VACCINATION. C. Mhorag Hay

Size: px
Start display at page:

Download "VACCINATION. C. Mhorag Hay"

Transcription

1 C. Mhorag Hay VACCINATION What you need to know: 1. The nature and function of passive and active immunization 2. The role of humoral and cellular immunity in vaccination 3. The types of vaccines currently available and the pros and cons of their use Introduction: Vaccination, or immunization, is the act of artificially inducing immunity from disease. Its use dates back to 1796 when Jenner showed that inoculating vesicular fluid from cowpox lesions into the skin of susceptible individuals could protect them against smallpox infection. A modified cowpox virus known as vaccinia virus is currently used to protect against smallpox and it is from this that we get the term vaccination. Passive versus Active Immunization: Passive immunization consists of providing temporary protection from disease through the administration of exogenously produced antibody. Infants are passively immunized from their mothers through transplacental transfer of maternal antibodies. These antibodies protect the infant for 3-6 months after birth and allow the infant s own immune system time to develop. Pooled human IgG, known as immunoglobulin, is used for passive immunization against hepatitis A and measles. Passive immunization against these diseases is used after a non-immune person has been exposed to the infection but before they develop the disease in an attempt to avoid serious illness. Pooled immunoglobulin is also used to prevent infection in individuals with immune deficiencies such as X-linked agammaglobulinemia. Special preparations of immunoglobulin taken from donor pools with high levels of antibodies specific to certain infectious agents are also used to passively protect individuals from infections. - Hepatitis B immune globulin is used to protect neonates born to hepatitis B carrying women and to protect non-immune persons after exposure to HBV. - Varicella zoster immune globulin (VZIG) is used to prevent serious chickenpox infections in exposed, non-immune individuals at high risk of severe infection. - Rabies immune globulin is used to protect people exposed to rabies infection during the time it takes for immunity to be built up by active immunization. - RSV immune globulin (RSVIG) is used to protect premature infants and infants with lung disease from serious RSV infection - Tetanus immune globulin (TIG) is used to prevent tetanus infections in unimmunized, exposed individuals

2 Antibodies provided by passive immunization are generally short-lived and do not give the long-lasting protection of active immunization strategies. Active immunization consists of inducing the body to develop defenses against disease. This usually is accomplished by giving agents that stimulate the body s immune system to produce antibodies and/or cell mediated immune responses against a particular infectious agent. This is the form of immunization that we usually think of when we talk about vaccination and the various agents of active immunization will be covered in detail in the following sections. The immune system in active immunization: Antibodies react with antigens in the blood stream and extracellular fluid and at mucosal surfaces. They cannot readily reach intracellular sites of infection. Most antibodies produced by vaccines are thymus-dependent in that they require activation of T helper cells to initiate B cell proliferation and antibody production. After an antigen, in this case a vaccine component, enters the body it is presented by mononuclear phagocytes or dendritic cells which trigger a cascade of cytokines and stimulate the maturation of naïve T helper cells into T helper type 2 cells (T H 2). T H 2 cells in turn produce cytokines that lead to maturation of naïve B cells and release of specific antibody. After the initial immune response is induced by the vaccine, activated B cells become resting memory cells ready to respond rapidly when the antigen is encountered again. Protective antibodies against bacterial infections work in several different ways depending on the type of pathogen encountered. They can: 1. Inactivate soluble toxic products (anti-toxins, e.g. diphtheria vaccine) 2. Facilitate phagocytosis of bacteria (e.g. pneumococcal vaccine) 3. Interact with serum complement to damage bacterial membranes and facilitate bacteriolysis (typhoid vaccine) and/or 4. Interfere with the bacterium s ability to adhere to mucosal surfaces. Protective antibodies against viral infections can only work when the virus is in extracellular spaces. These antibodies may bind to viruses preventing their entry into cells or may interfere with uncoating of virus particles or other steps in the viral lifecycle. Cell mediated immunity is directed against intracellular antigens and thus is most effective against organisms that spend at least part of their lifecycle inside cells. Cytotoxic T cells (CTL) recognize small fragments of antigens presented on the surface of infected cells in combination with HLA class I molecules. The T cell receptor molecules of CTL are designed to recognize a specific antigen in combination with a specific HLA molecule. Like thymus dependent antibody production, the induction of cellular immunity is dependent upon the activation of T helper cells; however, in order to stimulate cell mediated immunity, T helper cells mature along the T helper type 1 (T H 1) pathway. T H 1 cells release cytokines that cause the maturation of naïve cytotoxic T cells which can then recognize intracellular antigens using their T cell receptors. When the T cell receptor of the mature CTL recognizes its antigen combined with its HLA class I molecule on the surface of an infected cell it releases substances that kill the infected cell. Like antibody producing B cells, CTL can become resting memory cells ready to become activated as soon as the host is exposed to the antigen again. 2

