Life Sciences 1A Midterm Exam 2. November 13, 2006

Size: px
Start display at page:

Download "Life Sciences 1A Midterm Exam 2. November 13, 2006"

Transcription

1 Name: TF: Section Time Life Sciences 1A Midterm Exam 2 November 13, 2006 Please write legibly in the space provided below each question. You may not use calculators on this exam. We prefer that you use non-erasable pen when writing your answers. A significant number of completed exams will be photocopied by the teaching staff. Please write your name on each page of the exam. There are SIX multi-part questions in this exam. We recommend that you first read through all questions and begin with the questions that are easiest for you. Be sure to take a look at all questions before the end of the exam! Please write your TF s name and section time on the front page only. Question 1 /20 Question 2 /32 Question 3 /32 Question 4 /24 Question 5 /32 Question 6 /10 Total /150

2 1. The two graphs shown below depict membrane fluidity from two different membranes (a and b), neither of which have cholesterol. a. (4 points) Which graph above (a or b) corresponds to the more fluid membrane? Explain. A. The Tm is lower for organism A, meaning at any given temperature the membrane is more fluid. b. (6 points) List two changes in the structure of lipids that could lead to changes in membrane fluidity. In each case explain how that change would either increase or decrease membrane fluidity. 1. Change fatty acid chain length. Shorter chains form fewer Van der Waals interactions with neighboring chains, therefore making the membrane more fluid, conversely longer chains decrease fluidity because more VdW interactions would form. 2. Change the saturation of the fatty acids in the phospholipids. More unsaturated fatty acids (meaning more double bonds) do not pack well because each cis-double bond introduces a kink in the chain preventing the close apposition of adjacent phospholipid molecules. This decreases the Van der Waals interactions, causing the membrane to be more fluid. Conversely, more saturated fatty acid tails allow closer apposition of adjacent phospholipids, increased VdW interactions, and cause a decrease in fluidity. 1

3 c. (4 points) Draw the graph for fluidity if cholesterol was included in membrane a. Include the curve for without cholesterol on your graph for comparison. Without cholesterol With cholesterol d. (6 points) Explain how cholesterol affects the membrane fluidity at high and low temperatures. At high temperatures, cholesterol lowers membrane fluidity because the rigid 4-ring structure that interacts with the first few CH2 groups of the fatty acid tails helps keep the phospholipids in a more rigid alignment, causing less motion and therefore less fluidity. At low temperatures, cholesterol prevents the same phospholipids from packing as tightly as they normally could without cholesterol, making the membrane more fluid. 2

4 2. Erythropoietin (EPO) is a secreted human hormone that stimulates maturation of red blood cells. The human gene for EPO can be expressed in cells to produce large quantities of the protein for use as a drug to treat anemia. a. (4 points) Mature EPO protein is 165 amino acids long, however the EPO mrna (fully processed) is 1340 nucleotides. Provide two possible explanations for this discrepancy in length. Post-translational modification: Translated proteins can be modified after translation. One approach is proteolytic processing where a portion of the freshly translated nascent EPO protein is cleaved into a smaller protein. Only one of the peptide fragments is mature EPO, and the other fragment will be completely degraded. 5 and 3 untranslated regions in the mrna: the entire sequence of mature mrnas is rarely translated. They often possess 5 and 3 untranslated regions bracketing the coding region. These domains can be used by the cell to regulate the levels of translation and the stability of the mrna. b. (8 points) The gene for EPO can be expressed in cells to produce large quantities of protein for use as a drug to treat anemia. Scientists attempt to express the gene in E. coli (bacteria) by inserting the entire human EPO gene into bacteria. No EPO protein is produced at all. Provide two possible explanations. Incompatible promoters between eukaryotes and prokaryotes. Eukaryotic promoters and prokaryotic promoters are recognized by different transcription factors. When a eukaryotic gene is inserted into bacteria, the bacterial sigma factors are unable to recognize the eukaryotic promoter elements of EPO and thus cannot activate transcription. Presence of introns in eukaryotic genes that cannot be spliced out in prokaryotes. Even if EPO is transcribed, it will have introns in the RNA that is produced. Bacteria do not have the machinery necessary to remove the introns and thus a garbage EPO will be made and probably destroyed. Also plausible: insertion into the bacterial chromosome in a nontranscribable region. See answer to part d. 3

5 Shown below is the sequence of a gene from E. coli AGTCGTCCGTACGTTTGACAGAGTCATCCCATAAGCGTATATTATCGGCGGTGCAGTTACCC 3 -TCAGCAGGCATGCAAACTGTCTCAGTAGGGTATTCGCATATAATAGCCGCCACGTCAATGGG 4 CGTTCAACGCCGGTGGAATCGTGGCCGCCAGTCCATCTGGCGGCGTTTTCCAGATCGCATT-3 GCAAGTTGCGGCCACCTTAGCACCGGCGGTCAGGTAGACCGCCGCAAAAGGTCTAGCGTAA-5 c. (2 points) Which strand (top or bottom) is the coding (non-template) strand. top d. (6 points) At which location (1, 2, 3, or 4) would you insert the EPO protein coding sequence and expect EPO RNA and protein to be produced? Explain. Region 3. Downstream of promoters, upstream of transcriptional terminator locations. Bacterial sigma factor will bind at region 2 and based on the orientation of the sequence, will recruit RNA pol to transcribe the sequence further to the right (regions 3 and 4). Region 4 is after a transcriptional termination motif, so RNA pol is likely to cease transcribing prior to reaching region 4. Thus region 3 is the only region that will be transcribed. e. (6 points) When the EPO protein coding sequence is placed in the proper location and expressed in E. coli, EPO protein is translated, but not secreted. Moreover the purified protein is unable to stimulate red blood cell maturation. Based on your understanding of the differences in prokaryotic and eukaryotic biology, provide a rational explanation for these observations. EPO is normally secreted through the eukaryotic secretory pathway. Secreted proteins are often post-translationally modified (glycosylated, proteolytically cleaved, etc.) as they travel through the ER and Golgi, and these modifications can contribute to their ability to function. Such modifications couldn t occur to EPO expressed in bacteria because they lack a secretory pathway and would not necessarily be able to modify EPO in an identical fashion. 4

