Deep Compression and EIE: Efficient Inference Engine on Compressed Deep Neural Network

Size: px
Start display at page:

Download "Deep Compression and EIE: Efficient Inference Engine on Compressed Deep Neural Network"

Transcription

1 Deep Compression and EIE: Efficient Inference Engine on Deep Neural Network Song Han*, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark Horowitz, Bill Dally Stanford University

2 Our Prior Work: Deep Compression Memory reference is expensive. Small DNN models are critical. [1]. Han et al. NIPS 2015 [2]. Han et al. ICLR 2016, best paper award (2 bit uint) pruning synapses cluster : 2: pruning neurons : 0.00 pruning weight sharing 0: Network Original Size Size Compression Ratio Original Accuracy Accuracy AlexNet 240MB 6.9MB % 80.30% VGGNet 550MB 11.3MB % 89.09% GoogleNet 28MB 2.8MB 88.90% 88.92% SqueezeNet 4.8MB 0.47MB 80.32% 80.35%

3 EIE: First Accelerator for Sparse DNN Deep Compression solves the model size problem. But it creates another problem: irregular computation pattern. CPU/GPU are only good at dense linear algebra. So we create EIE that supports: static-sparse M, dynamic-sparse V, indirect indexing, weight sharing. Sparse Matrix 90% static sparsity in the weights, less computation, less memory footprint Sparse Vector 70% dynamic sparsity in the activation less computation Fully fits in SRAM 120x less energy than DRAM Weight Sharing 4bits weights 8x less memory footprint Savings are multiplicative: 8x120=14,400 theoretical energy improvement. Dally. NIPS tutorial 2015; Han et al. ISCA 2016

4 EIE: First Accelerator for Sparse DNN Technology 45 nm # PEs 64 on-chip SRAM Max Model Size Static Sparsity Dynamic Sparsity Quantization 8 MB 84 Million 4-bit DNN Model Input Image Encoded Weight Relative Index Sparse Format 4-bit Virtual weight 4-bit Relative Index Weight Look-up Index Accum 16-bit Real weight ALU 16-bit Mem Absolute Index Dally. NIPS tutorial 2015; Han et al. ISCA 2016 Prediction Result 4 ALU Width Area MxV Throughput Power 16-bit 40.8 mm^2 81,967 layers/s 586 mw 1. Post layout result 2. Throughput measured on AlexNet FC-7

5 FC Layers: Speedup / Energy Efficiency CPU Dense (Baseline) Speedup 1000x 56x 0.6x 24x x 1.0x mgpu Dense mgpu EIE 618x GPU 1018x 94x GPU Dense 507x 248x 100x CPU 1.0x 34x 16x 0. 48x 2 60x x x 0. Alex-6 Figure 6. Alex-7 Alex-8 VGG-7 VGG-8 NT-We NT-Wd NT-LSTM Geo Mean Speedups of GPU, mobile GPU and EIE compared with CPU running uncompressed DNN model. There is no batching in all cases. CPU Dense (Baseline) Energy Efficiency VGG x CPU GPU Dense 119,797x 61,53 34,52 GPU mgpu Dense mgpu EIE 76,784x 14,826x 11,828x 10000x 10,904x 9,48 24,207x 8, x 100x Alex-6 Figure 7. 37x 1 26x 37x 7x 78x Alex-7 7x 18x 7x Alex x 17x 6 1 VGG-6 VGG-7 8x 2 VGG-8 3 6x 6x 6x 6x 8x NT-We 2 7x NT-Wd 1 20x 4x 7x NT-LSTM 2 6x 7x 36x Geo Mean Energy efficiency of GPU, mobile GPU and EIE compared with CPU running uncompressed DNN model. There is no batching in all cases. Compared to CPU and GPU: Table III corner. We placed and routed the PE using the Synopsys IC B ENCHMARK FROM STATE - OF - THE - ART DNN MODELS 18We and compiler (ICC). used1 Cactifaster [25] to get SRAM area and Layer Size Weight% Act% FLOP% Description energy numbers. We annotated the toggle rate from the RTL 9216, 24,000x and 3,400x more energy efficient Alex-6 9% 35.1% 3% 4096 simulation to the gate-level netlist, which was dumped to 4096, AlexNet [1] for switching activity interchange format (SAIF), and estimated Alex-7 9% 35.3% 3% 4096 large scale image the power using Prime-Time PX. 4096, classification Alex-8 25% 37.5% 10% 1000 Comparison Baseline. We compare EIE with three dif25088,

6 Beyond EIE: a Multi-Dimension Sparse Recipe for Deep Learning Faster Speed: EIE accelerator sparsity Smaller Size: Deep Compression, SqueezeNet++ Higher Accuracy: DSD regularization [1]. Han et al. Learning both Weights and Connections for Efficient Neural Networks, NIPS 2015 [2]. Han et al. Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding, Deep Learning Symposium 2015, ICLR 2016 (best paper award) [3]. Han et al. EIE: Efficient Inference Engine on Deep Neural Network, ISCA 2016 [4]. Han et al. DSD: Regularizing Deep Neural Networks with Dense-Sparse-Dense Training Flow, arxiv 2016 [5]. Iandola, Han,et al. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size, arxiv 16 [6]. Yao, Han, et.al, Hardware-friendly convolutional neural network with even-number filter size, ICLR workshop

Efficient Deep Model Selection

Efficient Deep Model Selection Efficient Deep Model Selection Jose Alvarez Researcher Data61, CSIRO, Australia GTC, May 9 th 2017 www.josemalvarez.net conv1 conv2 conv3 conv4 conv5 conv6 conv7 conv8 softmax prediction???????? Num Classes