3 On first exposure to a vaccine antigen, the primary response requires a latent period of several days before humoral (antibody) and cell mediated immunity can be detected. Circulating antibodies do not appear for 7-10 days and initially are of the IgM class. Two or more weeks after vaccination the titers of IgG antibodies rise. After a second exposure to the same antigen heightened antibody and cell mediated immune responses are seen and occur within 4-5 days after exposure. Because antibody responses are easier to measure, the response to a vaccine is usually measured by the antibody titer in the serum of the vaccinated host; however, cell mediated immune responses have been shown to be induced by vaccines and the lack of detectable antibody does not mean that the individual is necessarily unprotected by the vaccine. Determinants of the Effectiveness of Active Immunization: The ability of a vaccine to produce an effective immune response is determined by the vaccine antigen(s), the genetic background of the vaccinee (e.g. HLA type), the physiologic condition of the vaccinee, the manner in which the vaccine antigen is presented, dose, use of adjuvants and route of administration. HLA types vary widely amongst individuals and contribute the recognition of different parts of a complex antigen in different populations. This variation is of particular importance for vaccines that primarily attempt to elicit cell mediated immunity (e.g. HIV vaccine). These vaccines must contain antigenic molecules that can be recognized and presented by at least one HLA molecule in every individual vaccinated. Differences in HLA types may explain why certain people never respond to certain vaccines (hepatitis B vaccine). The age, nutritional status, and immune status of a vaccinee may influence the effectiveness of the response to a vaccine. Young infants often do not respond to vaccines because of the presence of maternal antibodies. The elderly often have diminished immune responses to vaccines because of waning cellular immunity. Severely malnourished individuals have blunted immune responses and people with immune deficiencies may be unable to respond to many vaccines. The type of vaccine used may have significant effects on immunogenicity. Live attenuated vaccines, in which a weakened strain of live infectious agent is given to the vaccinee (measles, mumps, rubella), actually multiply in the recipient until checked by the immune response. Most of these vaccines can confer life-long immunity after a single dose because they allow for large amounts of antigen to be presented to the immune system. Killed or subunit (vaccines containing only part of the infecting organism) vaccines in contrast usually require more than a single dose and often require booster shots (tetanus, rabies, diphtheria) throughout life. The dose and route of administration of the vaccine can also affect immunogenicity. There is usually a dose-response curve relationship between antigen dose and peak response; however, this response often plateaus. The route of administration may determine the nature of the immune response to a vaccine. Intranasally administered vaccines are more likely to induce local IgA production than parenterally administered vaccines. Adjuvants are substances added to vaccines that enhance the immunogenicity of antigens. They are particularly useful with inactivated vaccines and toxoids. The mechanism of immune enhancement is not completely defined but may include mobilization of phagocytes and delayed release of antigen. 3

4 Currently Available Vaccines Recommended for General Use: Currently available vaccines can be made up of live attenuated organisms, whole killed organisms, fractions of organisms or toxoids (modified bacterial toxins which are nontoxic but retain immunogenicity). Live attenuated vaccines consist of live organisms that have been specially modified to make them considerably less virulent than wild type pathogens. These vaccines have the ability to infect the vaccinated host and multiply, but generally do not cause disease. For the reasons given earlier, they are generally the most effective vaccines available; however, because they do contain live organisms their use may be problematic in certain populations (e.g. pregnant women, people with AIDS, etc) and not every organism can be attenuated enough that it does not cause disease but remains capable of inducing an immune response (e.g. HIV to date). Measles vaccine is a live attenuated virus vaccine with an efficacy of over 95% when administered in a single dose to children over the age of 15 months; however, because measles can continue to circulate in the 2-5% of the population who do not respond, 2 doses of vaccine are recommended (second dose generally at school entry). The introduction of the measles vaccine in the US has resulted in 99.75% decrease in measles cases; however, vaccination rates may be quite low in developing countries. Travelers should be adequately vaccinated as a recent outbreak of measles in Queens in US born infants who had traveled to India before being vaccinated illustrates. Mumps vaccine is also a highly effective live attenuated vaccine recommended for all children over the age of one who do not have specific contraindications (immunocompromise). Protection is lifelong after a single dose although most people receive two doses as part of the MMR vaccine. The mumps vaccine has led to a 98.3% decline in mumps cases in the US since Rubella vaccine is a live attenuated vaccine which makes up the third component of the MMR vaccine. Its purpose is to prevent the congenital rubella syndrome by ensuring that all women of childbearing age are protected against infection. A single dose confers lifelong protection in 95% of vaccinees. Because the live attenuated rubella virus can cross the placenta this vaccine is contraindicated in all pregnant women and within three months of a planned conception. However, data on 226 women who received rubella vaccine during pregnancy or within three months of conception showed no evidence of congenital rubella syndrome. Oral polio vaccine is a live attenuated vaccine given in three doses to children at 2, 4, and 6 months of age. It is highly effective and easy to administer; however, because live polio virus is secreted from the intestines of vaccinated individuals for a short time after vaccination and because vaccine polio virus can cause paralytic disease this form is no longer used in this country where polio has been eradicated. Oral polio vaccine is still the vaccine of choice of the World Health Organization s effort to eradicate polio from the world. Varicella zoster vaccine was approved in 1995 for use in the United States. It is given at months of age and is highly effective in preventing severe varicella infections. Its use is also recommended for adults who may be exposed to VZV and who are not immune (health care workers, daycare attendants, etc). This vaccine was originally developed for immunocompromised children; however, because it can cause chickenpox-like symptoms it is currently contraindicated in individuals with severe immunodeficiency. The vaccine can cause a mild chickenpox rash in immunocompetent hosts and has been shown to go latent in dorsal ganglion cells with subsequent reactivation zoster; however, it is felt that the risk of zoster in vaccinated individuals is less than that in naturally infected individuals. 4