6 f. (6 points) Shown below is a portion of the EPO mrna. The start codon is located in this segment. 5 ggucgcugagggaccccggccaggcgcggagaugggggugcacga auguccugccuggcuguggcuucuccugucccugcugucgcuccc 3 Circle the start codon and translate the first five amino acids (a table containing the genetic code is provided at the end of the exam). First codon marked in red above. N MGVHEC C 5

7 3. The Reverse Transcriptase Assay is a method researchers use to quantify the amount of HIV. The enzymatic activity of Reverse Transcriptase (RT) is measured by using a reaction mixture containing the following components: Components 1) Virus sample (may or may not contain virus) 2) poly-riboadenosine (usually around nucleotides in length) 3) mild detergent 4) Buffer, ph 7 5) radioactive deoxythymidine triphosphate (dttp) a. (6 points) A mild detergent must be added to release the reverse transcriptase from the viral particles. Explain why detergent is necessary. HIV is surrounded by a lipid membrane, and the RT is enclosed within it. The detergent has to be added to disrupt the membrane and allow the other reagents to access the RT. b. (6 points) You find that the nucleic acid product of the reaction is single stranded. Is this surprising in light of the activities of RT and the reaction mixture? No. RT has two activities, the reverse transcription of RNA into DNA and the degradation of RNA. Based on the reagents available, polya template and dttp, the only DNA that can be synthesized is polydt. Concurrently the RNA template is degraded leaving the polydt behind. The complementary strand of DNA cannot be synthesized because no datp is present in the reaction mixture. c. (6 points) If a cellular polymerase was added as component 1 and components 2-5 are left unchanged, could this assay be used to measure its enzymatic activity? Explain. No. Cellular polymerases can only use DNA as templates. DNA pol synthesizes complementary DNA to DNA templates and RNA pol synthesizes complementary RNA to DNA templates. Component 2 is an RNA template, and thus it is impossible for any cellular polymerase to use it to make any additional polynucleotides. 6

8 d. (6 points) At the end of the experiment, the nucleic acid product is captured on a positively charged membrane. The amount of radioactivity on this membrane is proportional to the number of viral particles in the unknown sample. Draw in the expected result on the bar graph below if the following components are added as components 1: HIV, or HIV and AZT. e. (8 points) Draw in the expected results if components 2 and 5, polyriboadenosine and dttp, are replaced with poly-riboguanosine and dctp in the experiment, and the following components are used as component 1: HIV, or HIV and AZT. Explain your results. Without AZT same height as HIV column. With AZT, also same height. AZT is a T analog and will only be incorporated where T s are necessary. With the new template, C s are always inserted and AZT has no effect. 7

9 4. You decide to study the transport of glucose (structure drawn below) into red blood cells and intestinal cells. HO HO O OH OH OH You incubate the cells in a solution of 1M glucose in the presence and absence of an ATPase inhibitor. After 30 minutes, the concentration of glucose in the solution outside the cells is determined. Concentration of Glucose In Solution Outside Cells Red blood cells Intestinal cells No ATPase inhibitor 0.5M 0.1M ATPase inhibitor 0.5M 1M a. (6 points) What kind of transport do red blood cells use to import glucose? Are proteins necessary for this process? Explain. Passive transport presence or absence of ATP has no effect on transport. Proteins are necessary because glucose is large and polar and would not pass through the lipid bilayer without a carrier protein. b. (6 points) What kind of transport do intestinal cells use to import glucose? Are proteins necessary for this process? Explain. Active transport-the intestinal cells require energy in the form of ATP to remove glucose from the media as in the presence of ATPase inhibitors no glucose uptake is observed. Proteins are required to mediate the transport of the polar glucose molecule and to utilize the energy of ATP hydrolysis. 8

10 c. (6 points) The red blood cells and intestinal cells incubation in 1M glucose in the absence of ATPase inhibitors is continued. After 60 minutes, the concentration of glucose in the solution outside the cells is unchanged from 30 minutes (0.5M for red blood cells and 0.1M for intestinal cells). For each cell type, are the cells in equilibrium or steady state? Explain. Red blood cells are in equilibrium. The concentration of glucose inside and outside of the RBCs is constant and equal, and combined with the information from the table that this occurs in the presence or absence of ATPase inhibitors indicates that it is a process that does not require the input of energy. Intestinal cells are in steady state. The cellular concentration of glucose is maintained at a constant concentration, however this concentration is not equal to that of glucose outside of the cell. Moreover the table indicates that the establishment of this concentration requires the input of energy in the form of ATP. Both qualities that are consistent with steady state. d. (6 points) Would you expect the transport of O 2 to be affected by ATPase inhibitors in either red blood cells or intestinal cells? Explain. No, O 2 is a small, non-polar molecule, which can diffuse freely through the lipid bilayer. 9

11 5. The Vx protein is essential for the completion of the life cycle of a newly discovered retrovirus. To gain insight into its function, recombinant virus expressing the GFP fusion protein GFP-Vx instead of wildtype Vx is created. a. (8 points) A 902 bp segment of DNA encoding GFP is placed at the N- terminus of Vx to create a GFP-Vx fusion protein. Strong GFP fluorescence is observed in infected cells. The protein produced has the predicted molecular weight, however the amino acid sequence at the C- terminus does not match the sequence of wildtype Vx. What is the most likely explanation? Explain. Insertion of a 902 bp sequence into the open reading frame would result in a frameshift mutation, since 902 is not divisible by 3. Therefore, GFP and Vx in the fusion protein are not in the same reading frame, and so only functional GFP is produced. b. (8 points) Properly constructed GFP-Vx functions normally and results in GFP-Vx fluorescence primarily in the nucleus of infected cells. However, mutant GFP-Vx missing a stretch of 5 consecutive amino acids from the Vx portion of the protein is present only in the cytoplasm. What is the most likely role for this stretch of amino acids? Explain. This sequence most likely acts as a signal sequence which is recognized by some nuclear transport protein. This results in the translocation of GFP-Vx to the nucleus. Mutation or deletion of the sequence prevents nuclear translocation, so GFP-Vx remains in the cytoplasm. 10

