1.14. Passive Transport

Size: px
Start display at page:

Download "1.14. Passive Transport"

Transcription

1 Passive Transport 1.14 Simple Diffusion Cell s are selectively permeable only certain substances are able to pass through them. As mentioned in section 1.2, cell s are largely composed of a phospholipid bilayer and proteins. Many small, uncharged molecules, such as water, oxygen, and carbon dioxide, pass through the cell freely (Figure 3). These substances either go through the phospholipid bilayer directly or through channels formed by proteins in the. Since the cell has a hydrophobic middle section, small lipid molecules such as fatty acids are also able to pass through. water oxygen extracellular fluid glucose O cytoplasm nucleic acid carbon dioxide C C fatty acid fatty acid C fatty acid triglyceride selectively permeable allows only certain substances to pass through it Figure 3 Cell s are selectively permeable they let only certain substances through. NEL Cellular Biology 59

2 simple diffusion the movement of particles from an area of higher concentration to an area of lower concentration until particle concentration is equal throughout concentration gradient a difference in concentration between two areas Figure 4 (a) Simple diffusion of airfreshener molecules from an area of higher concentration (in the paste) to an area of lower concentration (in the air surrounding the paste). (b) Carbon dioxide molecules diffuse through the cell from an area of higher concentration in the extracellular fluid to an area of lower concentration in the cytoplasm. owever, ions, small charged molecules, and large molecules such as amino acids, carbohydrates, nucleic acids, and large lipids (triglycerides) cannot pass through easily (Figure 3, on the previous page). Substances that can pass through the do so by a process called simple diffusion. Simple diffusion is the movement of particles from an area where they are more highly concentrated to an area where they are less highly concentrated (Figure 4). A difference in concentration between two areas is called a concentration gradient, and diffusion always occurs down a concentration gradient (from high concentration to low concentration). (a) (b) selectively permeable dynamic equilibrium a state of balance where particles move in all directions at equal rates Diffusion is a natural process that occurs because particles are in constant random motion and have a tendency to spread throughout a given volume. Simple diffusion does not use any of a cell s energy, and ends when the concentration of particles becomes equal everywhere within the given volume. owever, this does not mean that the particles stop moving. In fact, particles continue moving randomly in all directions all the time. During diffusion, molecules move more in one direction than any other. When diffusion ends, we say that a state of dynamic equilibrium has been reached. Dynamic equilibrium is a state of balance, where particles move at equal rates in all directions. When diffusion occurs through a cell, dynamic equilibrium is reached when particles move through the in both directions at equal rates, and the concentration of particles remains the same on both sides of the (Figure 5). 60 Unit 1 NEL

3 Section 1.14 selectively permeable Figure 5 In dynamic equilibrium, particles move through a in both directions at equal rates. The concentration of particles remains constant on both sides of the. The rate (speed) of diffusion depends on temperature and the concentration of solute molecules in solution. Diffusion occurs faster at higher temperatures because molecules move faster. Faster-moving molecules spread out faster and reach dynamic equilibrium more quickly. Dynamic equilibrium will also be reached more quickly if there are a greater number of solute molecules in solution. Facilitated Diffusion Glucose, sodium ions, and chloride ions are three chemicals most cells need to survive. These substances must be able to get across the cell in an efficient manner. owever, large polar molecules such as glucose and large ions such as sodium and chloride cannot go through a by simple diffusion because they cannot easily pass through the hydrophobic middle section of the phospholipid bilayer. To compensate, s have protein molecules that help some substances through. In general, there are three types of proteins (Figure 6). Some proteins go part way through the phospholipid bilayer, some are attached to the outside surface, and others go all the way through. Those that span the bilayer are called trans proteins. Some trans proteins act as carrier proteins that assist certain substances through a. This method of transporting materials across a is called facilitated diffusion, or assisted diffusion. As its name implies, facilitated diffusion is a form of diffusion. This means that particles move down a concentration gradient until dynamic equilibrium is reached. The key difference between simple diffusion and facilitated diffusion is that, in facilitated diffusion, the diffusing particles are assisted through the by trans carrier proteins, whereas in simple diffusion they pass directly through the s phospholipid bilayer or through protein channels. Typically, a given carrier protein transports only one type of substance, or a small group of chemically related substances. An example of carrier protein facilitated diffusion is the movement of glucose into cells of the liver (Figure 7, on the next page). surface protein trans protein channel (simple diffusion) partially embedded protein cell surface trans carrier protein (facilitated diffusion) cytoplasm Figure 6 Membrane showing associated proteins trans protein a protein molecule in a that spans the thickness of the phospholipid bilayer carrier protein a trans protein that facilitates the diffusion of certain substances through a facilitated diffusion the diffusion of solutes through a assisted by proteins NEL Cellular Biology 61