5 Whole killed vaccines consist of organisms that have been inactivated so that they are no longer capable of infecting a host or of multiplying within the vaccinated host. These vaccines do not cause disease but can elicit an immune response. However, because they do not replicate in the vaccinee they provide less antigenic stimulus than live attenuated vaccines and often require multiple doses to ensure protection. For the most part, these vaccines are safe and can be used in immunocompromised individuals. Adverse reactions to whole killed vaccines are often seen in children. Hepatitis A vaccine is derived from formalin inactivation of hepatitis A virus and is recommended for travelers to areas of the world where hepatitis A is endemic and for children in communities with high rates of hepatitis A (and there are a lot!). The vaccine is very effective at least in the short term. Two doses given 6-12 months apart appear to be protective for at least 10 years. Longer term protection may require further boosting. Influenza virus vaccine is composed of whole or disrupted (split) influenza viruses. The viruses chosen change from flu season to flu season depending upon which strains are likely to circulate. Revaccination is recommended yearly as strains change and antibody levels decline over a 6-9 month period after vaccination. Efficacy of this vaccine is 60-80% in healthy adults. It is less in elderly and immunocompromised individuals; however, the vaccine is still effective in this group at preventing serious illness, hospitalization and death. A live attenuated nasal influenza vaccine (Flumist) recently received FDA approval for healthy individuals aged Pertussis vaccines come in two different preparations in this country. The first to be introduced was the whole cell vaccine which consists of whole killed Bordetella pertussis. More recently an acellular preparation has become available which consists of combinations of purified components of the organism and detoxified pertussis toxin. Whole cell pertussis vaccines are associated with a higher rate of adverse events after vaccination than are most other vaccines in common use. In a large prospective study more than 60% of vaccinees had local reactions or fever after receiving the vaccine. Febrile convulsions (without sequelae) were seen in 1/1750 vaccinees. Acellular pertussis vaccine causes fewer local and systemic reactions than the whole virus vaccine and for this reason is now the favored form of vaccination. Pertussis vaccine is usually combined with diphtheria and tetanus vaccines to produce the DTP (now DTaP as the acellular preparation is used) given to infants at 2, 4, 6, and months with a booster at school entry age. Inactivated polio vaccine is currently the polio vaccine of choice in the United States. It is prepared by formalin inactivation of poliovirus strains and has been formulated to contain antigens recognized by 99% of the population (enhanced potency IPV). This vaccine is more immunogenic than OPV but must be administered parenterally (subcutaneously). It is given on the same schedule as OPV (2, 4, 6-18 months) and has an excellent safety record. Vaccination against polio has resulted in the eradication of wild-type polio infection from the Western hemisphere and from Europe. Subunit vaccines consist of immunogenic parts of whole organisms and are used when attenuation of the organism is difficult and whole killed vaccines are either not immunogenic enough or too toxic. Many subunit vaccines are conjugated, that is attached to protein carriers which greatly enhance their immunogenicity. Subunit vaccines, like killed vaccines, cannot cause disease. In general, adverse events are rare with subunit vaccines. Haemophilus b vaccine consists of purified high molecular weight haemophilus b polysaccharide (PRP) which is covalently linked to a carrier protein. The linkage of the polysaccharide to the carrier protein greatly enhances the immunogenicity of the vaccine 5

