENT: Chemistry CODE: CHEM-236 TITLE: Biochemistry Institute: STEM DEPARTMENT: Chemistry COURSE DESCRIPTION: Upon completion of this course the student will be able to recognize and draw the structure and state the nature

More information

Enzymes. Enzymes accelerate chemical reactions as the engine accelerates this drag race.

Enzymes. Enzymes accelerate chemical reactions as the engine accelerates this drag race. Chapter 30 Enzymes Enzymes accelerate chemical reactions as the engine accelerates this drag race. Introduction to General, Organic, and Biochemistry, 10e John Wiley & Sons, Inc Morris Hein, Scott Pattison,

More information

Types of Inhibition: Competitive Noncompetitive Uncompetitive Product Inhibition Suicide Inhibition

Types of Inhibition: Competitive Noncompetitive Uncompetitive Product Inhibition Suicide Inhibition Inhibition of Enzyme Activity Types of Inhibition: ompetitive oncompetitive Uncompetitive Product Inhibition Suicide Inhibition ompetitive Inhibition Fig 815 1 ompetitive Inhibition MPETITIVE c structrually

More information

Enzymes. Enzymes : are protein catalysts that increase the rate of reactions without being changed in the overall process.

Enzymes. Enzymes : are protein catalysts that increase the rate of reactions without being changed in the overall process. Enzymes Enzymes Enzymes : are protein catalysts that increase the rate of reactions without being changed in the overall process. All reactions in the body are mediated by enzymes A + B E C A, B: substrate

More information

Human Biochemistry. Enzymes

Human Biochemistry. Enzymes Human Biochemistry Enzymes Characteristics of Enzymes Enzymes are proteins which catalyze biological chemical reactions In enzymatic reactions, the molecules at the beginning of the process are called

More information

Tala Saleh. Ahmad Attari. Mamoun Ahram

Tala Saleh. Ahmad Attari. Mamoun Ahram 23 Tala Saleh Ahmad Attari Minna Mushtaha Mamoun Ahram In the previous lecture, we discussed the mechanisms of regulating enzymes through inhibitors. Now, we will start this lecture by discussing regulation

More information

SYLLABUS MBMB/CHEM/BCHM 451b 2013 This class meets from pm every Tuesday and Thursday in Room 1059 (Auditorium) LS III.

SYLLABUS MBMB/CHEM/BCHM 451b 2013 This class meets from pm every Tuesday and Thursday in Room 1059 (Auditorium) LS III. 1 SYLLABUS MBMB/CHEM/BCHM 451b 2013 This class meets from 12.35-1.50 pm every Tuesday and Thursday in Room 1059 (Auditorium) LS III. FACULTY P. M. D. Hardwicke, Room 210W, Neckers "C" Wing, Tel. 618-453-6469;

More information

Biochemistry. Enzymes are used all over your body! 3.1) Enzymes-I

Biochemistry. Enzymes are used all over your body! 3.1) Enzymes-I Biochemistry 3.1) Enzymes-I Introduction to enzyme structure and function, and factors involving their actions and pathways Prof. Dr. Klaus Heese Enzymes are used all over your body! 1 What is an enzyme?

More information

Enzymes. Enzyme Structure. How do enzymes work?

Enzymes. Enzyme Structure. How do enzymes work? Page 1 of 6 Enzymes Enzymes are biological catalysts. There are about 40,000 different enzymes in human cells, each controlling a different chemical reaction. They increase the rate of reactions by a factor

More information

Chapter 23 Enzymes 1

Chapter 23 Enzymes 1 Chapter 23 Enzymes 1 Enzymes Ribbon diagram of cytochrome c oxidase, the enzyme that directly uses oxygen during respiration. 2 Enzyme Catalysis Enzyme: A biological catalyst. With the exception of some

More information

Section 5. Enzymes, Equilibrium, Energy and the Sulfonamides

Section 5. Enzymes, Equilibrium, Energy and the Sulfonamides Section 5 Enzymes, Equilibrium, Energy and the Sulfonamides Monday: ESKAPE handout describing them (Tiffany will provide). M-W Tie the metabolism back to the nutritional requirements and media choice,