12 c. (8 points) To test your hypothesis from part b, you attach the five amino acid sequence to GFP. When this form of GFP (5aa-GFP) is expressed in cells, GFP fluorescence is observed exclusively in the cytoplasm. When GFP alone is expressed it is also observed only in the cytoplasm. What is one possible explanation for this observation? Explain. This sequence is likely to be part of a signal patch sequence, perhaps with other regions of Vx. This patch is only made when Vx is allowed to assume its normal conformation. Also stating and explaining how the domain is necessary, but not sufficient is correct for this question. Or the domain is not necessary. d. (8 points) Based on the data provided, for nuclear localization is the 5 amino acid sequence necessary, sufficient, neither or both? Explain. This sequence is necessary, but not sufficient, for nuclear localization. If deleted, nuclear import is prevented (necessary), but addition of the sequence to another protein does not result in nuclear translocation (not sufficient). 11

13 6. You can successfully translate mature ovalbumin mrna using all the necessary components for translation in vitro. To further study translation you vary the conditions and make the following observations. a. (5 points) An ovalbumin RNA missing the 5 -cap is translated at a significantly lower level compared to the same ovalbumin RNA with a 5 - cap. Explain this observation. Since the 5 cap is recognized by translation initiation factors that recruit the small ribosomal subunit, the lack of the cap will prevent (or at least strongly impair) translation initiation. b. (5 points) When a chemically modified GTP that cannot be hydrolyzed is added, there is a significant decrease in the amount of ovalbumin protein translated. Explain this observation. A nonhydrolyzable GTP analog will prevent the eukaryotic equivalents of EF-Tu and EF-G from performing their roles in translation. In the case of the former, charged aminoacyl trnas will not be able to donate their amino acids to the end of the growing polypeptide chain since EF-TuGTP will not release them because they cannot hydrolyze to the EF-TuGDP form that is capable of releasing charged trnas. In the case of the latter, EF-GGTP will not contribute to translocation of the ribosome along the mrna, a process that also requires hydrolysis of the bound GTP. (full credit for either explanation) 12

14 The Genetic Code 13

Point total. Page # Exam Total (out of 90) The number next to each intermediate represents the total # of C-C and C-H bonds in that molecule.

Point total. Page # Exam Total (out of 90) The number next to each intermediate represents the total # of C-C and C-H bonds in that molecule. This exam is worth 90 points. Pages 2- have questions. Page 1 is for your reference only. Honor Code Agreement - Signature: Date: (You agree to not accept or provide assistance to anyone else during this

More information

Week 5 Section. Junaid Malek, M.D.

Week 5 Section. Junaid Malek, M.D. Week 5 Section Junaid Malek, M.D. HIV: Anatomy Membrane (partiallystolen from host cell) 2 Glycoproteins (proteins modified by added sugar) 2 copies of RNA Capsid HIV Genome Encodes: Structural Proteins

More information

Biochemistry 2000 Sample Question Transcription, Translation and Lipids. (1) Give brief definitions or unique descriptions of the following terms:

Biochemistry 2000 Sample Question Transcription, Translation and Lipids. (1) Give brief definitions or unique descriptions of the following terms: (1) Give brief definitions or unique descriptions of the following terms: (a) exon (b) holoenzyme (c) anticodon (d) trans fatty acid (e) poly A tail (f) open complex (g) Fluid Mosaic Model (h) embedded

More information

Bio 111 Study Guide Chapter 17 From Gene to Protein

Bio 111 Study Guide Chapter 17 From Gene to Protein Bio 111 Study Guide Chapter 17 From Gene to Protein BEFORE CLASS: Reading: Read the introduction on p. 333, skip the beginning of Concept 17.1 from p. 334 to the bottom of the first column on p. 336, and

More information

Section 6. Junaid Malek, M.D.

Section 6. Junaid Malek, M.D. Section 6 Junaid Malek, M.D. The Golgi and gp160 gp160 transported from ER to the Golgi in coated vesicles These coated vesicles fuse to the cis portion of the Golgi and deposit their cargo in the cisternae

More information

Practice Exam 2 MCBII

Practice Exam 2 MCBII 1. Which feature is true for signal sequences and for stop transfer transmembrane domains (4 pts)? A. They are both 20 hydrophobic amino acids long. B. They are both found at the N-terminus of the protein.

More information

Genetics. Instructor: Dr. Jihad Abdallah Transcription of DNA

Genetics. Instructor: Dr. Jihad Abdallah Transcription of DNA Genetics Instructor: Dr. Jihad Abdallah Transcription of DNA 1 3.4 A 2 Expression of Genetic information DNA Double stranded In the nucleus Transcription mrna Single stranded Translation In the cytoplasm

More information

Zool 3200: Cell Biology Exam 4 Part I 2/3/15

Zool 3200: Cell Biology Exam 4 Part I 2/3/15 Name: Key Trask Zool 3200: Cell Biology Exam 4 Part I 2/3/15 Answer each of the following questions in the space provided, explaining your answers when asked to do so; circle the correct answer or answers

More information

CELLS. Cells. Basic unit of life (except virus)

CELLS. Cells. Basic unit of life (except virus) Basic unit of life (except virus) CELLS Prokaryotic, w/o nucleus, bacteria Eukaryotic, w/ nucleus Various cell types specialized for particular function. Differentiation. Over 200 human cell types 56%

More information

DNA codes for RNA, which guides protein synthesis.

DNA codes for RNA, which guides protein synthesis. Section 3: DNA codes for RNA, which guides protein synthesis. K What I Know W What I Want to Find Out L What I Learned Vocabulary Review synthesis New RNA messenger RNA ribosomal RNA transfer RNA transcription

More information

October 26, Lecture Readings. Vesicular Trafficking, Secretory Pathway, HIV Assembly and Exit from Cell

October 26, Lecture Readings. Vesicular Trafficking, Secretory Pathway, HIV Assembly and Exit from Cell October 26, 2006 Vesicular Trafficking, Secretory Pathway, HIV Assembly and Exit from Cell 1. Secretory pathway a. Formation of coated vesicles b. SNAREs and vesicle targeting 2. Membrane fusion a. SNAREs

More information

RNA (Ribonucleic acid)

RNA (Ribonucleic acid) RNA (Ribonucleic acid) Structure: Similar to that of DNA except: 1- it is single stranded polunucleotide chain. 2- Sugar is ribose 3- Uracil is instead of thymine There are 3 types of RNA: 1- Ribosomal