6 and allows for its use in young infants (the group most at risk of serious Hib infection). There are currently 4 licensed formulations of the vaccine which differ in their carrier protein. PRP-D, which consists of the PRP linked to diphtheria toxoid, is the least immunogenic of the 4 and is not recommended for use in infants. PRP-OMC, which consists of the PRP linked to the outer membrane protein complex derived from N. meningitidis, is the most immunogenic formulation. PRP-T (PRP linked to tetanus toxoid) and HbOC (oligosaccharide linked to mutant diphtheria toxin protein) are as effective as PRP-OMC but require an extra dose of vaccine at 6 months. Hib vaccine is generally given at 2 and 4 months of age with a boost at months if using the PRP- OMC preparation. If using PRP-T or HbOC a third dose at 6 months followed by a boost at months is recommended. All preparations of the vaccine are quite safe and have resulted in a dramatic decrease in serious Hib infections in vaccinated populations. Hepatitis B vaccine consists of purified, inactivated hepatitis B surface antigen particles derived, nowadays, from recombinant DNA technology. In some other countries HBV vaccine is still made from HBsAg particles derived from the plasma of chronic carriers of HBV. The vaccine is safe, well-tolerated and generally highly effective although a small number of vaccinated individuals never seroconvert. Vaccination is currently recommended for all adults with potential blood/ body fluid exposure (that includes all of you) and is given to all infants in the United States (usually in combination with a Hib vaccine). Meningococccal polysaccharide vaccine contains purified meningococcal polysaccharides of groups A, C, Y, and W135. A single IM dose induces protective antibody levels in over 90% of vaccinees over the age of 2. Adverse events are rare. The vaccine is recommended for high risk groups including those with complement deficiency, asplenia, and travelers to countries with endemic disease. It is recommended by some for college students, particularly freshmen living in dormitory accommodation. It should be noted that the vaccine does not confer protection against group B meningococcus infection -- an important cause of meningitis. Both pneumococcal polysaccharide vaccine and conjugated pneumococcal polysaccharide vaccine are currently available in the United States. The unconjugated vaccine consists of 23 different serotypes of pneumococcal capsular polysaccharide covering the strains responsible for 85% of all bacteremic pneumococcal disease in the US. This vaccine is recommended for people over the age of 65 and in adults and children over the age of 2 with high risk for pneumococcal disease. The conjugated pneumococcal polysaccharide vaccine consists of polysaccharide from 7 serotypes of pneumococcus linked to protein carriers. It is recommended for all children aged 2-23 months and is generally given at 2,4,6, and months. Toxoids are modified bacterial toxins that have been rendered non-toxic but retain the ability to stimulate the formation of antibodies (antitoxins). Toxoids are generally safe and well-tolerated but most do not produce life-long immunity and require booster doses. Diphtheria toxoid is a purified preparation of inactivated diphtheria toxin. It is highly effective in inducing antibodies that will prevent disease although it has little effect on acquisition or carriage of the actual organism, Corynebacterium diphtheriae, that makes the toxin. Local reactions to the toxoid are frequent especially with booster doses. A high dose of toxoid is given in combination with pertussis vaccine and tetanus toxoid to young children (DTaP) and in a lower dose in combination with tetanus toxoid (Td) to older children and adults. After the initial 3 doses of toxoid, booster doses need to be given every 10 years to ensure continued protection against diphtheria. The use of the diphtheria toxoid has resulted in a 99.99% decrease in cases of diphtheria in the United States from 1921 to

7 Tetanus toxoid is a purified preparation of inactivated tetanus toxin precipitated with alum and is one of the most effective immunizing agents known. A course of 3 doses induces protective antibodies in over 95% of recipients. It is given to young children as part of the DTaP vaccine and to older children and adults as the Td vaccine. After the initial series of vaccinations boosters are recommended every 10 years (given as Td to ensure both tetanus and diphtheria protection is given). The most common side effects are fever and local reactions. As the local reactions can be quite severe, boosters are recommended only every 10 years unless a particularly tetanus-prone wound has occurred in which case a booster should be given if it is more than 5 years since the last booster. Tetanus cases have decreased over 97% since the introduction of tetanus toxoid. Other Vaccines to Know About: A number of other vaccines are available and recommended for use under certain circumstances. It is worthwhile knowing about these vaccines especially if you work with travelers and immigrants, plan to travel yourself, or have an interest in potential agents of bioterrorism. Anthrax vaccine is a cell-free filtrate prepared from microaerophilic cultures of an avirulent strain of Bacillus anthracis. The vaccine is indicated only for those at high risk of anthrax infection (this definition may change over time but currently consists of people coming into contact with animal hides from endemic areas, laboratory personnel working with anthrax, and the military). Its efficacy is not known but it does induce antibodies in over 90% of individuals who receive the primary course of 6 subcutaneous injections. Annual boosting is required to sustain antibody levels. Mild local reactions are quite common however system reactions are very rare. BCG vaccine contains living Calmette-Guerin bacillus, an attenuated strain of Mycobacterium bovis. Although widely used throughout the world it is not recommended for general use in the United States because it can affect the PPD test and is of controversial efficacy. It appears to be most effective in preventing complications of disseminated TB in young children and it is therefore recommended primarily for infants and young children at high risk of exposure to TB in the US. Because BCG vaccine contains live organisms, it can disseminate in immunocompromised individuals and therefore it should not be used in this population. BCG produces a vigorous local immune response and has been instilled into the bladder to produce an immune response in people with bladder cancer. Rabies vaccine is an inactivated virus vaccine prepared in human or fetal rhesus lung diploid cell culture. The human diploid cell preparation (HDCV) can be used either intramuscularly or intradermally, while the rhesus lung preparation (RVA) can only be used IM. Rabies vaccine is used in people likely to be exposed to rabies (veterinarians, certain travelers, etc) or in people who have been exposed to potentially rabid animals. Preexposure prophylaxis is given as three doses either IM or intradermally at 0, 7, days with follow-up boosting every 2 years or when a potential exposure has occurred. Postexposure prophylaxis is given as 5 IM shots on days 0, 3, 7, 14, and 28 along with rabies immune globulin on day 0. Rabies immune globulin is not needed in persons who have received pre-exposure prophylaxis. Local reactions are common (30-74% of vaccinees) and systemic complaints are also frequently seen with rabies vaccine but no contraindication exists for its administration to at risk or exposed individuals (remember the alternative is certain death). Yellow fever vaccine is a live attenuated virus preparation. It is highly effective and very well tolerated and excellent immunity is achieved after a single dose of vaccine. It is recommended for travelers to areas of endemnicity and is required by some countries for entry. As it is a live attenuated virus its use is contraindicated in 7