More information

Biochemistry: A Short Course

Biochemistry: A Short Course Tymoczko Berg Stryer Biochemistry: A Short Course Second Edition CHAPTER 16 Glycolysis 2013 W. H. Freeman and Company Chapter 16 Outline Why is glucose such a prominent fuel in all life forms? 1. Glucose

More information

BIOCHEMISTRY AS A SUBJECT, ITS TASKS. ENZYMES: STRUCTURE, COMMON PROPERTIES, MECHANISM OF ACTION AND CLASSIFICATION

BIOCHEMISTRY AS A SUBJECT, ITS TASKS. ENZYMES: STRUCTURE, COMMON PROPERTIES, MECHANISM OF ACTION AND CLASSIFICATION THE MINISTRY OF PUBLIC HEALTH OF UKRAINE ZAPORIZHZHIA STATE MEDICAL UNIVERSITY BIOCHEMISTRY DEPARTMENT BIOCHEMISTRY AS A SUBJECT, ITS TASKS. ENZYMES: STRUCTURE, COMMON PROPERTIES, MECHANISM OF ACTION AND

More information

MCB 102 Discussion, Spring 2012

MCB 102 Discussion, Spring 2012 MB Discussion, Spring 2012 Practice Problems 1. Effect of enzymes on reactions Which of the listed effects would be brought about by any enzyme catalyzing the following simple reaction? k 1 S P where K

More information

Exam II - Review Questions

Exam II - Review Questions Name Exam II - Review Questions 1. In 1962 the Nobel Prize in chemistry was shared by two researchers, each who succeeded in determining the three-dimensional structure for a protein. Who were these two

More information

3) How many different amino acids are proteogenic in eukaryotic cells? A) 12 B) 20 C) 25 D) 30 E) None of the above

3) How many different amino acids are proteogenic in eukaryotic cells? A) 12 B) 20 C) 25 D) 30 E) None of the above Suggesting questions for Biochemistry 1 and 2 and clinical biochemistry 1) Henderson Hasselbalch Equation shows: A) The relationship between ph and the concentration of an acid and its conjugate base B)

More information

Biochemistry and Physiology ID #:

Biochemistry and Physiology ID #: BM 463 Your Name: Biochemistry and Physiology ID #: Final Exam, December 18, 2002 Prof. Jason Kahn You have 115 minutes for this exam. It is worth 250 points, so you are getting more points per minute

More information

Dr. Nafeth Abu-Tarbou sh Introduction to Biochemist ry 15/08/2014 Sec 1,2, 3 Sheet #21 P a g e 1 Written by Baha Aldeen Alshraideh

Dr. Nafeth Abu-Tarbou sh Introduction to Biochemist ry 15/08/2014 Sec 1,2, 3 Sheet #21 P a g e 1 Written by Baha Aldeen Alshraideh P a g e 1 Enzyme Kinetics Vmax: The Maximal rate - The rate of reaction when the enzyme is saturated with substrate. -You can calculate it by the following equation: Vmax = k2 [E] T [E]T :Total enzyme

More information

Recording and Analysing Concentration- Response Curves. should be slightly higher, or at least within the range of the dissociation constant K D

Recording and Analysing Concentration- Response Curves. should be slightly higher, or at least within the range of the dissociation constant K D 6.4 784 Recording and Analysing Concentration- Response Curves Stefan Dhein Introduction In many cases it is the goal of a study to evaluate the effect of a physiological mediator or a drug on a given

More information

Lecture Sixteen: METABOLIC ENERGY: [Based on GENERATION Chapter 15

Lecture Sixteen: METABOLIC ENERGY: [Based on GENERATION Chapter 15 Lecture Sixteen: METABOLIC ENERGY: [Based on GENERATION Chapter 15 AND STORAGE Berg, (Figures in red are for the 7th Edition) Tymoczko (Figures in Blue are for the 8th Edition) & Stryer] Two major questions