4 extracellular fluid glucose cytoplasm carrier protein phospholipid bilayer Figure 7 Facilitated diffusion of glucose. The solute (glucose) attaches to a binding site on a carrier protein at one side of the. The attachment causes the carrier to undergo a series of structural changes that have the effect of carrying the solute to the other side of the. The carrier then releases the solute and, through another structural change, transforms itself to its original state, ready to accept another glucose molecule. osmosis the net movement of water across a selectively permeable from an area of high concentration to an area of low concentration Figure 8 Osmosis. Two containers of equal volume are separated by a selectively permeable that allows free passage of water but totally restricts the passage of large solute molecules such as proteins. Since side B has a lower solute concentration (higher concentration of water) than side A, a net amount of water will move (by osmosis) from side B into side A. Osmosis Water molecules move freely through cell s. Under normal conditions, large quantities of water molecules move into and out of a cell by simple diffusion. The cell remains the same size because equal amounts of water go into and out of the cell. There are, however, many cases in which a net amount of water flows into or out of a cell. This means that more water may enter the cell than leaves the cell, so that the cell gains water, or more water may leave the cell than enters it, so that the cell loses water. In such situations, water still moves through the cell by simple diffusion, but the process is important enough to warrant a special name osmosis. Osmosis is the net movement of water across a selectively permeable from the side where water is more concentrated to the side where it is less concentrated. Note that solutions have a high concentration of water when they have a low concentration of solute, and vice versa. Osmosis occurs because more water molecules strike the on the side with a higher concentration of water molecules (i.e., a lower solute concentration) than on the side with a lower concentration of water molecules (i.e., a higher solute concentration). More strikes result in more water molecules passing through the and a net diffusion of water from one side to the other. The key point to remember about osmosis is that water moves through a from the side with a lower solute concentration to the side with a higher solute concentration. Dynamic equilibrium is reached when sufficient water has moved to equalize the solute concentrations on both sides of the, and at that point, net movement of water (osmosis) ceases (Figure 8). Membrane is permeable to water but not to protein. water protein molecules side A side B selectively permeable side A side B osmosis equal concentrations of protein and water in side A and side B 62 Unit 1 NEL

5 Section 1.14 Osmosis occurs whenever there is a difference in solute concentration across a selectively permeable. A number of special terms are commonly used to describe differences in solute concentration (Figure 9). Isotonic solutions are solutions that have equal solute concentrations. When a selectively permeable separates isotonic solutions, osmosis does not occur. A hypertonic solution is one with a higher concentration of solutes than another solution. The solution with the lower concentration of solutes is called a hypotonic solution. isotonic solution a solution of equal solute concentrations hypertonic solution a solution that has a higher solute concentration than some other solution hypotonic solution a solution that has a lower solute concentration than some other solution NEL solution A solution B solution C We may now understand why it is important for patients to receive a solution of a particular concentration in an IV drip. Blood serum (the liquid part of blood) is normally isotonic with respect to red blood cell cytoplasm. Under normal conditions, osmosis does not occur into or out of red blood cells. The cells maintain their normal size and shape (Figure 10(a)). When a patient receives an IV drip, the IV solution mixes directly with blood serum. If the solution contains a lower solute concentration than blood serum (i.e., a hypotonic solution), it may dilute the blood serum until it is hypotonic to blood cell cytoplasm. If so, osmosis will occur into the red blood cells, causing the cells to swell, and maybe burst (Figure 10(b)). This condition is called hemolysis, and may be fatal because the blood cells will be unable to transport oxygen to body tissues efficiently. If a patient receives an IV solution that is hypertonic to blood serum, it may concentrate blood serum until it is hypertonic to blood cell cytoplasm. Osmosis will occur out of the blood cells. The cells will lose water and become small and scallop-shaped (Figure 10(c)). Scallop-shaped cells have a tendency to stick to one another and clog small veins and arteries, preventing oxygen from reaching body tissues. This condition, called crenation, may also be fatal. (a) isotonic (b) hypotonic (c) hypertonic Figure 9 Solutions A and B are isotonic; solution C is hypotonic to solutions A and B; and solutions A and B are hypertonic to solution C. hemolysis swelling and bursting of red blood cells placed in a hypotonic solution crenation clumping of cells (usually red blood cells) that have become scallop-shaped when placed in a hypertonic solution Figure 10 (a) Red blood cells in an isotonic solution. The cells are normal in shape and size. (b) Red blood cells in a hypotonic solution take on water by osmosis and burst. The empty cells that remain are called redblood-cell ghosts. (c) Red blood cells in a hypertonic solution. The cells lose water by osmosis and are scallop-shaped and smaller than normal. Cellular Biology 63

6 Any solution injected directly into veins and arteries must be isotonic with blood serum. Typical isotonic IV solutions include 5% glucose (also called 5% dextrose, or D5W) and 0.9% sodium chloride (also called isotonic saline). 64 Unit 1 NEL

Cells and Their Environment Chapter 8. Cell Membrane Section 1

Cells and Their Environment Chapter 8. Cell Membrane Section 1 Cells and Their Environment Chapter 8 Cell Membrane Section 1 Homeostasis Key Idea: One way that a cell maintains homeostasis is by controlling the movement of substances across the cell membrane. Homeostasis

More information

3.2.3 Transport across cell membranes

3.2.3 Transport across cell membranes alevelbiology.co.uk 3.2.3 Transport across cell membranes SPECIFICATION The basic structure of all cell membranes, including cell-surface membranes and the membranes around the cell organelles of eukaryotes,

More information

Cell Transport. Movement of molecules

Cell Transport. Movement of molecules Cell Transport Movement of molecules TEKS Students will investigate and explain cellular processes, including homeostasis and transport of molecules Homeostasis The maintaining of a stable body system

More information

Biology. Membranes.