8 immunocompromised individuals; although pregnancy is not an absolute contraindication for its use. Smallpox vaccine has resulted in the eradication of naturally occurring smallpox infection on earth. Smallpox vaccines are derivatives of cowpox (vaccinia) virus and are the derivatives of one of three strains: Elstree (Lister, France) strain, EM63 (Moscow) strain, and the New York City Board of Health strain. Smallpox vaccines are produced from a seed virus propagated on the skin of calves and then processed to eliminate bacterial contamination. Vaccinations are given over the deltoid region of the upper arm using a bifurcated needle dipped in the vaccine. The needle is held perpendicular to the skin and pressed in and out 5 times in unvaccinated individuals, 15 times in previously vaccinated individuals. A successful vaccination is defined as a pustular lesion or an area of definite induration or congestion surrounding a central lesion 6-8 days after vaccination. Although smallpox vaccine is highly effective, it does have a number of serious adverse consequences which preclude its general use at the current time. The most frequent complications include: vaccinia necrosum: an often lethal complication of inadvertent vaccination of an immunocompromised host which consists of the insidious progression of an initially normal appearing vaccination with the development of metastatic lesions throughout the body eczema vaccinatum: the consequence of local spread and/or dissemination of vaccinia virus infection in individuals with atopic dermatitis generalized vaccinia: a nonspecific term used to describe a vesicular rash that develops after vaccination. Unlike actual generalized infection such as is seen in vaccinia necrosum or eczema vaccinatum, these reactions can be seen in normal hosts, are generally not accompanied by systemic symptoms, and do not yield virus on culture of the lesions erythematous urticarial eruptions: erythematous rashes observed in otherwise healthy individuals 7-12 days after vaccination. Postinfectious encephalitis is one of the most serious complications of vaccination in normal hosts with a mortality of 10-30%. It occurs in 1/100,000 primary vaccinees. Myocarditis: since the reactivation of smallpox vaccination in military personnel and selected civilian populations, myocarditis, pericarditis and myopericarditis have been reported. Persons with preexisting heart disease are currently advised not to be vaccinated. Sources for Information on Vaccines: Vaccine recommendations do change quite frequently and it is important to know where to go to get the latest updates. In the US, the Advisory Committee on Immunization Practices (ACIP) is responsible for making vaccination recommendations. Their web-page, includes updated schedules as well as information on how to administer vaccines (where to administer, which ones can be given together), adverse events, and information on individual vaccines. The CDC s web page, includes information on vaccination for travelers, and the WHO, lists travel advice and world-wide vaccination effort updates. 8

9 Baseline 20 th Century Annual Morbidity and 1998 Provisional Morbidity from Nine Diseases with Vaccines Recommended before 1990 for Universal Use in Children-United States Baseline 1998 Disease Morbidity Morbidity % Decrease Smallpox 48, % Diphtheria 175, % Pertussis 147, % Tetanus % Poliomyelitis 16, % Measles 503, % Mumps 152, % Congenital Rubella % H. influenza type b 20, % Adapted from MMWR 1999;48 (12)245. 9