More information

Table of contents. Author's preface. Part 1: Structure and function of enzymes

Table of contents. Author's preface. Part 1: Structure and function of enzymes Author's preface xvii Part 1: Structure and function of enzymes 1 An introduction to enzymes 1.1 What are enzymes 3 1.2 A brief history of enzymes 3 1.3 The naming and classification of enzymes 4 1.3.1

More information

An Introduction to Enzyme Structure and Function

An Introduction to Enzyme Structure and Function An Introduction to Enzyme Structure and Function Enzymes Many reactions in living systems are similar to laboratory reactions. 1. Reactions in living systems often occur with the aid of enzymes. 2. Enzymes

More information

SC/BIOL Biochemistry

SC/BIOL Biochemistry SC/BIOL 2020.03 Biochemistry Midterm #1 Name: Student ID: Feb 7 th, 2013 Time: 1 hr and 15 min This test has multiple choice: 24 Marks. Fill in the blanks: 10 Marks Peptide structure: 6 Marks There are

More information

Chymotrypsin Lecture. Aims: to understand (1) the catalytic strategies used by enzymes and (2) the mechanism of chymotrypsin

Chymotrypsin Lecture. Aims: to understand (1) the catalytic strategies used by enzymes and (2) the mechanism of chymotrypsin Chymotrypsin Lecture Aims: to understand (1) the catalytic strategies used by enzymes and (2) the mechanism of chymotrypsin What s so great about enzymes? They accomplish large rate accelerations (10 10-10

More information

Chapter 3. Protein Structure and Function

Chapter 3. Protein Structure and Function Chapter 3 Protein Structure and Function Broad functional classes So Proteins have structure and function... Fine! -Why do we care to know more???? Understanding functional architechture gives us POWER

More information

Unit 7 Part I: Introductions to Biochemistry

Unit 7 Part I: Introductions to Biochemistry Unit 7 Part I: Introductions to Biochemistry Chemical Reactions, Enzymes and ATP 19 March 2014 Averett 1 Reaction Graphs Every chemical reaction involves bond breaking and bond forming. In order for bonds

More information

4-The effect of sucrose concentration on the rate of reaction catalyzed by β-fructofuranosidase enzyme.

4-The effect of sucrose concentration on the rate of reaction catalyzed by β-fructofuranosidase enzyme. Kinetics analysis of β-fructofuranosidase enzyme 4-The effect of sucrose concentration on the rate of reaction catalyzed by β-fructofuranosidase enzyme. One of the important parameter affecting the rate

More information

Exam 2 Review Problems DO NOT BRING TO EXAM

Exam 2 Review Problems DO NOT BRING TO EXAM This packet contains problems from old exams, your book, supplemental materials, and even stuff from a TA from many years past. Use this as practice only. This is not, by any means, a definitive indication

More information

GENERAL THOUGHTS ON REGULATION. Lecture 16: Enzymes & Kinetics IV Regulation and Allostery REGULATION IS KEY TO VIABILITY

GENERAL THOUGHTS ON REGULATION. Lecture 16: Enzymes & Kinetics IV Regulation and Allostery REGULATION IS KEY TO VIABILITY GENERAL THOUGHTS ON REGULATION Lecture 16: Enzymes & Kinetics IV Regulation and Allostery Margaret A. Daugherty Fall 2004 1). Enzymes slow down as product accumulates 2). Availability of substrates determines

More information

9 Metabolic trigger: control of methionine metabolism

9 Metabolic trigger: control of methionine metabolism 9 Metabolic trigger: control of methionine metabolism M.V. Martinov 1,V.M.Vitvitsky 1,E.V.Mosharov 2,R.Banerjee 2,F.I.Ataullakhanov 1 1 National Research Center for Hematology, Moscow, Russia 125167 2