Biology. Membranes. 1 Biology Membranes 2015 10 28 www.njctl.org 2 Vocabulary active transport carrier protein channel protein concentration gradient diffusion enzymatic activity facilitated diffusion fluid mosaic hypertonic

More information

Plasma Membrane Function

Plasma Membrane Function Plasma Membrane Function Cells have to maintain homeostasis, they do this by controlling what moves across their membranes Structure Double Layer of phospholipids Head (polar) hydrophiliclikes water -

More information

Cellular Transport Notes

Cellular Transport Notes Cellular Transport Notes About Cell Membranes All cells have a cell membrane Functions: a. Controls what enters and exits the cell to maintain an internal balance called homeostasis b. Provides protection

More information

Plasma Membrane Structure and Function

Plasma Membrane Structure and Function Plasma Membrane Structure and Function The plasma membrane separates the internal environment of the cell from its surroundings. The plasma membrane is a phospholipid bilayer with embedded proteins. The

More information

CH 7.2 & 7.4 Biology

CH 7.2 & 7.4 Biology CH 7.2 & 7.4 Biology LABEL THE MEMBRANE Phospholipids Cholesterol Peripheral proteins Integral proteins Cytoskeleton Cytoplasm Extracellular fluid Most of the membrane A phospholipid bi-layer makes up

More information

What do you remember about the cell membrane?

What do you remember about the cell membrane? Cell Membrane What do you remember about the cell membrane? Cell (Plasma) Membrane Separates the internal environment of the cell from the external environment All cells have a cell membrane Selectively

More information

CELL BOUNDARIES. Cells create boundaries through: Cell Membranes made of the phospholipid bilayer Cell Walls made of cellulose in plants

CELL BOUNDARIES. Cells create boundaries through: Cell Membranes made of the phospholipid bilayer Cell Walls made of cellulose in plants CELL BOUNDARIES CELL BOUNDARIES Cells create boundaries through: Cell Membranes made of the phospholipid bilayer Cell Walls made of cellulose in plants TYPES OF MEMBRANES Some substances = too large or

More information

Passive and Active transport across a cell membrane REVIEW MEMBRANE TRANSPORT

Passive and Active transport across a cell membrane REVIEW MEMBRANE TRANSPORT Passive and Active transport across a cell membrane REVIEW MEMBRANE TRANSPORT Cell (plasma) membrane Thin, flexible barrier Membranes also organize the interior of a cell. Cell organelles are defined by

More information

Chapter 7-3 Cell Boundaries

Chapter 7-3 Cell Boundaries Chapter 7-3 Cell Boundaries The Plasma Membrane: Cell Membrane Regulates what enters and leaves the cell. Provides protection and support. Highly selective barrier!!!! What the plasma membrane is made

More information

Equilibrium is a condition of balance. Changes in temperature, pressure or concentration can cause a shift in the equilibrium.

Equilibrium is a condition of balance. Changes in temperature, pressure or concentration can cause a shift in the equilibrium. Copy into Note Packet and Return to Teacher Cells and Their Environment Section 1: Passive Transport Objectives Relate concentration gradients, diffusion, and equilibrium. Predict the direction of water

More information

Slide 2 of 47. Copyright Pearson Prentice Hall. End Show

Slide 2 of 47. Copyright Pearson Prentice Hall. End Show 2 of 47 7-3 Cell Boundaries All cells are surrounded by a thin, flexible barrier known as the cell membrane. Many cells also produce a strong supporting layer around the membrane known as a cell wall.

More information

Cell Boundaries. Chapter 7.3 Strand: B2.5h

Cell Boundaries. Chapter 7.3 Strand: B2.5h Cell Boundaries Chapter 7.3 Strand: B2.5h Review: Cell Membrane What is the role of the cell membrane within a cell? The cell membrane regulates what enters and leaves the cell and also provides protection

More information

Transport. Slide 1 of 47. Copyright Pearson Prentice Hall

Transport. Slide 1 of 47. Copyright Pearson Prentice Hall & Transport 1 of 47 Learning Targets TN Standard CLE 3216.1.3 Explain how materials move into and out of cells. CLE 3216.1.5 Investigate how proteins regulate the internal environment of a cell through

More information

Section 4: Cellular Transport. Cellular transport moves substances within the cell and moves substances into and out of the cell.

Section 4: Cellular Transport. Cellular transport moves substances within the cell and moves substances into and out of the cell. Section 4: Cellular transport moves substances within the cell and moves substances into and out of the cell. Essential Questions What are the processes of diffusion, facilitated diffusion, and active

More information

Gateway to the Cell 11/1/2012. The cell membrane is flexible and allows a unicellular organism to move FLUID MOSAIC MODEL

Gateway to the Cell 11/1/2012. The cell membrane is flexible and allows a unicellular organism to move FLUID MOSAIC MODEL Gateway to the Cell The cell membrane is flexible and allows a unicellular organism to move Isolates the cell, yet allows communication with its surroundings fluid mosaics = proteins (and everything else)

More information

[S] [S] Hypertonic [H O] [H 2 O] g. Osmosis is the diffusion of water through membranes! 15. Osmosis. Concentrated sugar solution

[S] [S] Hypertonic [H O] [H 2 O] g. Osmosis is the diffusion of water through membranes! 15. Osmosis. Concentrated sugar solution Concentrated sugar solution Sugar molecules (Water molecules not shown) 100ml 100ml Hypertonic [S] g [H2 Hypotonic [H O] 2 O] [H 2 O] g Semipermeable Dilute sugar solution (100ml) Time 125ml Osmosis 75ml

More information

Passive Cellular Transport. Unit 2 Lesson 4

Passive Cellular Transport. Unit 2 Lesson 4 Unit 2 Lesson 4 Students will be able to: Define passive transport Enumerate the three types of passive transport Described each type of passive transport: osmosis, diffusion, and facilitated diffusion