More information

The Compact 3D Convolutional Neural Network for Medical Images

The Compact 3D Convolutional Neural Network for Medical Images The Compact 3D Convolutional Neural Network for Medical Images Byung Bok Ahn Stanford University ntrant@stanford.edu Abstract In recent years, medical image processing has developed in the neural network

More information

CSE Introduction to High-Perfomance Deep Learning ImageNet & VGG. Jihyung Kil

CSE Introduction to High-Perfomance Deep Learning ImageNet & VGG. Jihyung Kil CSE 5194.01 - Introduction to High-Perfomance Deep Learning ImageNet & VGG Jihyung Kil ImageNet Classification with Deep Convolutional Neural Networks Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton,

More information

arxiv: v1 [cs.ne] 10 Sep 2018

arxiv: v1 [cs.ne] 10 Sep 2018 Fast and Efficient Information Transmission with Burst Spikes in Deep Spiking Neural Networks Seongsik Park, Seijoon Kim, Hyeokjun Choe, Sungroh Yoon Department of Electrical and Computer Engineering Seoul

More information

arxiv: v1 [stat.ml] 23 Jan 2017

arxiv: v1 [stat.ml] 23 Jan 2017 Learning what to look in chest X-rays with a recurrent visual attention model arxiv:1701.06452v1 [stat.ml] 23 Jan 2017 Petros-Pavlos Ypsilantis Department of Biomedical Engineering King s College London

More information

Cnvlutin: Ineffectual-Neuron-Free Deep Neural Network Computing

Cnvlutin: Ineffectual-Neuron-Free Deep Neural Network Computing Cnvlutin: Ineffectual--Free Deep Neural Network Computing Jorge Albericio 1 Patrick Judd 1 Tayler Hetherington 2 Tor Aamodt 2 Natalie Enright Jerger 1 Andreas Moshovos 1 1 University of Toronto 2 University

More information

Convolutional and LSTM Neural Networks

Convolutional and LSTM Neural Networks Convolutional and LSTM Neural Networks Vanessa Jurtz January 11, 2017 Contents Neural networks and GPUs Lasagne Peptide binding to MHC class II molecules Convolutional Neural Networks (CNN) Recurrent and

More information

Improving 3D Ultrasound Scan Adequacy Classification Using a Three-Slice Convolutional Neural Network Architecture

Improving 3D Ultrasound Scan Adequacy Classification Using a Three-Slice Convolutional Neural Network Architecture EPiC Series in Health Sciences Volume 2, 2018, Pages 152 156 CAOS 2018. The 18th Annual Meeting of the International Society for Computer Assisted Orthopaedic Surgery Health Sciences Improving 3D Ultrasound

More information

Shu Kong. Department of Computer Science, UC Irvine

Shu Kong. Department of Computer Science, UC Irvine Ubiquitous Fine-Grained Computer Vision Shu Kong Department of Computer Science, UC Irvine Outline 1. Problem definition 2. Instantiation 3. Challenge 4. Fine-grained classification with holistic representation

More information

Attentional Masking for Pre-trained Deep Networks

Attentional Masking for Pre-trained Deep Networks Attentional Masking for Pre-trained Deep Networks IROS 2017 Marcus Wallenberg and Per-Erik Forssén Computer Vision Laboratory Department of Electrical Engineering Linköping University 2014 2017 Per-Erik

More information

Dual Path Network and Its Applications

Dual Path Network and Its Applications Learning and Vision Group (NUS), ILSVRC 2017 - CLS-LOC & DET tasks Dual Path Network and Its Applications National University of Singapore: Yunpeng Chen, Jianan Li, Huaxin Xiao, Jianshu Li, Xuecheng Nie,

More information

Big Image-Omics Data Analytics for Clinical Outcome Prediction

Big Image-Omics Data Analytics for Clinical Outcome Prediction Big Image-Omics Data Analytics for Clinical Outcome Prediction Junzhou Huang, Ph.D. Associate Professor Dept. Computer Science & Engineering University of Texas at Arlington Dept. CSE, UT Arlington Scalable

More information

arxiv: v2 [cs.cv] 31 Oct 2017

arxiv: v2 [cs.cv] 31 Oct 2017 Published as a conference paper at CVPR Workshop on Biometrics (2017) Deep LDA-Pruned Nets for Efficient Facial Gender Classification Qing Tian, Tal Arbel and James J. Clark Centre for Intelligent Machines

More information

Shu Kong. Department of Computer Science, UC Irvine

Shu Kong. Department of Computer Science, UC Irvine Ubiquitous Fine-Grained Computer Vision Shu Kong Department of Computer Science, UC Irvine Outline 1. Problem definition 2. Instantiation 3. Challenge and philosophy 4. Fine-grained classification with

More information

A Deep Learning Approach to Identify Diabetes

A Deep Learning Approach to Identify Diabetes , pp.44-49 http://dx.doi.org/10.14257/astl.2017.145.09 A Deep Learning Approach to Identify Diabetes Sushant Ramesh, Ronnie D. Caytiles* and N.Ch.S.N Iyengar** School of Computer Science and Engineering

More information

Automated diagnosis of pneumothorax using an ensemble of convolutional neural networks with multi-sized chest radiography images

Automated diagnosis of pneumothorax using an ensemble of convolutional neural networks with multi-sized chest radiography images Automated diagnosis of pneumothorax using an ensemble of convolutional neural networks with multi-sized chest radiography images Tae Joon Jun, Dohyeun Kim, and Daeyoung Kim School of Computing, KAIST,