More information

Margaret A. Daugherty Fall 2003

Margaret A. Daugherty Fall 2003 Enzymes & Kinetics IV Regulation and Allostery ENZYME-SUBSTRATE INTERACTIONS THE LOCK & KEY MODEL Margaret A. Daugherty Fall 2003 A perfect match between enzyme and substrate can explain enzyme specificity

More information

Biochemistry 463, Summer II University of Maryland, College Park Your SID #:

Biochemistry 463, Summer II University of Maryland, College Park Your SID #: Biochemistry 463, Summer II Your Name: University of Maryland, College Park Your SID #: Biochemistry and Physiology Profs. Doug Julin and Jason Kahn Exam II (100 points total) August 11, 2008 You have

More information

It is all in the enzymes

It is all in the enzymes Enzyme regulation 1 It is all in the enzymes Enzymes can enhance the rates of metabolic (or other) reactions by many orders of magnitude. A rate enhancement of 10 17 means that what would occur in 1 second

More information

Give a brief explanation for each of your answers. a. Which protein is silk? b. Which protein is wool? c. Which protein is collagen?

Give a brief explanation for each of your answers. a. Which protein is silk? b. Which protein is wool? c. Which protein is collagen? 1. Three proteins were extracted from strange organisms brought back to earth by space travelers to a distant planet. The three proteins were analyzed by x-ray crystallography and were found to be structurally

More information

INTERACTION DRUG BODY

INTERACTION DRUG BODY INTERACTION DRUG BODY What the drug does to the body What the body does to the drug Receptors - intracellular receptors - membrane receptors - Channel receptors - G protein-coupled receptors - Tyrosine-kinase

More information

Introduction to sodium technology Neutronic characteristics of sodium and complexities

Introduction to sodium technology Neutronic characteristics of sodium and complexities Introduction to sodium technology Neutronic characteristics of sodium and complexities K.S. Rajan Professor, School of Chemical & Biotechnology SASTRA University Joint Initiative of IITs and IISc Funded

More information

Chapter 11 Enzymes and Metabolic Pathways

Chapter 11 Enzymes and Metabolic Pathways Chapter 11 Enzymes and Metabolic Pathways 11.1. Metabolism Metabolism comes from the Greek metabole, meaning "change". It is an emergent property of life. It includes all the chemical processes needed

More information

Interfacial Reactions (Part III)

Interfacial Reactions (Part III) NPTEL Chemical Engineering Interfacial Engineering Module 7: Lecture 3 Interfacial Reactions (Part III) Dr. Pallab Ghosh Associate Professor Department of Chemical Engineering IIT Guwahati, Guwahati 781039

More information

Biochemistry: A Short Course

Biochemistry: A Short Course Tymoczko Berg Stryer Biochemistry: A Short Course Second Edition CHAPTER 31 Amino Acid Synthesis 2013 W. H. Freeman and Company Chapter 31 Outline Although the atmosphere is approximately 80% nitrogen,

More information

The elements of G protein-coupled receptor systems

The elements of G protein-coupled receptor systems The elements of G protein-coupled receptor systems Prostaglandines Sphingosine 1-phosphate a receptor that contains 7 membrane-spanning domains a coupled trimeric G protein which functions as a switch

More information

CHEM 527 SECOND EXAM FALL 2006

CHEM 527 SECOND EXAM FALL 2006 CEM 527 SECD EXAM FALL 2006 YUR AME: TES: 1. Where appropriate please show work if in doubt show it anyway. 2. Pace yourself you may want to do the easier questions first. 3. Please note the point value

More information

Statin inhibition of HMG-CoA reductase: a 3-dimensional view

Statin inhibition of HMG-CoA reductase: a 3-dimensional view Atherosclerosis Supplements 4 (2003) 3/8 www.elsevier.com/locate/atherosclerosis Statin inhibition of HMG-CoA reductase: a 3-dimensional view Eva Istvan * Department of Molecular Microbiology, Howard Hughes