10 Vaccines Currently Available Disease Vaccine Type Who should receive vaccine Diphtheria Toxoid Children and adults Tetanus Toxoid Children and adults Pertussis Killed whole cell Not recommended in US Acellular Children H. influenza type b Capsular polysaccharide- Children protein conjugate Meningococcus A,C,Y,W135 Capsular polysaccharide Asplenic patients, military personnel, college freshmen, travelers to endemic areas Asplenic patients, elderly, chronic lung disease Infants Pneumococcus Capsular polysaccharide (23 serovars) Capsular polysaccharideprotein conjugate (7 serovars) Anthrax Cell-free filtrate Military personnel, imported fur handlers Tuberculosis Live attenuated- BCG Not recommended in US Polio Inactivated (IPV) Children, unvaccinated adults traveling to endemic areas Live attenuated (OPV) Not recommended in US Measles Live attenuated Children, non-immune adults Mumps Live attenuated Children, non-immune adults Rubella Live attenuated Children, non-immune adults Chickenpox Live attenuated Children, non-immune adults at risk (healthcare workers, daycare attendants) Influenza Inactivated Adults over 55, at risk populations, healthcare Live attenuated Healthy aged 5-49 Hepatitis B Subunit Infants, high risk adultshealthcare workers, sex workers, IVDU Hepatitis A Inactivated Adults and children in endemic areas Yellow fever Live attenuated Travelers to endemic areas Rabies Inactivated Pre-exposure- travelers, veterinarians Post-exposure- anyone exposed Smallpox Live attenuated Military personnel, selected first responders 10

11 Combination Vaccines Currently Available Vaccine MMR Components Measles, Mumps, Rubella DTaP Diphtheria, Tetanus, acellular Pertussis Td Pediarix Comvax TriHIBit Twinrix Tetanus, low dose diphtheria DTaP, Hepatitis B, IPV Hepatitis B and Hib Hib, DTaP- can only be used as booster dose of Hib Hepatitis A and B- only approved for adults 11

VACCINATION. Magdalena E. Sobieszczyk

VACCINATION. Magdalena E. Sobieszczyk Magdalena E. Sobieszczyk VACCINATION GOALS: 1. Understand passive and active immunization 2. Understand the role of humoral and cell-mediated immunity in vaccination 3. Review the types of vaccines currently

More information

VACCINATION. DR.FATIMA ALKHALEDY M.B.Ch.B;F.I.C.M.S/C.M.

VACCINATION. DR.FATIMA ALKHALEDY M.B.Ch.B;F.I.C.M.S/C.M. VACCINATION DR.FATIMA ALKHALEDY M.B.Ch.B;F.I.C.M.S/C.M. IMMUNIZATION Immunization is defined as the procedure by which the body is prepared to fight against a specific disease. It is used to induce the

More information

9/10/2018. Principles of Vaccination. Immunity. Antigen. September 2018

9/10/2018. Principles of Vaccination. Immunity. Antigen. September 2018 Centers for Disease Control and Prevention National Center for Immunization and Respiratory Diseases Principles of Vaccination September 2018 Chapter 1 September 2018 Photographs and images included in

More information

Vaccines and other immunological antimicrobial therapy 1

Vaccines and other immunological antimicrobial therapy 1 Vaccines and other immunological antimicrobial therapy 1 Vaccines Vaccine: a biological preparation that provides active acquired immunity to a particular disease. Vaccine typically contains an agent that

More information

Principles of Vaccination

Principles of Vaccination Immunology and Vaccine-Preventable Diseases Immunology is a complicated subject, and a detailed discussion of it is beyond the scope of this text. However, an understanding of the basic function of the

More information

Vaccines. Magdalena Sobieszczyk, MD, MPH Division of Infectious Diseases Columbia University. Outline

Vaccines. Magdalena Sobieszczyk, MD, MPH Division of Infectious Diseases Columbia University. Outline Vaccines Magdalena Sobieszczyk, MD, MPH Division of Infectious Diseases Columbia University Outline Public health impact of vaccines Historical perspective Active vs. Passive Immunization Immune system

More information

Immunity and how vaccines work

Immunity and how vaccines work Immunity and how vaccines work Dr Mary O Meara National Immunisation Office Objectives of session An understanding of the following principles Overview of immunity Different types of vaccines and vaccine

More information

Guidelines for Vaccinating Pregnant Women

Guidelines for Vaccinating Pregnant Women Guidelines for Vaccinating Pregnant Women March 2012 Guidelines for Vaccinating Pregnant Women Abstracted from recommendations of the Advisory Committee on Immunization Practices (ACIP) MARCH 2012 Risk

More information

Vaccinations for Adults

Vaccinations for Adults Case: Vaccinations for Adults Lisa Winston, MD University of California, San Francisco San Francisco General Hospital A 30-year old healthy woman comes for a routine visit. She is recently married and

More information

Guidelines for Vaccinating Pregnant Women

Guidelines for Vaccinating Pregnant Women Guidelines for Vaccinating Pregnant Women April 2013 Guidelines for Vaccinating Pregnant Women Abstracted from recommendations of the Advisory Committee on Immunization Practices (ACIP) April 2013 Risk

More information

APEC Guidelines Immunizations

APEC Guidelines Immunizations Pregnancy provides an excellent opportunity to enhance a woman s protection against disease and to provide protection to the neonate during the first 3 to 6 months of life. Women of childbearing age should