More information

DIGITIZING HUMAN BRAIN: BLUE BRAIN PROJECT

DIGITIZING HUMAN BRAIN: BLUE BRAIN PROJECT DIGITIZING HUMAN BRAIN: BLUE BRAIN PROJECT Diwijesh 1, Ms. Pooja Khanna 2 1 M.tech CSE, Amity University 2 Associate Professor, ASET ABSTRACT Human brain is most complex and unique creation of nature which

More information

Deep Learning Models for Time Series Data Analysis with Applications to Health Care

Deep Learning Models for Time Series Data Analysis with Applications to Health Care Deep Learning Models for Time Series Data Analysis with Applications to Health Care Yan Liu Computer Science Department University of Southern California Email: yanliu@usc.edu Yan Liu (USC) Deep Health

More information

Flexible, High Performance Convolutional Neural Networks for Image Classification

Flexible, High Performance Convolutional Neural Networks for Image Classification Flexible, High Performance Convolutional Neural Networks for Image Classification Dan C. Cireşan, Ueli Meier, Jonathan Masci, Luca M. Gambardella, Jürgen Schmidhuber IDSIA, USI and SUPSI Manno-Lugano,

More information

Patch-based Head and Neck Cancer Subtype Classification

Patch-based Head and Neck Cancer Subtype Classification Patch-based Head and Neck Cancer Subtype Classification Wanyi Qian, Guoli Yin, Frances Liu, Advisor: Olivier Gevaert, Mu Zhou, Kevin Brennan Stanford University wqian2@stanford.edu, guoliy@stanford.edu,

More information

Convolutional and LSTM Neural Networks

Convolutional and LSTM Neural Networks Convolutional and LSTM Neural Networks Vanessa Jurtz January 12, 2016 Contents Neural networks and GPUs Lasagne Peptide binding to MHC class II molecules Convolutional Neural Networks (CNN) Recurrent and

More information

Comparison of Two Approaches for Direct Food Calorie Estimation

Comparison of Two Approaches for Direct Food Calorie Estimation Comparison of Two Approaches for Direct Food Calorie Estimation Takumi Ege and Keiji Yanai Department of Informatics, The University of Electro-Communications, Tokyo 1-5-1 Chofugaoka, Chofu-shi, Tokyo

More information

Mike Davies Director, Neuromorphic Computing Lab Intel Labs

Mike Davies Director, Neuromorphic Computing Lab Intel Labs Mike Davies Director, Neuromorphic Computing Lab Intel Labs Loihi at a Glance Key Properties Integrated Memory + Compute Neuromorphic Architecture 128 neuromorphic cores supporting up to 128k neurons and

More information

Simultaneous Estimation of Food Categories and Calories with Multi-task CNN

Simultaneous Estimation of Food Categories and Calories with Multi-task CNN Simultaneous Estimation of Food Categories and Calories with Multi-task CNN Takumi Ege and Keiji Yanai The University of Electro-Communications, Tokyo 1 Introduction (1) Spread of meal management applications.

More information

Deep Neural Networks Rival the Representation of Primate IT Cortex for Core Visual Object Recognition

Deep Neural Networks Rival the Representation of Primate IT Cortex for Core Visual Object Recognition Deep Neural Networks Rival the Representation of Primate IT Cortex for Core Visual Object Recognition Charles F. Cadieu, Ha Hong, Daniel L. K. Yamins, Nicolas Pinto, Diego Ardila, Ethan A. Solomon, Najib

More information

A HMM-based Pre-training Approach for Sequential Data

A HMM-based Pre-training Approach for Sequential Data A HMM-based Pre-training Approach for Sequential Data Luca Pasa 1, Alberto Testolin 2, Alessandro Sperduti 1 1- Department of Mathematics 2- Department of Developmental Psychology and Socialisation University

More information

Deep Learning-based Detection of Periodic Abnormal Waves in ECG Data

Deep Learning-based Detection of Periodic Abnormal Waves in ECG Data , March 1-16, 2018, Hong Kong Deep Learning-based Detection of Periodic Abnormal Waves in ECG Data Kaiji Sugimoto, Saerom Lee, and Yoshifumi Okada Abstract Automatic detection of abnormal electrocardiogram

More information

Algorithms in Nature. Pruning in neural networks

Algorithms in Nature. Pruning in neural networks Algorithms in Nature Pruning in neural networks Neural network development 1. Efficient signal propagation [e.g. information processing & integration] 2. Robust to noise and failures [e.g. cell or synapse

More information

Image Classification with TensorFlow: Radiomics 1p/19q Chromosome Status Classification Using Deep Learning

Image Classification with TensorFlow: Radiomics 1p/19q Chromosome Status Classification Using Deep Learning Image Classification with TensorFlow: Radiomics 1p/19q Chromosome Status Classification Using Deep Learning Charles Killam, LP.D. Certified Instructor, NVIDIA Deep Learning Institute NVIDIA Corporation

More information

Interpretable & Transparent Deep Learning

Interpretable & Transparent Deep Learning Fraunhofer Image Processing Heinrich Hertz Institute Interpretable & Transparent Deep Learning Fraunhofer HHI, Machine Learning Group Wojciech Samek Northern Lights Deep Learning Workshop (NLDL 19) Tromsø,