More information

l Citric acid cycle 1_ Pyruvate formation

l Citric acid cycle 1_ Pyruvate formation Chemistry 255 (Fal115) Name S 1-...e.pha.., CCrrt Exam 2 (So pts) 1. (5 pts) List the order of the metabolic events from start (#1) to fmish (#5): A TP produced in Glycolysis l Citric acid cycle 1_ Pyruvate

More information

Exam 3 Fall 2015 Dr. Stone 8:00. V max = k cat x E t. ΔG = -RT lnk eq K m + [S]

Exam 3 Fall 2015 Dr. Stone 8:00. V max = k cat x E t. ΔG = -RT lnk eq K m + [S] Exam 3 Fall 2015 Dr. Stone 8:00 Name There are 106 possible points (6 bonus points) on this exam. There are 8 pages. v o = V max x [S] k cat = kt e - ΔG /RT V max = k cat x E t ΔG = -RT lnk eq K m + [S]

More information

2 nd. Associate Professor Sanja Dabelić (e-learning - is not included in standard hours, but is used in teaching)

2 nd. Associate Professor Sanja Dabelić (e-learning - is not included in standard hours, but is used in teaching) 1. COURSE DECRIPTION GENERAL INFORMATION 1.1. Course teacher Associate Professor Sanja Dabelić 1.6. Year of study 1.2. Name of the course Biological Chemistry 1.7. Credit value (ECTS) 6 1.3. Associate

More information

Examination II Key PHRM 836 Biochemistry for Pharmaceutical Sciences II October 31, 2013

Examination II Key PHRM 836 Biochemistry for Pharmaceutical Sciences II October 31, 2013 Examination II Key PHRM 836 Biochemistry for Pharmaceutical Sciences II October 31, 2013 Correct answers in multiple choice questions are indicated in RED and underlined. Correct answers to essay questions

More information

6.5 Enzymes. Enzyme Active Site and Substrate Specificity

6.5 Enzymes. Enzyme Active Site and Substrate Specificity 180 Chapter 6 Metabolism 6.5 Enzymes By the end of this section, you will be able to: Describe the role of enzymes in metabolic pathways Explain how enzymes function as molecular catalysts Discuss enzyme

More information

Fall 2005: CH395G - Exam 2 - Multiple Choice (2 pts each)

Fall 2005: CH395G - Exam 2 - Multiple Choice (2 pts each) Fall 2005: CH395G - Exam 2 - Multiple Choice (2 pts each) These constants may be helpful in some of your calculations: Avogadro s number = 6.02 x 10 23 molecules/mole; Gas constant (R) = 8.3145 x 10-3

More information

2018 Biochemistry 110 California Institute of Technology Lecture 11: Enzyme Regulatory Strategies

2018 Biochemistry 110 California Institute of Technology Lecture 11: Enzyme Regulatory Strategies 2018 Biochemistry 110 California Institute of Technology Lecture 11: Enzyme Regulatory Strategies 1. Aspartate Transcarbamoylase (ATCase) 2. Zymogen and Digestive Enzyme Regulation 3. Blood Clotting and

More information

Biology 104: Human Biology Lab-Like Activity Four

Biology 104: Human Biology Lab-Like Activity Four 1 Biology 104: Human Biology Lab-Like Activity Four A scientific study: How to collect data, analysis, graph, and interpret the significance of the study This is to be handed in, in class, on the last

More information

2. Which of the following amino acids is most likely to be found on the outer surface of a properly folded protein?

2. Which of the following amino acids is most likely to be found on the outer surface of a properly folded protein? Name: WHITE Student Number: Answer the following questions on the computer scoring sheet. 1 mark each 1. Which of the following amino acids would have the highest relative mobility R f in normal thin layer

More information

Enzymes in organic solvents

Enzymes in organic solvents Enzymes in organic solvents Manickam Sugumaran Professor of Biology University of Massachusetts at Boston Boston, MA 02125 Enzymes in organic solvents Enzymes work very well in water because A) They were

More information

ANSC 689 PHYSIOLOGICAL CHEMISTRY OF LIVESTOCK SPECIDS. Enzyme Kinetics and Control Reactions