More information

Ch7: Membrane Structure & Function

Ch7: Membrane Structure & Function Ch7: Membrane Structure & Function History 1915 RBC membranes studied found proteins and lipids 1935 membrane mostly phospholipids 2 layers 1950 electron microscopes supported bilayer idea (Sandwich model)

More information

Chapter 3: Exchanging Materials with the Environment. Cellular Transport Transport across the Membrane

Chapter 3: Exchanging Materials with the Environment. Cellular Transport Transport across the Membrane Chapter 3: Exchanging Materials with the Environment Cellular Transport Transport across the Membrane Transport? Cells need things water, oxygen, balance of ions, nutrients (amino acids, sugars..building

More information

Cell Membrane (Transport) Notes

Cell Membrane (Transport) Notes Cell Membrane (Transport) Notes Cell Membrane and Cell Wall: ALL cells have a cell membrane made of proteins and lipids protein channel Cell Membrane Layer 1 Layer 2 lipid bilayer protein pump SOME cells

More information

Membrane structure & function

Membrane structure & function Membrane structure & function Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The phospholipid bilayer describes a structure with. a. polar layers on the

More information

The Cell Membrane. Lecture 3a. Overview: Membranes. What is a membrane? Structure of the cell membrane. Fluid Mosaic Model. Membranes and Transport

The Cell Membrane. Lecture 3a. Overview: Membranes. What is a membrane? Structure of the cell membrane. Fluid Mosaic Model. Membranes and Transport Lecture 3a. The Cell Membrane Membranes and Transport Overview: Membranes Structure of cell membranes Functions of cell membranes How things get in and out of cells What is a membrane? Basically, a covering

More information

The Plasma Membrane - Gateway to the Cell

The Plasma Membrane - Gateway to the Cell The Plasma Membrane - Gateway to the Cell 1 Photograph of a Cell Membrane 2 Cell Membrane The cell membrane is flexible and allows a unicellular organism to move 3 Homeostasis Balanced internal condition

More information

Biology. Slide 1 / 74. Slide 2 / 74. Slide 3 / 74. Membranes. Vocabulary

Biology. Slide 1 / 74. Slide 2 / 74. Slide 3 / 74. Membranes. Vocabulary Slide 1 / 74 Slide 2 / 74 iology Membranes 2015-10-28 www.njctl.org Vocabulary Slide 3 / 74 active transport carrier protein channel protein concentration gradient diffusion enzymatic activity facilitated

More information

The Cell Membrane and Homeostasis What is the cell membrane? A quick review A. Cell Membrane and Cell Transport. Unit 2: Cells and Cell Transport

The Cell Membrane and Homeostasis What is the cell membrane? A quick review A. Cell Membrane and Cell Transport. Unit 2: Cells and Cell Transport Unit 2: Cells and Cell Transport Cell Membrane and Cell Transport Name: Directions: Go to https://shimkoscience.weebly.com/ and on the Biology page, find the document labelled Cell Membrane and Cell Transport

More information

9/20/2016 CHAPTER 7 LECTURE NOTES. Section Objectives. Explain how a cell s plasma membrane functions.

9/20/2016 CHAPTER 7 LECTURE NOTES. Section Objectives. Explain how a cell s plasma membrane functions. CHAPTER 7 LECTURE NOTES Kennedy biol. 1ab Section Objectives Explain how a cell s plasma membrane functions. Relate the function of the plasma membrane to the fluid mosaic model. All living cells must

More information

Constant Motion of Molecules. Kinetic Theory of Matter Molecules move randomly and bump into each other and other barriers

Constant Motion of Molecules. Kinetic Theory of Matter Molecules move randomly and bump into each other and other barriers CELL TRANSPORT Constant Motion of Molecules Kinetic Theory of Matter Molecules move randomly and bump into each other and other barriers Solution homogenous liquid throughout which two or more substances

More information

Cell Membrane-Structure and Function

Cell Membrane-Structure and Function Cell Membrane-Structure and Function BIO 250 Living things are composed of cells and cell products (extracellular) Cells are the basic unit of structure They are the basic unit of function They vary in

More information

Cell Membranes and Signaling

Cell Membranes and Signaling 5 Cell Membranes and Signaling Concept 5.1 Biological Membranes Have a Common Structure and Are Fluid A membrane s structure and functions are determined by its constituents: lipids, proteins, and carbohydrates.

More information

Movement Through the Cell Membrane

Movement Through the Cell Membrane Movement Through the Cell Membrane Cellular Movement All living organisms rely on diffusion Get oxygen for respiration Removing waste products Transpiration in plants Cellular Movement The cell membrane

More information

Plasma Membrane & Movement of Materials in Cells

Plasma Membrane & Movement of Materials in Cells Plasma Membrane & Movement of Materials in Cells Why do cells need to control what enters and exits? Plasma membrane boundary between the cell and its environment Homeostasis maintaining the cells environment

More information

Chapter 8 Cells and Their Environment

Chapter 8 Cells and Their Environment Chapter Outline Chapter 8 Cells and Their Environment Section 1: Cell Membrane KEY IDEAS > How does the cell membrane help a cell maintain homeostasis? > How does the cell membrane restrict the exchange

More information

Cellular Transport Notes

Cellular Transport Notes Cellular Transport Notes About Cell Membranes 1.All cells have a cell membrane a.controls what enters and exits the cell to maintain an internal balance called homeostasis b.provides protection and support

More information

Describe the Fluid Mosaic Model of membrane structure.