More information

Factoid Question Answering

Factoid Question Answering Factoid Question Answering CS 898 Project June 12, 2017 Salman Mohammed David R. Cheriton School of Computer Science University of Waterloo Motivation Source: https://www.apple.com/newsroom/2017/01/hey-siri-whos-going-to-win-the-super-bowl/

More information

Network Dissection: Quantifying Interpretability of Deep Visual Representation

Network Dissection: Quantifying Interpretability of Deep Visual Representation Name: Pingchuan Ma Student number: 3526400 Date: August 19, 2018 Seminar: Explainable Machine Learning Lecturer: PD Dr. Ullrich Köthe SS 2018 Quantifying Interpretability of Deep Visual Representation

More information

A BIST Scheme for Testing and Repair of Multi-Mode Power Switches

A BIST Scheme for Testing and Repair of Multi-Mode Power Switches A BIST Scheme for Testing and Repair of Multi-Mode Power Switches Zhaobo Zhang Dept. Electrical & Computer Eng. Duke University, USA Email: zz18@duke.edu Xrysovalantis Kavousianos, Yiorgos Tsiatouhas Dept.

More information

Object Detectors Emerge in Deep Scene CNNs

Object Detectors Emerge in Deep Scene CNNs Object Detectors Emerge in Deep Scene CNNs Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, Antonio Torralba Presented By: Collin McCarthy Goal: Understand how objects are represented in CNNs Are

More information

Image Captioning using Reinforcement Learning. Presentation by: Samarth Gupta

Image Captioning using Reinforcement Learning. Presentation by: Samarth Gupta Image Captioning using Reinforcement Learning Presentation by: Samarth Gupta 1 Introduction Summary Supervised Models Image captioning as RL problem Actor Critic Architecture Policy Gradient architecture

More information

arxiv: v2 [cs.cv] 19 Dec 2017

arxiv: v2 [cs.cv] 19 Dec 2017 An Ensemble of Deep Convolutional Neural Networks for Alzheimer s Disease Detection and Classification arxiv:1712.01675v2 [cs.cv] 19 Dec 2017 Jyoti Islam Department of Computer Science Georgia State University

More information

The Impact of Visual Saliency Prediction in Image Classification

The Impact of Visual Saliency Prediction in Image Classification Dublin City University Insight Centre for Data Analytics Universitat Politecnica de Catalunya Escola Tècnica Superior d Enginyeria de Telecomunicacions de Barcelona Eric Arazo Sánchez The Impact of Visual

More information

Recognition of English Characters Using Spiking Neural Networks

Recognition of English Characters Using Spiking Neural Networks Recognition of English Characters Using Spiking Neural Networks Amjad J. Humaidi #1, Thaer M. Kadhim *2 Control and System Engineering, University of Technology, Iraq, Baghdad 1 601116@uotechnology.edu.iq

More information

Impact of Local Interconnects on Timing and Power in a High Performance Microprocessor

Impact of Local Interconnects on Timing and Power in a High Performance Microprocessor Impact of Local Interconnects on Timing and Power in a High Performance Microprocessor Rupesh S. Shelar Low Power IA Group Intel Corporation, Austin, TX December 13 th 2011 UT ICS/IEEE Seminar, UT Austin

More information

AUTOMATIONWORX. User Manual. UM EN IBS SRE 1A Order No.: INTERBUS Register Expansion Chip IBS SRE 1A

AUTOMATIONWORX. User Manual. UM EN IBS SRE 1A Order No.: INTERBUS Register Expansion Chip IBS SRE 1A AUTOMATIONWORX User Manual UM EN IBS SRE 1A Order No.: 2888741 INTERBUS Register Expansion Chip IBS SRE 1A AUTOMATIONWORX User Manual INTERBUS Register Expansion Chip IBS SRE 1A 06/2006 Designation: Revision:

More information

Course Introduction. Neural Information Processing: Introduction. Notes. Administration

Course Introduction. Neural Information Processing: Introduction. Notes. Administration 3 / 17 4 / 17 Course Introduction Neural Information Processing: Introduction Matthias Hennig and Mark van Rossum School of Informatics, University of Edinburgh Welcome and administration Course outline

More information

Image-Based Estimation of Real Food Size for Accurate Food Calorie Estimation

Image-Based Estimation of Real Food Size for Accurate Food Calorie Estimation Image-Based Estimation of Real Food Size for Accurate Food Calorie Estimation Takumi Ege, Yoshikazu Ando, Ryosuke Tanno, Wataru Shimoda and Keiji Yanai Department of Informatics, The University of Electro-Communications,

More information

Selecting Patches, Matching Species:

Selecting Patches, Matching Species: Selecting Patches, Matching Species: Shu Kong CS, ICS, UCI 2016-4-6 Selecting Patches, Matching Species: Fossil Pollen Identification... Shu Kong CS, ICS, UCI 2016-4-6 Selecting Patches, Matching Species:

More information

Elad Hoffer*, Itay Hubara*, Daniel Soudry

Elad Hoffer*, Itay Hubara*, Daniel Soudry Train longer, generalize better: closing the generalization gap in large batch training of neural networks Elad Hoffer*, Itay Hubara*, Daniel Soudry *Equal contribution Better models - parallelization

More information

Convolutional Spike Timing Dependent Plasticity based Feature Learning in Spiking Neural Networks

Convolutional Spike Timing Dependent Plasticity based Feature Learning in Spiking Neural Networks Convolutional Spike Timing Dependent Plasticity based Feature Learning in Spiking Neural Networks Priyadarshini Panda, Gopalakrishnan Srinivasan and Kaushik Roy School of Electrical and Computer Engineering,