More information

Lecture 2: Virology. I. Background

Lecture 2: Virology. I. Background Lecture 2: Virology I. Background A. Properties 1. Simple biological systems a. Aggregates of nucleic acids and protein 2. Non-living a. Cannot reproduce or carry out metabolic activities outside of a

More information

1. Investigate the structure of the trna Synthase in complex with a trna molecule. (pdb ID 1ASY).

1. Investigate the structure of the trna Synthase in complex with a trna molecule. (pdb ID 1ASY). Problem Set 11 (Due Nov 25 th ) 1. Investigate the structure of the trna Synthase in complex with a trna molecule. (pdb ID 1ASY). a. Why don t trna molecules contain a 5 triphosphate like other RNA molecules

More information

Objectives: Prof.Dr. H.D.El-Yassin

Objectives: Prof.Dr. H.D.El-Yassin Protein Synthesis and drugs that inhibit protein synthesis Objectives: 1. To understand the steps involved in the translation process that leads to protein synthesis 2. To understand and know about all

More information

Protein Synthesis

Protein Synthesis Protein Synthesis 10.6-10.16 Objectives - To explain the central dogma - To understand the steps of transcription and translation in order to explain how our genes create proteins necessary for survival.

More information

Zool 3200: Cell Biology Exam 4 Part II 2/3/15

Zool 3200: Cell Biology Exam 4 Part II 2/3/15 Name:Key Trask Zool 3200: Cell Biology Exam 4 Part II 2/3/15 Answer each of the following questions in the space provided, explaining your answers when asked to do so; circle the correct answer or answers

More information

Insulin mrna to Protein Kit

Insulin mrna to Protein Kit Insulin mrna to Protein Kit A 3DMD Paper BioInformatics and Mini-Toober Folding Activity Student Handout www.3dmoleculardesigns.com Insulin mrna to Protein Kit Contents Becoming Familiar with the Data...

More information

Explain that each trna molecule is recognised by a trna-activating enzyme that binds a specific amino acid to the trna, using ATP for energy

Explain that each trna molecule is recognised by a trna-activating enzyme that binds a specific amino acid to the trna, using ATP for energy 7.4 - Translation 7.4.1 - Explain that each trna molecule is recognised by a trna-activating enzyme that binds a specific amino acid to the trna, using ATP for energy Each amino acid has a specific trna-activating

More information

TRANSCRIPTION. DNA à mrna

TRANSCRIPTION. DNA à mrna TRANSCRIPTION DNA à mrna Central Dogma Animation DNA: The Secret of Life (from PBS) http://www.youtube.com/watch? v=41_ne5ms2ls&list=pl2b2bd56e908da696&index=3 Transcription http://highered.mcgraw-hill.com/sites/0072507470/student_view0/

More information

LS1a Fall 2014 Problem Set #4 Due Monday 11/3 at 6 pm in the drop boxes on the Science Center 2 nd Floor

LS1a Fall 2014 Problem Set #4 Due Monday 11/3 at 6 pm in the drop boxes on the Science Center 2 nd Floor LS1a Fall 2014 Problem Set #4 Due Monday 11/3 at 6 pm in the drop boxes on the Science Center 2 nd Floor Note: Adequate space is given for each answer. Questions that require a brief explanation should

More information

Pre-mRNA has introns The splicing complex recognizes semiconserved sequences

Pre-mRNA has introns The splicing complex recognizes semiconserved sequences Adding a 5 cap Lecture 4 mrna splicing and protein synthesis Another day in the life of a gene. Pre-mRNA has introns The splicing complex recognizes semiconserved sequences Introns are removed by a process

More information

Life Science 1A Final Exam. January 19, 2006

Life Science 1A Final Exam. January 19, 2006 ame: TF: Section Time Life Science 1A Final Exam January 19, 2006 Please write legibly in the space provided below each question. You may not use calculators on this exam. We prefer that you use non-erasable

More information

TRANSLATION: 3 Stages to translation, can you guess what they are?

TRANSLATION: 3 Stages to translation, can you guess what they are? TRANSLATION: Translation: is the process by which a ribosome interprets a genetic message on mrna to place amino acids in a specific sequence in order to synthesize polypeptide. 3 Stages to translation,

More information

Zool 3200: Cell Biology Exam 4 Part I 2/3/15

Zool 3200: Cell Biology Exam 4 Part I 2/3/15 Name: Trask Zool 3200: Cell Biology Exam 4 Part I 2/3/15 Answer each of the following questions in the space provided, explaining your answers when asked to do so; circle the correct answer or answers

More information

Name: Multiple choice questions. Pick the BEST answer (2 pts ea)

Name: Multiple choice questions. Pick the BEST answer (2 pts ea) Exam 1 202 Oct. 5, 1999 Multiple choice questions. Pick the BEST answer (2 pts ea) 1. The lipids of a red blood cell membrane are all a. phospholipids b. amphipathic c. glycolipids d. unsaturated 2. The

More information

L I F E S C I E N C E S

L I F E S C I E N C E S 1a L I F E S C I E N C E S 5 -UUA AUA UUC GAA AGC UGC AUC GAA AAC UGU GAA UCA-3 5 -TTA ATA TTC GAA AGC TGC ATC GAA AAC TGT GAA TCA-3 3 -AAT TAT AAG CTT TCG ACG TAG CTT TTG ACA CTT AGT-5 NOVEMBER 2, 2006

More information

From Atoms to Cells: Fundamental Building Blocks. Models of atoms. A chemical connection

From Atoms to Cells: Fundamental Building Blocks. Models of atoms. A chemical connection From Atoms to Cells: A chemical connection Fundamental Building Blocks Matter - all materials that occupy space & have mass Matter is composed of atoms Atom simplest form of matter not divisible into simpler

More information

Name: Date: Block: Biology 12

Name: Date: Block: Biology 12 Name: Date: Block: Biology 12 Provincial Exam Review: Cell Processes and Applications January 2003 Use the following diagram to answer questions 1 and 2. 1. Which labelled organelle produces most of the