Describe the Fluid Mosaic Model of membrane structure. Membranes and Cell Transport All cells are surrounded by a plasma membrane. Eukaryotic cells also contain internal membranes and membranebound organelles. In this topic, we will examine the structure and

More information

The Cell Membrane. Also known as the Plasma Membrane

The Cell Membrane. Also known as the Plasma Membrane Student Objectives Know the different parts of the cell membrane Understand the role of the cell membrane in cellular transport Understand diffusion and osmosis Determine what will happen to plant and

More information

The Plasma Membrane - Gateway to the Cell

The Plasma Membrane - Gateway to the Cell The Plasma Membrane - Gateway to the Cell 1 Photograph of a Cell Membrane 2 Cell Membrane The cell membrane is flexible and allows a unicellular organism to move 3 Homeostasis Balanced internal condition

More information

Chapter 4 Skeleton Notes: Membrane Structure & Function

Chapter 4 Skeleton Notes: Membrane Structure & Function Chapter 4 Skeleton Notes: Membrane Structure & Function Overview/Objectives 4.1 Plasma Membrane Structure & Function o Structure and Function of the PM o Major functions of proteins 4.2- Permeability of

More information

Outline. Membrane Structure and Function. Membrane Models Fluid-Mosaic. Chapter 5

Outline. Membrane Structure and Function. Membrane Models Fluid-Mosaic. Chapter 5 Membrane Structure and Function Chapter 5 Membrane Models Fluid-Mosaic Outline Plasma Membrane Structure and Function Protein Functions Plasma Membrane Permeability! Diffusion! Osmosis! Transport Via Carrier

More information

1. I can explain the structure of ATP and how it is used to store energy.

1. I can explain the structure of ATP and how it is used to store energy. 1. I can explain the structure of ATP and how it is used to store energy. ATP is the primary energy molecule for the cell. It is produced in the mitochondria during cellular respiration, which breaks down

More information

CELL MEMBRANE & CELL TRANSPORT

CELL MEMBRANE & CELL TRANSPORT CELL MEMBRANE & CELL TRANSPORT Homeostasis: Maintaining a Balance Organisms must adjust to changes in their environment. If not DEATH! A formal definition is maintaining a stable internal condition despite

More information

Movement of Substances in the Cell

Movement of Substances in the Cell Movement of Substances in the Cell The Marble Memories Biology All cells are surrounded by a plasma membrane (also called cell membrane). This membrane regulates the entry and exit of substances into and

More information

Homeostasis, Transport & The Cell Membrane. Chapter 4-2 (pg 73 75) Chapter 5

Homeostasis, Transport & The Cell Membrane. Chapter 4-2 (pg 73 75) Chapter 5 Homeostasis, Transport & The Cell Membrane Chapter 4-2 (pg 73 75) Chapter 5 Unit 5: Lecture 1 Topic: The Cell Membrane Covers: Chapter 5, pages 95-96 Chapter 4, pages 73-75 The Cell Membrane The chemistry

More information

Phospholipids. Extracellular fluid. Polar hydrophilic heads. Nonpolar hydrophobic tails. Polar hydrophilic heads. Intracellular fluid (cytosol)

Phospholipids. Extracellular fluid. Polar hydrophilic heads. Nonpolar hydrophobic tails. Polar hydrophilic heads. Intracellular fluid (cytosol) Module 2C Membranes and Cell Transport All cells are surrounded by a plasma membrane. Eukaryotic cells also contain internal membranes and membrane- bound organelles. In this module, we will examine the

More information

Chapter 4. Membrane Structure and Function. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chapter 4. Membrane Structure and Function. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 4 Membrane Structure and Function Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 4.1 Plasma Membrane Structure and Function Regulates the entrance

More information

Cell Membrane Diagram

Cell Membrane Diagram Cell Membrane Diagram Draw a diagram of the cell membrane. Please include (and label): - Phospholipid bilayer (hydrophilic and hydrophobic) Protein channel An ion pump Cholesterol Gylcoproteins* Define

More information

Contents. Module A Cells and Cell Processes. Module B Continuity and Unity Of Life. Introduction to Keystone Finish Line Biology...

Contents. Module A Cells and Cell Processes. Module B Continuity and Unity Of Life. Introduction to Keystone Finish Line Biology... Contents Introduction to Keystone Finish Line Biology...5 Module A Cells and Cell Processes Unit 1 Basic Biological Principles...7 Lesson 1 Unifying Characteristics of Life BIO.A.1.1.1, BIO.A.1.2.1...8

More information

Cell Biology. The Plasma Membrane

Cell Biology. The Plasma Membrane Cell Biology The Plasma Membrane recall Fluid Mosiac Model S.J. Singer Semipermeable membrane fluid portion is double layer of phospholipids (=phospholipid bilayer) mosaic portion is the proteins and carbohydrates

More information

Membrane Structure and Function - 1

Membrane Structure and Function - 1 Membrane Structure and Function - 1 The Cell Membrane and Interactions with the Environment Cells interact with their environment in a number of ways. Each cell needs to obtain oxygen and other nutrients

More information

Movement of substances across the cell membrane

Movement of substances across the cell membrane Ch 4 Movement of substances across the cell membrane Think about (Ch 4, p.2) 1. The structure of the cell membrane can be explained by the fluid mosaic model. It describes that the cell membrane is mainly

More information

The Cell Membrane and Cellular Transportation

The Cell Membrane and Cellular Transportation The Cell Membrane and Cellular Transportation Oct 20 7:07 PM Cell Membrane Forms a barrier between the cell and the external environment. Has three main functions: 1) helps the cell retain the molecules