More information

DATE 2006 Session 5B: Timing and Noise Analysis

DATE 2006 Session 5B: Timing and Noise Analysis DATE 2006 Session 5B: Timing and Noise Analysis Bus Stuttering : An Encoding Technique To Reduce Inductive Noise In Off-Chip Data Transmission Authors: Brock J. LaMeres, Agilent Technologies Sunil P. Khatri,

More information

arxiv: v1 [cs.cv] 24 Jul 2018

arxiv: v1 [cs.cv] 24 Jul 2018 Multi-Class Lesion Diagnosis with Pixel-wise Classification Network Manu Goyal 1, Jiahua Ng 2, and Moi Hoon Yap 1 1 Visual Computing Lab, Manchester Metropolitan University, M1 5GD, UK 2 University of

More information

High-Resolution Breast Cancer Screening with Multi-View Deep Convolutional Neural Networks

High-Resolution Breast Cancer Screening with Multi-View Deep Convolutional Neural Networks High-Resolution Breast Cancer Screening with Multi-View Deep Convolutional Neural Networks Krzysztof J. Geras Joint work with Kyunghyun Cho, Linda Moy, Gene Kim, Stacey Wolfson and Artie Shen. GTC 2017

More information

On Training of Deep Neural Network. Lornechen

On Training of Deep Neural Network. Lornechen On Training of Deep Neural Network Lornechen 2016.04.20 1 Outline Introduction Layer-wise Pre-training & Fine-tuning Activation Function Initialization Method Advanced Layers and Nets 2 Neural Network

More information

Hierarchical Convolutional Features for Visual Tracking

Hierarchical Convolutional Features for Visual Tracking Hierarchical Convolutional Features for Visual Tracking Chao Ma Jia-Bin Huang Xiaokang Yang Ming-Husan Yang SJTU UIUC SJTU UC Merced ICCV 2015 Background Given the initial state (position and scale), estimate

More information

ECG Beat Recognition using Principal Components Analysis and Artificial Neural Network

ECG Beat Recognition using Principal Components Analysis and Artificial Neural Network International Journal of Electronics Engineering, 3 (1), 2011, pp. 55 58 ECG Beat Recognition using Principal Components Analysis and Artificial Neural Network Amitabh Sharma 1, and Tanushree Sharma 2

More information

Convolutional Neural Networks (CNN)

Convolutional Neural Networks (CNN) Convolutional Neural Networks (CNN) Algorithm and Some Applications in Computer Vision Luo Hengliang Institute of Automation June 10, 2014 Luo Hengliang (Institute of Automation) Convolutional Neural Networks

More information

Differentiating Tumor and Edema in Brain Magnetic Resonance Images Using a Convolutional Neural Network

Differentiating Tumor and Edema in Brain Magnetic Resonance Images Using a Convolutional Neural Network Original Article Differentiating Tumor and Edema in Brain Magnetic Resonance Images Using a Convolutional Neural Network Aida Allahverdi 1, Siavash Akbarzadeh 1, Alireza Khorrami Moghaddam 2, Armin Allahverdy

More information

Sparse Coding in Sparse Winner Networks

Sparse Coding in Sparse Winner Networks Sparse Coding in Sparse Winner Networks Janusz A. Starzyk 1, Yinyin Liu 1, David Vogel 2 1 School of Electrical Engineering & Computer Science Ohio University, Athens, OH 45701 {starzyk, yliu}@bobcat.ent.ohiou.edu

More information

arxiv: v2 [cs.cv] 22 Mar 2018

arxiv: v2 [cs.cv] 22 Mar 2018 Deep saliency: What is learnt by a deep network about saliency? Sen He 1 Nicolas Pugeault 1 arxiv:1801.04261v2 [cs.cv] 22 Mar 2018 Abstract Deep convolutional neural networks have achieved impressive performance

More information

Immuno-Oncology Therapies and Precision Medicine: Personal Tumor-Specific Neoantigen Prediction by Machine Learning

Immuno-Oncology Therapies and Precision Medicine: Personal Tumor-Specific Neoantigen Prediction by Machine Learning Immuno-Oncology Therapies and Precision Medicine: Personal Tumor-Specific Neoantigen Prediction by Machine Learning Yi-Hsiang Hsu, MD, SCD Sep 16, 2017 yihsianghsu@hsl.harvard.edu Director & Associate

More information

Training deep Autoencoders for collaborative filtering Oleksii Kuchaiev & Boris Ginsburg

Training deep Autoencoders for collaborative filtering Oleksii Kuchaiev & Boris Ginsburg Training deep Autoencoders for collaborative filtering Oleksii Kuchaiev & Boris Ginsburg Motivation Personalized recommendations 2 Key points (spoiler alert) 1. Deep autoencoder for collaborative filtering

More information

A CONVOLUTION NEURAL NETWORK ALGORITHM FOR BRAIN TUMOR IMAGE SEGMENTATION

A CONVOLUTION NEURAL NETWORK ALGORITHM FOR BRAIN TUMOR IMAGE SEGMENTATION A CONVOLUTION NEURAL NETWORK ALGORITHM FOR BRAIN TUMOR IMAGE SEGMENTATION 1 Priya K, 2 Dr.O. Saraniya 1 PG Scholar, 2 Assistant Professor Department Of ECE Government College of Technology, Coimbatore,

More information

Interpreting Deep Neural Networks and their Predictions

Interpreting Deep Neural Networks and their Predictions Fraunhofer Image Processing Heinrich Hertz Institute Interpreting Deep Neural Networks and their Predictions Wojciech Samek ML Group, Fraunhofer HHI (joint work with S. Lapuschkin, A. Binder, G. Montavon,