More information

Gene Vaccine Dr. Sina Soleimani

Gene Vaccine Dr. Sina Soleimani Gene Vaccine Dr. Sina Soleimani Human Viral Vaccines Quality Control Laboratory (HVVQC) Titles 1. A short Introduction of Vaccine History 2. First Lineage of Vaccines 3. Second Lineage of Vaccines 3. New

More information

Immunity & How Vaccines Work

Immunity & How Vaccines Work Immunity & How Vaccines Work Immunisation Study Day 30 th November 2016 Talk given today by Dr. Mary Fitzgerald Learning outcome To be able to describe in outline the immune system and how vaccines work

More information

Trends in vaccinology

Trends in vaccinology Trends in vaccinology Mathieu Peeters, MD Joint Conference of European Human Pharmacological Societies and Joint Conference of European Human Pharmacological Societies and 20th Anniversary of AGAH March

More information

VACCINATION PASSIVE IMMUNITY

VACCINATION PASSIVE IMMUNITY VACCINATION Immunization is one of the most beneficial and cost-effective disease prevention measures. As a result of effective and safe vaccines, smallpox has been eradicated, polio is close to worldwide

More information

2/20/2019. The need for adult vaccinations. Update on Adult Immunizations. The Need for Adult Vaccinations. Objectives:

2/20/2019. The need for adult vaccinations. Update on Adult Immunizations. The Need for Adult Vaccinations. Objectives: The need for adult vaccinations Update on Adult Immunizations Objectives: Recall the latest recommendations on adult vaccinations Detail the importance of adult vaccinations I m not a kid.. Why are you

More information

CHILDHOOD VACCINATION

CHILDHOOD VACCINATION EPI (3) Age of Child How and Where is it given? CHILDHOOD VACCINATION Nicolette du Plessis Block 10 28/02/2012 10 weeks DTaP-IPV/Hib (2) Diphtheria, Tetanus, Acellular pertussis, Inactivated polio vaccine,

More information

Please read Chapters 5, 6 and 7 of your vaccine text for next Wednesday s lecture. Chapters 9, 17 and 8 for next Friday s lectures

Please read Chapters 5, 6 and 7 of your vaccine text for next Wednesday s lecture. Chapters 9, 17 and 8 for next Friday s lectures Valerie Daggett Please read Chapters 5, 6 and 7 of your vaccine text for next Wednesday s lecture Chapters 9, 17 and 8 for next Friday s lectures ppt files for first 2 lectures Past exams Principles of

More information

Vaccines Indicated for Infants, Children, and Adolescents Based on Medical and Other Indications

Vaccines Indicated for Infants, Children, and Adolescents Based on Medical and Other Indications Vaccines Indicated for Infants, Children, and Adolescents Based on Medical and Other Indications Vaccine Prematurity 1 Altered Immunocompetence 2 (excluding human immunodefi ciency virus [HIV] infection)

More information

Preventative Vaccines. Vaccines for Special Populations. Vaccinations for Adults: An Update. Vaccines Generally Available in the U.S.

Preventative Vaccines. Vaccines for Special Populations. Vaccinations for Adults: An Update. Vaccines Generally Available in the U.S. Vaccinations for Adults: An Update Preventative Vaccines Need to be extremely safe Even greater issue as disease prevalence wanes or uncommon diseases targeted Lisa G. Winston, MD University of California,

More information

Immunizations June 5, Brenda Ormesher, MD Infectious Disease Peacehealth Medical Group Springfield, OR

Immunizations June 5, Brenda Ormesher, MD Infectious Disease Peacehealth Medical Group Springfield, OR Immunizations June 5, 2015 Brenda Ormesher, MD Infectious Disease Peacehealth Medical Group Springfield, OR Disclosures None Goals Understand basic public health impact of immunization Recognize types

More information

Immunization. Historical point

Immunization. Historical point Immunization Historical point In 1796 Edward Jenner s use of material from cowpox pustules to provide protection against smallpox. Louis Pasteur s 1885 rabies was the next to make an impact on human disease

More information

Armed Services Blood Program Immunization List

Armed Services Blood Program Immunization List Immunization List NOTICE: The Department of Defense (DoD) assumes no risk for the use of this information by non-dod personnel, blood programs, or individual medical institutions. The use of this information

More information

Recommended Childhood Immunization Schedu...ates, January - December 2000, NP Central

Recommended Childhood Immunization Schedu...ates, January - December 2000, NP Central Recommended Childhood Immunization Schedule United States, January - December 2000 Vaccines 1 are listed under routinely recommended ages. Solid-colored bars indicate range of recommended ages for immunization.