More information

Unit 2: More on Matter & Energy in Ecosystems. Macromolecules to Organelles to Cells

Unit 2: More on Matter & Energy in Ecosystems. Macromolecules to Organelles to Cells IN: Unit 2: More on Matter & Energy in Ecosystems Macromolecules to Organelles to Cells Where are cells on the biological scale? Sub-Atomic Particles Atoms Molecules Macromolecules (proteins, lipids, nucleic

More information

Controlled via the Cell Membrane

Controlled via the Cell Membrane CELL TRANSPORT 1 Controlled via the Cell Membrane Passive Transport Does NOT require energy, moves from HIGH concentrations to LOW concentrations Active Transport DOES require energy, moves from LOW concentrations

More information

Ch 4 Cells & Their Environment

Ch 4 Cells & Their Environment Ch 4 Cells & Their Environment Biology Mrs. Stolipher MEMBRANE STRUCTURE AND FUNCTION Membranes organize the chemical activities of cells Membranes are selectively permeable They control the flow of substances

More information

UNIT 4 CELL BOUNDARIES AND TRANSPORT. Unit 4 test: October 16, 2018

UNIT 4 CELL BOUNDARIES AND TRANSPORT. Unit 4 test: October 16, 2018 UNIT 4 CELL BOUNDARIES AND TRANSPORT Unit 4 test: October 16, 2018 Cell Wall CELL BOUNDARIES support protect & the cell cell membrane Lies outside of the Is made of & carbohydrates proteins Plant cell

More information

Cellular Transport. Biology Honors

Cellular Transport. Biology Honors Cellular Transport Biology Honors Review of Concepts and Introduction to the Current Concepts https://www.youtube.com/watch?v=ptmlvtei 8hw Passive Active No energy Requires / needs energy Passive Transport-

More information

I. Membrane Structure Figure 1: Phospholipid. Figure 1.1: Plasma Membrane. Plasma Membrane:

I. Membrane Structure Figure 1: Phospholipid. Figure 1.1: Plasma Membrane. Plasma Membrane: I. Membrane Structure Figure 1: Phospholipid Figure 1.1: Plasma Membrane Plasma Membrane: 1 II. Early Plasma Membrane Models Figure 2: Davson-Danielli Sandwich Model In the 1960 s new evidence suggested

More information

Diffusion, Osmosis and Active Transport

Diffusion, Osmosis and Active Transport Diffusion, Osmosis and Active Transport Particles like atoms, molecules and ions are always moving Movement increases with temperature (affects phases of matter - solid, liquid, gas) Solids - atoms, molecules

More information

Cell Membrane and Transport

Cell Membrane and Transport Cell Membrane and Transport 29/06/2015 11:08 AM Describe the Characteristics of the phospholipid Bilayer. The Phospholipid bilayer is made up of a double layer of membrane lipids that have a hydrophobic

More information

(impermeable; freely permeable; selectively permeable)

(impermeable; freely permeable; selectively permeable) BIOL 2457 CHAPTER 3 Part 1 SI 1 1. A is the basic structure of life. 2. The gelatinous inside of the cell is called the. 3. Name the structure that increases the cell s surface area? 4. Name the structure

More information

Equilibrium when two areas have the same concentration or are filled evenly

Equilibrium when two areas have the same concentration or are filled evenly Aim: How does the cell membrane function to maintain homeostasis? Do Now: Describe what homeostasis is. Homework: Vocab: Homeostasis, equilibrium, concentration gradient, diffusion, carrier protein, osmosis,

More information

Chapter 4: Cell Membrane Structure and Function

Chapter 4: Cell Membrane Structure and Function Chapter 4: Cell Membrane Structure and Function Plasma Membrane: Thin barrier separating inside of cell (cytoplasm) from outside environment Function: 1) Isolate cell s contents from outside environment

More information

7.3 Cell Boundaries. Regents Biology. Originally prepared by Kim B. Foglia. Revised and adapted by Nhan A. Pham

7.3 Cell Boundaries. Regents Biology. Originally prepared by Kim B. Foglia. Revised and adapted by Nhan A. Pham 7.3 Cell Boundaries Originally prepared by Kim B. Foglia. Revised and adapted by Nhan A. Pham Don t look at your reading guide/textbook or talk with each other yet! Write down one thing you know/remember

More information

Maintained by plasma membrane controlling what enters & leaves the cell

Maintained by plasma membrane controlling what enters & leaves the cell CELL TRANSPORT AND HOMEOSTASIS Homeostasis Balanced internal condition of cells Also called equilibrium Maintained by plasma membrane controlling what enters & leaves the cell Functions of Plasma Membrane

More information

Example - Paramecium contain contractile vacuoles that collect and remove excess water, thereby helping to achieve homeostasis

Example - Paramecium contain contractile vacuoles that collect and remove excess water, thereby helping to achieve homeostasis Homeostasis Process by which organisms maintain a relatively stable internal environment; All organisms have ranges that are tolerated (i.e. ph and temperature) Example - Paramecium contain contractile

More information

Ch3: Cellular Transport Review KEY

Ch3: Cellular Transport Review KEY Ch3: Cellular Transport Review KEY OSMOSIS Label the pictures below ( isotonic, hypertonic, or hypotonic environments) hypotonic hypertonic isotonic hypertonic means there is a GREATER concentration of

More information

CELL TRANSPORT and THE PLASMA MEMBRANE. SB1d. Explain the impact of water on life processes (i.e., osmosis, diffusion).