More information

University of Cambridge Engineering Part IB Information Engineering Elective

University of Cambridge Engineering Part IB Information Engineering Elective University of Cambridge Engineering Part IB Information Engineering Elective Paper 8: Image Searching and Modelling Using Machine Learning Handout 1: Introduction to Artificial Neural Networks Roberto

More information

CST STUDIO SUITE CST workshop series 2010 February 10 1

CST STUDIO SUITE CST workshop series 2010 February 10 1 CST STUDIO SUITE 2010 www.cst.com CST workshop series 2010 February 10 1 Frontend www.cst.com CST workshop series 2010 February 10 2 Import/Export Upgrade to ACIS 20 Update to CATIA 5 R19, PRO/E Wildfire

More information

Learning Convolutional Neural Networks for Graphs

Learning Convolutional Neural Networks for Graphs GA-65449 Learning Convolutional Neural Networks for Graphs Mathias Niepert Mohamed Ahmed Konstantin Kutzkov NEC Laboratories Europe Representation Learning for Graphs Telecom Safety Transportation Industry

More information

Interpreting fmri Decoding Weights: Additional Considerations

Interpreting fmri Decoding Weights: Additional Considerations Interpreting fmri Decoding Weights: Additional Considerations P.K. Douglas Modeling and Simulation Department,UCF Department of Psychiatry and Biobehavioral Medicine, UCLA Los Angeles, CA 90024 pdouglas@ist.ucf.edu

More information

Selective Memory Generalization by Spatial Patterning of Protein Synthesis

Selective Memory Generalization by Spatial Patterning of Protein Synthesis Selective Memory Generalization by Spatial Patterning of Protein Synthesis Cian O Donnell and Terrence J. Sejnowski Neuron 82, 398-412 (2014) Referred by Kristjan-Julius Laak Spatial Protein Synthesis

More information

Improving PME on distributed computer systems

Improving PME on distributed computer systems Improving PME on distributed computer systems Carsten Kutzner Max-Planck-Institut für Biophysikalische Chemie, Göttingen Theoretical and Computational Biophysics Department Outline how to get optimum performance

More information

BTF. Bi-directional Texture Function (BTF) BTF BTF BTF BTF

BTF. Bi-directional Texture Function (BTF) BTF BTF BTF BTF BTF ( ) ( ) ( ) ( ) Bi-directional Texture Function (BTF) BTF BTF BTF BTF 3 2 2 BTF Summary We developed a efficient BTF compression and reproducing technique based on a dichromatic reflection model. For

More information

A STATISTICAL PATTERN RECOGNITION PARADIGM FOR VIBRATION-BASED STRUCTURAL HEALTH MONITORING

A STATISTICAL PATTERN RECOGNITION PARADIGM FOR VIBRATION-BASED STRUCTURAL HEALTH MONITORING A STATISTICAL PATTERN RECOGNITION PARADIGM FOR VIBRATION-BASED STRUCTURAL HEALTH MONITORING HOON SOHN Postdoctoral Research Fellow ESA-EA, MS C96 Los Alamos National Laboratory Los Alamos, NM 87545 CHARLES

More information

A Computer Science Perspective on Models of the Mind

A Computer Science Perspective on Models of the Mind A Computer Science Perspective on Models of the Mind Teresa Nicole Brooks Abu Kamruzzaman Avery Leider and Charles C. Tappert Seidenberg School of Computer Science and Information Systems Pace University,

More information

Active Deformable Part Models Inference

Active Deformable Part Models Inference Active Deformable Part Models Inference Menglong Zhu Nikolay Atanasov George J. Pappas Kostas Daniilidis GRASP Laboratory, University of Pennsylvania 3330 Walnut Street, Philadelphia, PA 19104, USA Abstract.

More information

arxiv: v1 [cs.cv] 17 Aug 2017

arxiv: v1 [cs.cv] 17 Aug 2017 Deep Learning for Medical Image Analysis Mina Rezaei, Haojin Yang, Christoph Meinel Hasso Plattner Institute, Prof.Dr.Helmert-Strae 2-3, 14482 Potsdam, Germany {mina.rezaei,haojin.yang,christoph.meinel}@hpi.de

More information

Deep Networks and Beyond. Alan Yuille Bloomberg Distinguished Professor Depts. Cognitive Science and Computer Science Johns Hopkins University

Deep Networks and Beyond. Alan Yuille Bloomberg Distinguished Professor Depts. Cognitive Science and Computer Science Johns Hopkins University Deep Networks and Beyond Alan Yuille Bloomberg Distinguished Professor Depts. Cognitive Science and Computer Science Johns Hopkins University Artificial Intelligence versus Human Intelligence Understanding

More information

Deep Learning Human Mind for Automated Visual Classification

Deep Learning Human Mind for Automated Visual Classification Deep Learning Human Mind for Automated Visual Classification C. Spampinato, S. Palazzo, I. Kavasidis, D. Giordano Department of Electrical, Electronics and Computer Engineering - PeRCeiVe Lab Viale Andrea

More information

Deep Learning Human Mind for Automated Visual Classification

Deep Learning Human Mind for Automated Visual Classification Deep Learning Human Mind for Automated Visual Classification C. Spampinato, S. Palazzo, I. Kavasidis, D. Giordano Department of Electrical, Electronics and Computer Engineering - PeRCeiVe Lab Viale Andrea