More information

7.012 Quiz 3 Answers

7.012 Quiz 3 Answers MIT Biology Department 7.012: Introductory Biology - Fall 2004 Instructors: Professor Eric Lander, Professor Robert A. Weinberg, Dr. Claudette Gardel Friday 11/12/04 7.012 Quiz 3 Answers A > 85 B 72-84

More information

RNA Processing in Eukaryotes *

RNA Processing in Eukaryotes * OpenStax-CNX module: m44532 1 RNA Processing in Eukaryotes * OpenStax This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 By the end of this section, you

More information

Molecular Cell Biology - Problem Drill 10: Gene Expression in Eukaryotes

Molecular Cell Biology - Problem Drill 10: Gene Expression in Eukaryotes Molecular Cell Biology - Problem Drill 10: Gene Expression in Eukaryotes Question No. 1 of 10 1. Which of the following statements about gene expression control in eukaryotes is correct? Question #1 (A)

More information

AP Biology

AP Biology Tour of the Cell (1) 2007-2008 Types of cells Prokaryote bacteria cells - no organelles - organelles Eukaryote animal cells Eukaryote plant cells Cell Size Why organelles? Specialized structures - specialized

More information

Life Sciences 1a. Practice Problems 4

Life Sciences 1a. Practice Problems 4 Life Sciences 1a Practice Problems 4 1. KcsA, a channel that allows K + ions to pass through the membrane, is a protein with four identical subunits that form a channel through the center of the tetramer.

More information

BIO 5099: Molecular Biology for Computer Scientists (et al)

BIO 5099: Molecular Biology for Computer Scientists (et al) BIO 5099: Molecular Biology for Computer Scientists (et al) Lecture 15: Being a Eukaryote: From DNA to Protein, A Tour of the Eukaryotic Cell. Christiaan van Woudenberg Being A Eukaryote Basic eukaryotes

More information

Lecture Readings. Vesicular Trafficking, Secretory Pathway, HIV Assembly and Exit from Cell

Lecture Readings. Vesicular Trafficking, Secretory Pathway, HIV Assembly and Exit from Cell October 26, 2006 1 Vesicular Trafficking, Secretory Pathway, HIV Assembly and Exit from Cell 1. Secretory pathway a. Formation of coated vesicles b. SNAREs and vesicle targeting 2. Membrane fusion a. SNAREs

More information

(multiple answers) This strain of HIV uses a different chemokine coreceptor for entry into cells.

(multiple answers) This strain of HIV uses a different chemokine coreceptor for entry into cells. LS1a Fall 06 Problem Set #4 100 points total all questions including the (*extra*) one should be turned in TF 1. (20 points) To further investigate HIV infection you decide to study the process of the

More information

Sections 12.3, 13.1, 13.2

Sections 12.3, 13.1, 13.2 Sections 12.3, 13.1, 13.2 Now that the DNA has been copied, it needs to send its genetic message to the ribosomes so proteins can be made Transcription: synthesis (making of) an RNA molecule from a DNA

More information

Molecular Biology (BIOL 4320) Exam #2 May 3, 2004

Molecular Biology (BIOL 4320) Exam #2 May 3, 2004 Molecular Biology (BIOL 4320) Exam #2 May 3, 2004 Name SS# This exam is worth a total of 100 points. The number of points each question is worth is shown in parentheses after the question number. Good

More information

/ The following functional group is a. Aldehyde c. Carboxyl b. Ketone d. Amino

/ The following functional group is a. Aldehyde c. Carboxyl b. Ketone d. Amino Section A: Multiple Choice Select the answer that best answers the following questions. Please write your selected choice on the line provided, in addition to circling the answer. /25 1. The following

More information

Computational Biology I LSM5191

Computational Biology I LSM5191 Computational Biology I LSM5191 Aylwin Ng, D.Phil Lecture Notes: Transcriptome: Molecular Biology of Gene Expression II TRANSLATION RIBOSOMES: protein synthesizing machines Translation takes place on defined

More information

Problem Set 5 KEY

Problem Set 5 KEY 2006 7.012 Problem Set 5 KEY ** Due before 5 PM on THURSDAY, November 9, 2006. ** Turn answers in to the box outside of 68-120. PLEASE WRITE YOUR ANSWERS ON THIS PRINTOUT. 1. You are studying the development

More information

TRANSLATION. Translation is a process where proteins are made by the ribosomes on the mrna strand.

TRANSLATION. Translation is a process where proteins are made by the ribosomes on the mrna strand. TRANSLATION Dr. Mahesha H B, Yuvaraja s College, University of Mysore, Mysuru. Translation is a process where proteins are made by the ribosomes on the mrna strand. Or The process in the ribosomes of a

More information

Polyomaviridae. Spring

Polyomaviridae. Spring Polyomaviridae Spring 2002 331 Antibody Prevalence for BK & JC Viruses Spring 2002 332 Polyoma Viruses General characteristics Papovaviridae: PA - papilloma; PO - polyoma; VA - vacuolating agent a. 45nm

More information

Hand in the Test Sheets (with the checked multiple choice answers) and your Sheets with written answers.

Hand in the Test Sheets (with the checked multiple choice answers) and your Sheets with written answers. Page 1 of 13 IMPORTANT INFORMATION Hand in the Test Sheets (with the checked multiple choice answers) and your Sheets with written answers. THE exam has an 'A' and 'B' section SECTION A (based on Dykyy's

More information

Genetic information flows from mrna to protein through the process of translation

Genetic information flows from mrna to protein through the process of translation Genetic information flows from mrn to protein through the process of translation TYPES OF RN (RIBONUCLEIC CID) RN s job - protein synthesis (assembly of amino acids into proteins) Three main types: 1.

More information

2013 John Wiley & Sons, Inc. All rights reserved. PROTEIN SORTING. Lecture 10 BIOL 266/ Biology Department Concordia University. Dr. S.