ANSC 689 PHYSIOLOGICAL CHEMISTRY OF LIVESTOCK SPECIDS. Enzyme Kinetics and Control Reactions Handout Enzyme Kinetics and Control Reactions ANSC 689 PHYSIOLOGICAL CHEMISTRY OF LIVESTOCK SPECIDS Enzyme Kinetics and Control Reactions I. Kinetics A. Reaction rates 1. First order (reaction rate is

More information

Lecture 19: Review of regulation

Lecture 19: Review of regulation Chem*3560 Lecture 19: Review of regulation What is meant by cooperative allosteric regulation? Positive cooperativity - characteristic is the sigmoidal binding/activity curve T-state has weaker affinity,

More information

االمتحان النهائي لعام 1122

االمتحان النهائي لعام 1122 االمتحان النهائي لعام 1122 Amino Acids : 1- which of the following amino acid is unlikely to be found in an alpha-helix due to its cyclic structure : -phenylalanine -tryptophan -proline -lysine 2- : assuming

More information

Bioanalytical chemistry. 2. Enzymes as analytical reagents

Bioanalytical chemistry. 2. Enzymes as analytical reagents 13 Bioanalytical chemistry 2. Enzymes as analytical reagents Suggested reading: Sections 3.1 to 3.5.1.3 of Mikkelsen and Cortón, Bioanalytical Chemistry rimary Source Material Chapter 8 of Biochemistry:

More information

GPCR. 2. Briefly describe the steps in PKA activation by a GPCR signal. You are encouraged to include a sketch.

GPCR. 2. Briefly describe the steps in PKA activation by a GPCR signal. You are encouraged to include a sketch. Biochemical Signaling Many of the most critical biochemical signaling pathways originate with an extracellular signal being recognized by a GPCR or a RTK. In this activity, we will explore these two signaling

More information

AP Biology Summer Assignment Chapter 3 Quiz

AP Biology Summer Assignment Chapter 3 Quiz AP Biology Summer Assignment Chapter 3 Quiz 2016-17 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. All of the following are found in a DNA nucleotide

More information

Review of Biochemistry

Review of Biochemistry Review of Biochemistry Chemical bond Functional Groups Amino Acid Protein Structure and Function Proteins are polymers of amino acids. Each amino acids in a protein contains a amino group, - NH 2,

More information

بسم هللا الرحمن الرحيم

بسم هللا الرحمن الرحيم بسم هللا الرحمن الرحيم Q1: the overall folding of a single protein subunit is called : -tertiary structure -primary structure -secondary structure -quaternary structure -all of the above Q2 : disulfide

More information

Biochemistry: A Short Course

Biochemistry: A Short Course Tymoczko Berg Stryer Biochemistry: A Short Course First Edition CHAPTER 19 Harvesting Electrons from the Cycle 2013 W. H. Freeman and Company Chapter 19 Outline The citric acid cycle oxidizes the acetyl

More information

Biochemistry 1 ( ) Credit hours 2 Level 2 nd year Pre-requisite Biology I ( Coordinator/ Lecturer

Biochemistry 1 ( ) Credit hours 2 Level 2 nd year Pre-requisite Biology I ( Coordinator/ Lecturer The University of Jordan Faculty: Pharmacy Department: Biopharmaceutics and Clinical Pharmacy Program: Pharmacy Academic Year/ Fall Semester: 2013/14 Biochemistry 1 (1203251) Credit hours 2 Level 2 nd

More information

1. Measurement of the rate constants for simple enzymatic reaction obeying Michaelis- Menten kinetics gave the following results: =3x10-5 = 30μM

1. Measurement of the rate constants for simple enzymatic reaction obeying Michaelis- Menten kinetics gave the following results: =3x10-5 = 30μM 1. Measurement of the rate constants for simple enzymatic reaction obeying Michaelis- Menten kinetics gave the following results: k 1 = 2 x 10 8 M -1 s -1, k 2 = 1 x 10 3 s -1, k 3 = 5 x 10 3 s -1 a) What

More information