More information

Multi-attention Guided Activation Propagation in CNNs

Multi-attention Guided Activation Propagation in CNNs Multi-attention Guided Activation Propagation in CNNs Xiangteng He and Yuxin Peng (B) Institute of Computer Science and Technology, Peking University, Beijing, China pengyuxin@pku.edu.cn Abstract. CNNs

More information

Classıfıcatıon of Dıabetes Dısease Usıng Backpropagatıon and Radıal Basıs Functıon Network

Classıfıcatıon of Dıabetes Dısease Usıng Backpropagatıon and Radıal Basıs Functıon Network UTM Computing Proceedings Innovations in Computing Technology and Applications Volume 2 Year: 2017 ISBN: 978-967-0194-95-0 1 Classıfıcatıon of Dıabetes Dısease Usıng Backpropagatıon and Radıal Basıs Functıon

More information

Rolls,E.T. (2016) Cerebral Cortex: Principles of Operation. Oxford University Press.

Rolls,E.T. (2016) Cerebral Cortex: Principles of Operation. Oxford University Press. Digital Signal Processing and the Brain Is the brain a digital signal processor? Digital vs continuous signals Digital signals involve streams of binary encoded numbers The brain uses digital, all or none,

More information

COMP9444 Neural Networks and Deep Learning 5. Convolutional Networks

COMP9444 Neural Networks and Deep Learning 5. Convolutional Networks COMP9444 Neural Networks and Deep Learning 5. Convolutional Networks Textbook, Sections 6.2.2, 6.3, 7.9, 7.11-7.13, 9.1-9.5 COMP9444 17s2 Convolutional Networks 1 Outline Geometry of Hidden Unit Activations

More information

CS231n Project: Prediction of Head and Neck Cancer Submolecular Types from Patholoy Images

CS231n Project: Prediction of Head and Neck Cancer Submolecular Types from Patholoy Images CSn Project: Prediction of Head and Neck Cancer Submolecular Types from Patholoy Images Kuy Hun Koh Yoo Energy Resources Engineering Stanford University Stanford, CA 90 kohykh@stanford.edu Markus Zechner

More information

Towards The Deep Model: Understanding Visual Recognition Through Computational Models. Panqu Wang Dissertation Defense 03/23/2017

Towards The Deep Model: Understanding Visual Recognition Through Computational Models. Panqu Wang Dissertation Defense 03/23/2017 Towards The Deep Model: Understanding Visual Recognition Through Computational Models Panqu Wang Dissertation Defense 03/23/2017 Summary Human Visual Recognition (face, object, scene) Simulate Explain

More information

A convolutional neural network to classify American Sign Language fingerspelling from depth and colour images

A convolutional neural network to classify American Sign Language fingerspelling from depth and colour images A convolutional neural network to classify American Sign Language fingerspelling from depth and colour images Ameen, SA and Vadera, S http://dx.doi.org/10.1111/exsy.12197 Title Authors Type URL A convolutional

More information

Quick detection of QRS complexes and R-waves using a wavelet transform and K-means clustering

Quick detection of QRS complexes and R-waves using a wavelet transform and K-means clustering Bio-Medical Materials and Engineering 26 (2015) S1059 S1065 DOI 10.3233/BME-151402 IOS Press S1059 Quick detection of QRS complexes and R-waves using a wavelet transform and K-means clustering Yong Xia

More information

arxiv: v1 [cs.cv] 12 Dec 2016

arxiv: v1 [cs.cv] 12 Dec 2016 Text-guided Attention Model for Image Captioning Jonghwan Mun, Minsu Cho, Bohyung Han Department of Computer Science and Engineering, POSTECH, Korea {choco1916, mscho, bhhan}@postech.ac.kr arxiv:1612.03557v1

More information

3D Deep Learning for Multi-modal Imaging-Guided Survival Time Prediction of Brain Tumor Patients

3D Deep Learning for Multi-modal Imaging-Guided Survival Time Prediction of Brain Tumor Patients 3D Deep Learning for Multi-modal Imaging-Guided Survival Time Prediction of Brain Tumor Patients Dong Nie 1,2, Han Zhang 1, Ehsan Adeli 1, Luyan Liu 1, and Dinggang Shen 1(B) 1 Department of Radiology

More information

arxiv: v1 [cs.cv] 3 Sep 2018

arxiv: v1 [cs.cv] 3 Sep 2018 Learning Saliency Prediction From Sparse Fixation Pixel Map Shanghua Xiao Department of Computer Science, Sichuan University, Sichuan Province, China arxiv:1809.00644v1 [cs.cv] 3 Sep 2018 2015223040036@stu.scu.edu.cn

More information

CS-E Deep Learning Session 4: Convolutional Networks

CS-E Deep Learning Session 4: Convolutional Networks CS-E4050 - Deep Learning Session 4: Convolutional Networks Jyri Kivinen Aalto University 23 September 2015 Credits: Thanks to Tapani Raiko for slides material. CS-E4050 - Deep Learning Session 4: Convolutional

More information

BLADDERSCAN PRIME PLUS TM DEEP LEARNING

BLADDERSCAN PRIME PLUS TM DEEP LEARNING BLADDERSCAN PRIME PLUS TM DEEP LEARNING BladderScan Prime Plus from Verathon Takes Accuracy and Ease of Use to a New Level Powered by ImageSense TM deep learning technology, an advanced implementation

More information

B657: Final Project Report Holistically-Nested Edge Detection

B657: Final Project Report Holistically-Nested Edge Detection B657: Final roject Report Holistically-Nested Edge Detection Mingze Xu & Hanfei Mei May 4, 2016 Abstract Holistically-Nested Edge Detection (HED), which is a novel edge detection method based on fully