2013 John Wiley & Sons, Inc. All rights reserved. PROTEIN SORTING. Lecture 10 BIOL 266/ Biology Department Concordia University. Dr. S. PROTEIN SORTING Lecture 10 BIOL 266/4 2014-15 Dr. S. Azam Biology Department Concordia University Introduction Membranes divide the cytoplasm of eukaryotic cells into distinct compartments. The endomembrane

More information

Questions in Cell Biology

Questions in Cell Biology Name: Questions in Cell Biology Directions: The following questions are taken from previous IB Final Papers on the subject of cell biology. Answer all questions. This will serve as a study guide for the

More information

BIO 5099: Molecular Biology for Computer Scientists (et al) Lecture 15: Being A Eukaryote. Eukaryotic Cells. Basic eukaryotes have:

BIO 5099: Molecular Biology for Computer Scientists (et al) Lecture 15: Being A Eukaryote. Eukaryotic Cells. Basic eukaryotes have: BIO 5099: Molecular Biology for Computer Scientists (et al) Lecture 15: Being a Eukaryote: From DNA to Protein, A Tour of the Eukaryotic Cell. Christiaan van Woudenberg Being A Eukaryote Basic eukaryotes

More information

Protein Trafficking in the Secretory and Endocytic Pathways

Protein Trafficking in the Secretory and Endocytic Pathways Protein Trafficking in the Secretory and Endocytic Pathways The compartmentalization of eukaryotic cells has considerable functional advantages for the cell, but requires elaborate mechanisms to ensure

More information

The Chemical Building Blocks of Life. Chapter 3

The Chemical Building Blocks of Life. Chapter 3 The Chemical Building Blocks of Life Chapter 3 Biological Molecules Biological molecules consist primarily of -carbon bonded to carbon, or -carbon bonded to other molecules. Carbon can form up to 4 covalent

More information

Biological Molecules

Biological Molecules The Chemical Building Blocks of Life Chapter 3 Biological molecules consist primarily of -carbon bonded to carbon, or -carbon bonded to other molecules. Carbon can form up to 4 covalent bonds. Carbon may

More information

Regulation of Gene Expression in Eukaryotes

Regulation of Gene Expression in Eukaryotes Ch. 19 Regulation of Gene Expression in Eukaryotes BIOL 222 Differential Gene Expression in Eukaryotes Signal Cells in a multicellular eukaryotic organism genetically identical differential gene expression

More information

MODULE 3: TRANSCRIPTION PART II

MODULE 3: TRANSCRIPTION PART II MODULE 3: TRANSCRIPTION PART II Lesson Plan: Title S. CATHERINE SILVER KEY, CHIYEDZA SMALL Transcription Part II: What happens to the initial (premrna) transcript made by RNA pol II? Objectives Explain

More information

The Blueprint of Life: DNA to Protein. What is genetics? DNA Structure 4/27/2011. Chapter 7

The Blueprint of Life: DNA to Protein. What is genetics? DNA Structure 4/27/2011. Chapter 7 The Blueprint of Life: NA to Protein Chapter 7 What is genetics? The science of heredity; includes the study of genes, how they carry information, how they are replicated, how they are expressed NA Structure

More information

The Blueprint of Life: DNA to Protein

The Blueprint of Life: DNA to Protein The Blueprint of Life: NA to Protein Chapter 7 What is genetics? The science of heredity; includes the y; study of genes, how they carry information, how they are replicated, how they are expressed 1 NA

More information

Biology 12 Cell Structure and Function. Typical Animal Cell

Biology 12 Cell Structure and Function. Typical Animal Cell Biology 12 Cell Structure and Function Typical Animal Cell Vacuoles: storage of materials and water Golgi body: a series of stacked disk shaped sacs. Repackaging centre stores, modifies, and packages proteins

More information

Translation Activity Guide

Translation Activity Guide Translation Activity Guide Student Handout β-globin Translation Translation occurs in the cytoplasm of the cell and is defined as the synthesis of a protein (polypeptide) using information encoded in an

More information

7.014 Problem Set 7 Solutions

7.014 Problem Set 7 Solutions MIT Department of Biology 7.014 Introductory Biology, Spring 2005 7.014 Problem Set 7 Solutions Question 1 Part A Antigen binding site Antigen binding site Variable region Light chain Light chain Variable

More information

Biomolecules. Biomolecules. Carbohydrates. Biol 219 Lec 3 Fall Polysaccharides. Function: Glucose storage Fig. 2.2

Biomolecules. Biomolecules. Carbohydrates. Biol 219 Lec 3 Fall Polysaccharides. Function: Glucose storage Fig. 2.2 Biomolecules Biomolecules Monomers Polymers Carbohydrates monosaccharides polysaccharides fatty acids triglycerides Proteins amino acids polypeptides Nucleic Acids nucleotides DNA, RNA Carbohydrates Carbohydrates

More information

number Done by Corrected by Doctor Ashraf

number Done by Corrected by Doctor Ashraf number 4 Done by Nedaa Bani Ata Corrected by Rama Nada Doctor Ashraf Genome replication and gene expression Remember the steps of viral replication from the last lecture: Attachment, Adsorption, Penetration,

More information

L I F E S C I E N C E S

L I F E S C I E N C E S 1a L I F E S C I E N C E S 5 -UUA AUA UUC GAA AGC UGC AUC GAA AAC UGU GAA UCA-3 5 -TTA ATA TTC GAA AGC TGC ATC GAA AAC TGT GAA TCA-3 3 -AAT TAT AAG CTT TCG ACG TAG CTT TTG ACA CTT AGT-5 OCTOBER 31, 2006

More information

2.2 Cell Construction

2.2 Cell Construction 2.2 Cell Construction Elemental composition of typical bacterial cell C 50%, O 20%, N 14%, H 8%, P 3%, S 1%, and others (K +, Na +, Ca 2+, Mg 2+, Cl -, vitamin) Molecular building blocks Lipids Carbohydrates

More information

7.06 Cell Biology EXAM #3 April 24, 2003

7.06 Cell Biology EXAM #3 April 24, 2003 7.06 Spring 2003 Exam 3 Name 1 of 8 7.06 Cell Biology EXAM #3 April 24, 2003 This is an open book exam, and you are allowed access to books and notes. Please write your answers to the questions in the

More information

PROTEIN SYNTHESIS. It is known today that GENES direct the production of the proteins that determine the phonotypical characteristics of organisms.