CELL TRANSPORT and THE PLASMA MEMBRANE. SB1d. Explain the impact of water on life processes (i.e., osmosis, diffusion). CELL TRANSPORT and THE PLASMA MEMBRANE SB1d. Explain the impact of water on life processes (i.e., osmosis, diffusion). What if What would happen if an organism could not get energy or get rid of wastes?

More information

HOMEOSTASIS and CELL TRANSPORT. Chapter 5

HOMEOSTASIS and CELL TRANSPORT. Chapter 5 HOMEOSTASIS and CELL TRANSPORT Chapter 5 Cells get things in and out using two methods PASSIVE TRANSPORT does NOT use energy ACTIVE TRANSPORT does use energy (ATP) Passive Transport & Cell Membrane Cell

More information

Biology 2201 Unit 1 Matter & Energy for Life

Biology 2201 Unit 1 Matter & Energy for Life Biology 2201 Unit 1 Matter & Energy for Life 2.2 Cell Membrane Structure Primary Membrane Function: Homeostasis Conditions in the cell must remain more or less constant under many different conditions

More information

Each cell has its own border, which separates the cell from its surroundings and also determines what comes in and what goes out.

Each cell has its own border, which separates the cell from its surroundings and also determines what comes in and what goes out. 7.3 Cell Transport Wednesday, December 26, 2012 10:02 AM Vocabulary: Diffusion: process in which cells become specialized in structure and function Facilitated diffusion: process of diffusion in which

More information

Cell membrane & Transport. Dr. Ali Ebneshahidi Ebneshahidi

Cell membrane & Transport. Dr. Ali Ebneshahidi Ebneshahidi Cell membrane & Transport Dr. Ali Ebneshahidi Cell Membrane To enclose organelles and other contents in cytoplasm. To protect the cell. To allow substances into and out of the cell. To have metabolic reactions

More information

Lesson Overview. 7.3 Cell Transport

Lesson Overview. 7.3 Cell Transport 7.3 THINK ABOUT IT When thinking about how cells move materials in and out, it can be helpful to think of a cell as a nation. The boundaries of a nation are its borders, and nearly every country tries

More information

Cell Structure and Function Exam Study Guide Part I

Cell Structure and Function Exam Study Guide Part I Cell Structure and Function Exam Study Guide Part I 1. Which image best depicts the hot water, which the cold? 2. What is the relationship between temperature and the speed of molecular motion? 3. If a

More information

MEMBRANE STRUCTURE & FUNCTION

MEMBRANE STRUCTURE & FUNCTION MEMBRANE STRUCTURE & FUNCTION Chapter 8 KEY CONCEPTS Cellular s are fluid mosaics of lipids and proteins Membrane structure results in selective permeability Passive transport is diffusion of a substance

More information

Membrane Structure and Function

Membrane Structure and Function Chapter 7 Membrane Structure and Function PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from

More information

STATION 4: TONICITY due to OSMOSIS / Turgor Pressure in Plants

STATION 4: TONICITY due to OSMOSIS / Turgor Pressure in Plants STATION 4: TONICITY due to OSMOSIS / Turgor Pressure in Plants Tonicity is the concentration of solutions that determines the direction water will move across a semi-permeable membrane. A solution is a

More information

TRANSPORT ACROSS MEMBRANES

TRANSPORT ACROSS MEMBRANES Unit 2: Cells, Membranes and Signaling TRANSPORT ACROSS MEMBRANES Chapter 5 Hillis Textbook TYPES OF TRANSPORT ACROSS THE CELL (PLASMA) MEMBRANE: What do you remember? Complete the chart with what you

More information

Membrane Structure and Function. Cell Membranes and Cell Transport

Membrane Structure and Function. Cell Membranes and Cell Transport Membrane Structure and Function Cell Membranes and Cell Transport 1895 1917 1925 Membrane models Membranes are made of lipids Phospholipids can form membranes Its actually 2 layers - there are proteins

More information

Homeostasis and The Plasma Membrane

Homeostasis and The Plasma Membrane Mosaic Homeostasis and The Plasma Membrane phospholipid cholesterol PLASMA MEMBRANE (FLUID MOSAIC MODEL) membrane protein filaments of cytoskeleton phospholipid cytoplasm (inside of cell) PHOSPHOLIPID

More information

Written Response #1: True/False

Written Response #1: True/False Written Response #1: True/False 1. Osmosis means to absorb something. 2. Cells are able to excrete waste. 3. Cells obtain energy by gaining nutrition from food. 4. Plants use sunlight for food. 5. Plants

More information

WEDNESDAY 10/18/17. Why is the cell/plasma membrane important? What is the cell/plasma membrane made of? Label the cell membrane on your notes.

WEDNESDAY 10/18/17. Why is the cell/plasma membrane important? What is the cell/plasma membrane made of? Label the cell membrane on your notes. WEDNESDAY 10/18/17 Why is the cell/plasma membrane important? What is the cell/plasma membrane made of? Label the cell membrane on your notes. THE PLASMA MEMBRANE - 2 Gateway to Cell HOMEOSTASIS Balanced

More information

POLAR COVALENT BOND 1 P

POLAR COVALENT BOND 1 P POLAR COVALENT BOND 1 P HP OXYGEN HIGHER ELECTRO- O WATER MOLECULE HYDROGEN LOWER ELECTRO- H BOND BOND H ELECTRO- = 3.5 ELECTRO- = 2.1 ELECTRO- = 2.1 = E- POLAR COVALENT BOND +/- - 1 P? CHARGE OXYGEN HIGHER