More information

Image-Based Food Calorie Estimation Using Knowledge on Food Categories, Ingredients and Cooking Directions

Image-Based Food Calorie Estimation Using Knowledge on Food Categories, Ingredients and Cooking Directions Image-Based Food Calorie Estimation Using Knowledge on Food Categories, Ingredients and Cooking Directions Takumi Ege and Keiji Yanai Department of Informatics, The University of Electro-Communications,

More information

Deep Learning Analytics for Predicting Prognosis of Acute Myeloid Leukemia with Cytogenetics, Age, and Mutations

Deep Learning Analytics for Predicting Prognosis of Acute Myeloid Leukemia with Cytogenetics, Age, and Mutations Deep Learning Analytics for Predicting Prognosis of Acute Myeloid Leukemia with Cytogenetics, Age, and Mutations Andy Nguyen, M.D., M.S. Medical Director, Hematopathology, Hematology and Coagulation Laboratory,

More information

Deep neural architectures for prediction in healthcare

Deep neural architectures for prediction in healthcare Complex Intell. Syst. (2018) 4:119 131 https://doi.org/10.1007/s40747-017-0064-6 ORIGINAL ARTICLE Deep neural architectures for prediction in healthcare Dimitrios Kollias 1 Athanasios Tagaris 1 Andreas

More information

Quantifying Radiographic Knee Osteoarthritis Severity using Deep Convolutional Neural Networks

Quantifying Radiographic Knee Osteoarthritis Severity using Deep Convolutional Neural Networks Quantifying Radiographic Knee Osteoarthritis Severity using Deep Convolutional Neural Networks Joseph Antony, Kevin McGuinness, Noel E O Connor, Kieran Moran Insight Centre for Data Analytics, Dublin City

More information

ECG Signal Classification with Deep Learning Techniques

ECG Signal Classification with Deep Learning Techniques ECG Signal Classification with Deep Learning Techniques Chien You Huang, B04901147 Ruey Lin Jahn, B02901043 Sung-wei Huang, B04901093 Department of Electrical Engineering, National Taiwan University, Taipei,

More information

A Structured Latent Model for Ovarian Carcinoma Subtyping from Histopathology Slides

A Structured Latent Model for Ovarian Carcinoma Subtyping from Histopathology Slides A Structured Latent Model for Ovarian Carcinoma Subtyping from Histopathology Slides Aïcha BenTaieb a, Hector Li-Chang b, David Huntsman b, Ghassan Hamarneh a a Department of Computing Science, Medical

More information

Development of an Epileptic Seizure Detection Application based on Parallel Computing

Development of an Epileptic Seizure Detection Application based on Parallel Computing Development of an Epileptic Seizure Detection Application based on Parallel Computing K. Sivasankari #1, Dr. K. Thanushkodi *2 #1 Department of ECE, Akshaya College of Engineering and Technology, Coimbatore

More information

Information-theoretic stimulus design for neurophysiology & psychophysics

Information-theoretic stimulus design for neurophysiology & psychophysics Information-theoretic stimulus design for neurophysiology & psychophysics Christopher DiMattina, PhD Assistant Professor of Psychology Florida Gulf Coast University 2 Optimal experimental design Part 1

More information

Highly Accurate Brain Stroke Diagnostic System and Generative Lesion Model. Junghwan Cho, Ph.D. CAIDE Systems, Inc. Deep Learning R&D Team

Highly Accurate Brain Stroke Diagnostic System and Generative Lesion Model. Junghwan Cho, Ph.D. CAIDE Systems, Inc. Deep Learning R&D Team Highly Accurate Brain Stroke Diagnostic System and Generative Lesion Model Junghwan Cho, Ph.D. CAIDE Systems, Inc. Deep Learning R&D Team Established in September, 2016 at 110 Canal st. Lowell, MA 01852,

More information

Using Deep Convolutional Networks for Gesture Recognition in American Sign Language

Using Deep Convolutional Networks for Gesture Recognition in American Sign Language Using Deep Convolutional Networks for Gesture Recognition in American Sign Language Abstract In the realm of multimodal communication, sign language is, and continues to be, one of the most understudied

More information

Deep Learning based FACS Action Unit Occurrence and Intensity Estimation

Deep Learning based FACS Action Unit Occurrence and Intensity Estimation Deep Learning based FACS Action Unit Occurrence and Intensity Estimation Amogh Gudi, H. Emrah Tasli, Tim M. den Uyl, Andreas Maroulis Vicarious Perception Technologies, Amsterdam, The Netherlands Abstract

More information

Medical Knowledge Attention Enhanced Neural Model. for Named Entity Recognition in Chinese EMR

Medical Knowledge Attention Enhanced Neural Model. for Named Entity Recognition in Chinese EMR Medical Knowledge Attention Enhanced Neural Model for Named Entity Recognition in Chinese EMR Zhichang Zhang, Yu Zhang, Tong Zhou College of Computer Science and Engineering, Northwest Normal University,

More information

Automatic Diagnosis of Ovarian Carcinomas via Sparse Multiresolution Tissue Representation

Automatic Diagnosis of Ovarian Carcinomas via Sparse Multiresolution Tissue Representation Automatic Diagnosis of Ovarian Carcinomas via Sparse Multiresolution Tissue Representation Aïcha BenTaieb, Hector Li-Chang, David Huntsman, Ghassan Hamarneh Medical Image Analysis Lab, Simon Fraser University,

More information