PROTEIN SYNTHESIS. It is known today that GENES direct the production of the proteins that determine the phonotypical characteristics of organisms. PROTEIN SYNTHESIS It is known today that GENES direct the production of the proteins that determine the phonotypical characteristics of organisms.» GENES = a sequence of nucleotides in DNA that performs

More information

BIOH111. o Cell Biology Module o Tissue Module o Integumentary system o Skeletal system o Muscle system o Nervous system o Endocrine system

BIOH111. o Cell Biology Module o Tissue Module o Integumentary system o Skeletal system o Muscle system o Nervous system o Endocrine system BIOH111 o Cell Biology Module o Tissue Module o Integumentary system o Skeletal system o Muscle system o Nervous system o Endocrine system Endeavour College of Natural Health endeavour.edu.au 1 Textbook

More information

Chemistry 107 Exam 4 Study Guide

Chemistry 107 Exam 4 Study Guide Chemistry 107 Exam 4 Study Guide Chapter 10 10.1 Recognize that enzyme catalyze reactions by lowering activation energies. Know the definition of a catalyst. Differentiate between absolute, relative and

More information

BIOLOGY 111. CHAPTER 3: The Cell: The Fundamental Unit of Life

BIOLOGY 111. CHAPTER 3: The Cell: The Fundamental Unit of Life BIOLOGY 111 CHAPTER 3: The Cell: The Fundamental Unit of Life The Cell: The Fundamental Unit of Life Learning Outcomes 3.1 Explain the similarities and differences between prokaryotic and eukaryotic cells

More information

Chapter 5: The Structure and Function of Large Biological Molecules

Chapter 5: The Structure and Function of Large Biological Molecules Chapter 5: The Structure and Function of Large Biological Molecules 1. Name the four main classes of organic molecules found in all living things. Which of the four are classified as macromolecules. Define

More information

Lecture Series 4 Cellular Membranes. Reading Assignments. Selective and Semi-permeable Barriers

Lecture Series 4 Cellular Membranes. Reading Assignments. Selective and Semi-permeable Barriers Lecture Series 4 Cellular Membranes Reading Assignments Read Chapter 11 Membrane Structure Review Chapter 12 Membrane Transport Review Chapter 15 regarding Endocytosis and Exocytosis Read Chapter 20 (Cell

More information

Study Guide Key for CHEM 109 Fall 2015

Study Guide Key for CHEM 109 Fall 2015 Study Guide Key for CEM 109 Fall 2015 Remember you will need to show your work for full credit. n the real exam always work the problems you know best first. If you get hung up on a problem, you should

More information

Alternative RNA processing: Two examples of complex eukaryotic transcription units and the effect of mutations on expression of the encoded proteins.

Alternative RNA processing: Two examples of complex eukaryotic transcription units and the effect of mutations on expression of the encoded proteins. Alternative RNA processing: Two examples of complex eukaryotic transcription units and the effect of mutations on expression of the encoded proteins. The RNA transcribed from a complex transcription unit

More information

MOLECULAR CELL BIOLOGY

MOLECULAR CELL BIOLOGY 1 Lodish Berk Kaiser Krieger scott Bretscher Ploegh Matsudaira MOLECULAR CELL BIOLOGY SEVENTH EDITION CHAPTER 13 Moving Proteins into Membranes and Organelles Copyright 2013 by W. H. Freeman and Company

More information

Chapter 3: Cells. I. Overview

Chapter 3: Cells. I. Overview Chapter 3: Cells I. Overview A. Characteristics 1. Basic structural/functional unit 2. Diameter is too small to see by the naked eye 3. Can be over 3 feet long 4. Trillions of cells in over 200 basic types

More information

LESSON 4.4 WORKBOOK. How viruses make us sick: Viral Replication

LESSON 4.4 WORKBOOK. How viruses make us sick: Viral Replication DEFINITIONS OF TERMS Eukaryotic: Non-bacterial cell type (bacteria are prokaryotes).. LESSON 4.4 WORKBOOK How viruses make us sick: Viral Replication This lesson extends the principles we learned in Unit

More information

Biological Molecules

Biological Molecules Chemical Building Blocks of Life Chapter 3 Biological Molecules Biological molecules consist primarily of -carbon bonded to carbon, or -carbon bonded to other molecules. Carbon can form up to 4 covalent

More information

Molecular Cell Biology 5068 In Class Exam 1 October 3, 2013

Molecular Cell Biology 5068 In Class Exam 1 October 3, 2013 Molecular Cell Biology 5068 In Class Exam 1 October 3, 2013 Exam Number: Please print your name: Instructions: Please write only on these pages, in the spaces allotted and not on the back. Write your number

More information

Student name ID # 2. (4 pts) What is the terminal electron acceptor in respiration? In photosynthesis?

Student name ID # 2. (4 pts) What is the terminal electron acceptor in respiration? In photosynthesis? 1. Membrane transport. A. (4 pts) What ion couples primary and secondary active transport in animal cells? What ion serves the same function in plant cells? 2. (4 pts) What is the terminal electron acceptor

More information

Lecture Series 5 Cellular Membranes

Lecture Series 5 Cellular Membranes Lecture Series 5 Cellular Membranes Cellular Membranes A. Membrane Composition and Structure B. Animal Cell Adhesion C. Passive Processes of Membrane Transport D. Active Transport E. Endocytosis and Exocytosis

More information

MCB130 Midterm. GSI s Name:

MCB130 Midterm. GSI s Name: 1. Peroxisomes are small, membrane-enclosed organelles that function in the degradation of fatty acids and in the degradation of H 2 O 2. Peroxisomes are not part of the secretory pathway and peroxisomal

More information

Biology 4410 First Examination Version B

Biology 4410 First Examination Version B Biology 4410 Spring 2006 Name First Examination Version B This examination consists of two parts, a multiple-choice section and an essay section. Be sure to put your name on both the mark-sense sheet and

More information

A. Membrane Composition and Structure. B. Animal Cell Adhesion. C. Passive Processes of Membrane Transport. D. Active Transport

A. Membrane Composition and Structure. B. Animal Cell Adhesion. C. Passive Processes of Membrane Transport. D. Active Transport Cellular Membranes A. Membrane Composition and Structure Lecture Series 5 Cellular Membranes B. Animal Cell Adhesion E. Endocytosis and Exocytosis A. Membrane Composition and Structure The Fluid Mosaic

More information

Exam 1-Key. Biology II Winter 2013

Exam 1-Key. Biology II Winter 2013 Exam 1-Key Biology II Winter 2013 Multiple Choice Questions. Circle the one best answer for each question. (2 points each) 1. Which of the following is part of the Cell Theory? A. All organisms are composed

More information

Translation. Host Cell Shutoff 1) Initiation of eukaryotic translation involves many initiation factors

Translation. Host Cell Shutoff 1) Initiation of eukaryotic translation involves many initiation factors Translation Questions? 1) How does poliovirus shutoff eukaryotic translation? 2) If eukaryotic messages are not translated how can poliovirus get its message translated? Host Cell Shutoff 1) Initiation

More information

Introduction. Biochemistry: It is the chemistry of living things (matters).