More information

Cell Membranes Valencia college

Cell Membranes Valencia college 6 Cell Membranes Valencia college 6 Cell Membranes Chapter objectives: The Structure of a Biological Membrane The Plasma Membrane Involved in Cell Adhesion and Recognition Passive Processes of Membrane

More information

MEMBRANE STRUCTURE AND FUNCTION

MEMBRANE STRUCTURE AND FUNCTION MEMBRANE STRUCTURE AND FUNCTION 2.4.2 Membranes organize the chemical activities of cells Membranes provide structural order for metabolism Form most of the cell's organelles Compartmentalize chemical

More information

BIOLOGY 12 - Cell Membrane and Cell Wall Function: Chapter Notes

BIOLOGY 12 - Cell Membrane and Cell Wall Function: Chapter Notes BIOLOGY 12 - Cell Membrane and Cell Wall Function: Chapter Notes The cell membrane is the gateway into the cell, and must allow needed things such as nutrients into the cell without letting them escape.

More information

The Cell Membrane & Movement of Materials In & Out of Cells PACKET #11

The Cell Membrane & Movement of Materials In & Out of Cells PACKET #11 1 February 26, The Cell Membrane & Movement of Materials In & Out of Cells PACKET #11 Introduction I 2 Biological membranes are phospholipid bilayers with associated proteins. Current data support a fluid

More information

FIGURE A. The phosphate end of the molecule is polar (charged) and hydrophilic (attracted to water).

FIGURE A. The phosphate end of the molecule is polar (charged) and hydrophilic (attracted to water). PLASMA MEMBRANE 1. The plasma membrane is the outermost part of a cell. 2. The main component of the plasma membrane is phospholipids. FIGURE 2.18 A. The phosphate end of the molecule is polar (charged)

More information

Unit 1 Matter & Energy for Life

Unit 1 Matter & Energy for Life Unit 1 Matter & Energy for Life Chapter 2 Interaction of Cell Structure Biology 2201 Primary Membrane Function: Homeostasis Conditions in the cell must remain more or less constant under many different

More information

BIOLOGY 12 - Cell Membrane and Cell Wall Function: Chapter Notes

BIOLOGY 12 - Cell Membrane and Cell Wall Function: Chapter Notes BIOLOGY 12 - Cell Membrane and Cell Wall Function: Chapter Notes The cell membrane is the gateway into the cell, and must allow needed things such as nutrients into the cell without letting them escape.

More information

5.6 Diffusion, Membranes, and Metabolism

5.6 Diffusion, Membranes, and Metabolism 5.6 Diffusion, Membranes, and Metabolism Concentration of a substance Number of atoms or molecules in a given volume Concentration gradient of a substance A difference in concentration between two regions

More information

Membrane Structure and Function

Membrane Structure and Function BIOL1040 Page 1 Membrane Structure and Function Friday, 6 March 2015 2:58 PM Cellular Membranes Fluid mosaics of lipids and proteins Phospholipids - abundant Phospholipids are amphipathic molecules (has

More information

Membranes. Chapter 5

Membranes. Chapter 5 Membranes Chapter 5 Membrane Structure The fluid mosaic model of membrane structure contends that membranes consist of: -phospholipids arranged in a bilayer -globular proteins inserted in the lipid bilayer

More information

Membrane Structure and Function. Selectively permeable membranes are key to the cell's ability to function

Membrane Structure and Function. Selectively permeable membranes are key to the cell's ability to function Membrane Structure and Function Selectively permeable membranes are key to the cell's ability to function Amphipathic Molecules Have both hydrophilic and hydrophobic regions Phospholipids have hydrophilic

More information

Cellular Transport Notes. Ch. 7.3

Cellular Transport Notes. Ch. 7.3 Cellular Transport Notes Ch. 7.3 About Cell Membranes 1.All cells have a cell membrane 2.Functions: a.controls what enters and exits the cell to maintain an internal balance called homeostasis b.provides

More information

Phospholipid Bilayer Hydrophilic head Hydrophobic tail Molecules with hydrophilic and hydrophobic parts are called Ampipathic molecules

Phospholipid Bilayer Hydrophilic head Hydrophobic tail Molecules with hydrophilic and hydrophobic parts are called Ampipathic molecules Plasma Membrane The membrane at the boundary of every cell Functions as a selective barrier for the passage of materials in and out of cells Membrane Composition Phospholipids Proteins Carbohydrates Cholesterol

More information

BIOLOGY 12 - Cell Membrane and Cell Wall Function: Chapter Notes

BIOLOGY 12 - Cell Membrane and Cell Wall Function: Chapter Notes BIOLOGY 12 - Cell Membrane and Cell Wall Function: Chapter Notes The cell membrane is the gateway into the cell, and must allow needed things such as nutrients into the cell without letting them escape.

More information

Membrane Structure. Membrane Structure. Membrane Structure. Membranes

Membrane Structure. Membrane Structure. Membrane Structure. Membranes Membrane Structure Membranes Chapter 5 The fluid mosaic model of membrane structure contends that membranes consist of: -phospholipids arranged in a bilayer -globular proteins inserted in the lipid bilayer

More information

Membrane Structure and Membrane Transport of Small Molecules. Assist. Prof. Pinar Tulay Faculty of Medicine

Membrane Structure and Membrane Transport of Small Molecules. Assist. Prof. Pinar Tulay Faculty of Medicine Membrane Structure and Membrane Transport of Small Molecules Assist. Prof. Pinar Tulay Faculty of Medicine Introduction Cell membranes define compartments of different compositions. Membranes are composed

More information