Introduction. Biochemistry: It is the chemistry of living things (matters). Introduction Biochemistry: It is the chemistry of living things (matters). Biochemistry provides fundamental understanding of the molecular basis for the function and malfunction of living things. Biochemistry

More information

Lecture Series 4 Cellular Membranes

Lecture Series 4 Cellular Membranes Lecture Series 4 Cellular Membranes Reading Assignments Read Chapter 11 Membrane Structure Review Chapter 21 pages 709-717 717 (Animal( Cell Adhesion) Review Chapter 12 Membrane Transport Review Chapter

More information

Cell Quality Control. Peter Takizawa Department of Cell Biology

Cell Quality Control. Peter Takizawa Department of Cell Biology Cell Quality Control Peter Takizawa Department of Cell Biology Cellular quality control reduces production of defective proteins. Cells have many quality control systems to ensure that cell does not build

More information

Life Science 1A Practice Midterm Exam 2. November, 2006

Life Science 1A Practice Midterm Exam 2. November, 2006 Name: TF: Section Time Life Science 1A Practice Midterm Exam 2 November, 2006 Pease write egiby in the space provided beow each question. You may not use cacuators on this exam. We prefer that you use

More information

The Star of The Show (Ch. 3)

The Star of The Show (Ch. 3) The Star of The Show (Ch. 3) Why study Carbon? All of life is built on carbon Cells ~72% 2 O ~25% carbon compounds carbohydrates lipids proteins nucleic acids ~3% salts Na, Cl, K Chemistry of Life Organic

More information

Last time we talked about the few steps in viral replication cycle and the un-coating stage:

Last time we talked about the few steps in viral replication cycle and the un-coating stage: Zeina Al-Momani Last time we talked about the few steps in viral replication cycle and the un-coating stage: Un-coating: is a general term for the events which occur after penetration, we talked about

More information

Look at the following images, what are some similarities and differences between the cells?

Look at the following images, what are some similarities and differences between the cells? Look at the following images, what are some similarities and differences between the cells? Name the two different types of cells 1. Prokaryotic Cells 2. Eukaryotic Cells Unit 3: Cells Objective: To

More information

Chapt. 10 Cell Biology and Biochemistry. The cell: Student Learning Outcomes: Describe basic features of typical human cell

Chapt. 10 Cell Biology and Biochemistry. The cell: Student Learning Outcomes: Describe basic features of typical human cell Chapt. 10 Cell Biology and Biochemistry Cell Chapt. 10 Cell Biology and Biochemistry The cell: Lipid bilayer membrane Student Learning Outcomes: Describe basic features of typical human cell Integral transport

More information

The Structure and Function of Large Biological Molecules

The Structure and Function of Large Biological Molecules NAME DATE Chapter 5 - The Structure and Function of Large Biological Molecules Guided Reading Concept 5.1: Macromolecules are polymers, built from monomers 1. The large molecules of all living things fall

More information

1. to understand how proteins find their destination in prokaryotic and eukaryotic cells 2. to know how proteins are bio-recycled

1. to understand how proteins find their destination in prokaryotic and eukaryotic cells 2. to know how proteins are bio-recycled Protein Targeting Objectives 1. to understand how proteins find their destination in prokaryotic and eukaryotic cells 2. to know how proteins are bio-recycled As a protein is being synthesized, decisions

More information

Human Anatomy & Physiology

Human Anatomy & Physiology PowerPoint Lecture Slides prepared by Barbara Heard, Atlantic Cape Community College Ninth Edition Human Anatomy & Physiology C H A P T E R 3 Annie Leibovitz/Contact Press Images 2013 Pearson Education,

More information

The Cell and Cellular transport

The Cell and Cellular transport Cell theory (1838): The Cell 1. All organisms are composed of one or more cells, and the life processes of metabolism and heredity occur within these cells. 2. Cells are the smallest living things, the

More information

Human Genome: Mapping, Sequencing Techniques, Diseases

Human Genome: Mapping, Sequencing Techniques, Diseases Human Genome: Mapping, Sequencing Techniques, Diseases Lecture 4 BINF 7580 Fall 2005 1 Let us review what we talked about at the previous lecture. Please,... 2 The central dogma states that the transfer

More information

Chapter 3 Part 2! Pages (10 th and 11 th eds.)! The Cellular Level of Organization! Cellular Organelles and Protein Synthesis!

Chapter 3 Part 2! Pages (10 th and 11 th eds.)! The Cellular Level of Organization! Cellular Organelles and Protein Synthesis! Chapter 3 Part 2! Pages 65 89 (10 th and 11 th eds.)! The Cellular Level of Organization! Cellular Organelles and Protein Synthesis! The Cell Theory! Living organisms are composed of one or more cells.!

More information

(A) Cell membrane (B) Ribosome (C) DNA (D) Nucleus (E) Plasmids. A. Incorrect! Both prokaryotic and eukaryotic cells have cell membranes.

(A) Cell membrane (B) Ribosome (C) DNA (D) Nucleus (E) Plasmids. A. Incorrect! Both prokaryotic and eukaryotic cells have cell membranes. High School Biology - Problem Drill 03: The Cell No. 1 of 10 1. Which of the following is NOT found in prokaryotic cells? #01 (A) Cell membrane (B) Ribosome (C) DNA (D) Nucleus (E) Plasmids Both prokaryotic

More information

Biology 4410 First Examination Version B

Biology 4410 First Examination Version B Biology 4410 Spring 2006 Name First Examination Version B This examination consists of two parts, a multiple-choice section and an essay section. Be sure to put your name on both the mark-sense sheet and

More information