More information

Vaccines. Vaccines ( continued 1) February 21, 2017 Department of Public Health Sciences

Vaccines. Vaccines ( continued 1) February 21, 2017 Department of Public Health Sciences Infectious Disease Epidemiology BMTRY 713 (A. Selassie, DrPH) Lecture 11 Vaccines Past, Present, Future Learning Objectives 1. Identify the various types of vaccines 2. Describe the role of vaccine in

More information

Vaccination-Strategies

Vaccination-Strategies Vaccination-Strategies Active immunity produced by vaccine Immunity and immunologic memory similar to natural infection but without risk of disease. General Rule: The more similar a vaccine is to the disease-causing

More information

Copyright regulations Warning

Copyright regulations Warning COMMONWEALTH OF AUSTRALIA Copyright regulations 1969 Warning This material has been reproduced and communicated to you by or on behalf of the University of Melbourne pursuant to part VB of the Copyright

More information

1.0 ROUTINE SCHEDULES...

1.0 ROUTINE SCHEDULES... August 2012 TABLE OF CONTENTS 1.0 ROUTINE SCHEDULES... 1 1.1 SCHEDULE A: BASIC IMMUNIZATION WHEN STARTING WITH INFANRIX HEXA VACCINE... 1 1.1.1 SCHEDULE A: BASIC IMMUNIZATION WHEN STARTING WITH PEDIACEL

More information

By:Reham Alahmadi NOV The production of antibodies and vaccination technology

By:Reham Alahmadi NOV The production of antibodies and vaccination technology By:Reham Alahmadi NOV 2018 The production of antibodies and vaccination technology Antibody Production The blood contains two types of white blood cell or leukocyte Phagocytes ingest bacteria by endocytosis

More information

TDCJ OFFENDER IMMUNIZATION GUIDELINES

TDCJ OFFENDER IMMUNIZATION GUIDELINES TDCJ OFFENDER IMMUNIZATION GUIDELINES B-14.07 Immunizations Attachment A VACCINE WHO GETS IT * WHEN THEY GET IT DOSE/ROUTE HPV Vaccine Females age 9 to 26 years if not previously vaccinated. On Intake

More information

Immunization (I) Dr. Aws Alshamsan Department of Pharmaceu5cs Office: AA87 Tel:

Immunization (I) Dr. Aws Alshamsan Department of Pharmaceu5cs Office: AA87 Tel: Immunization (I) Dr. Aws Alshamsan Department of Pharmaceu5cs Office: AA87 Tel: 4677363 aalshamsan@ksu.edu.sa Objectives of this lecture By the end of this lecture you will be able to: 1 Realize the significance

More information

Immunization Guidelines for the Use of State Supplied Vaccine April 18, 2013

Immunization Guidelines for the Use of State Supplied Vaccine April 18, 2013 DTaP / DT DTaP/IPV/Hep B Combination (Pediarix ) Children from 6 weeks of age up to the 7 th birthday Children from 2 months of age up to the 7th birthday: Indicated for the primary doses of DTaP, IPV,

More information

1 Principles of Vaccination Immunology and Vaccine-Preventable Diseases... 1 Classification of Vaccines... 4 Selected References...

1 Principles of Vaccination Immunology and Vaccine-Preventable Diseases... 1 Classification of Vaccines... 4 Selected References... 1 Principles of Vaccination Immunology and Vaccine-Preventable Diseases... 1 Classification of Vaccines... 4 Selected References... 7 2 General Recommendations on Immunization Timing and Spacing of Vaccines...

More information

3 rd dose. 3 rd or 4 th dose, see footnote 5. see footnote 13. for certain high-risk groups

3 rd dose. 3 rd or 4 th dose, see footnote 5. see footnote 13. for certain high-risk groups Figure 1. Recommended immunization schedule for persons aged 0 through 18 years 2013. (FOR THOSE WHO FALL BEHIND OR START LATE, SEE THE CATCH-UP SCHEDULE [FIGURE 2]). These recommendations must be read

More information

Edmunds: Introduction to Clinical Pharmacology, 8th Edition. 1. Which term refers to a medication containing a weakened or dead antigen?

Edmunds: Introduction to Clinical Pharmacology, 8th Edition. 1. Which term refers to a medication containing a weakened or dead antigen? This is completed: Test Bank for Introduction to Clinical Pharmacology 8th Edition by Edmunds http://testbankair.com/download/test-bank-for-introduction-to-clinical-pharmacology-8thedition-by-edmunds/

More information

Vaccines in Immunocompromised hosts

Vaccines in Immunocompromised hosts Vaccines in Immunocompromised hosts Carlos del Rio, MD Emory Center for AIDS Research October 2013 Immunocompromised hosts Number has increased rapidly in the past decades Broad term that encompasses different

More information

A. Children born in 1942 B. Children born in 1982 C. Children born in 2000 D. Children born in 2010

A. Children born in 1942 B. Children born in 1982 C. Children born in 2000 D. Children born in 2010 Who do you think received the most immunologic components in vaccines? Development of which vaccine slowed after the invention of antibiotics? A. Children born in 1942 B. Children born in 1982 C. Children

More information

What are the new active vaccine recommendations in the Canadian Immunization Guide?

What are the new active vaccine recommendations in the Canadian Immunization Guide? 154 CCDR 17 April 2014 Volume 40-8 https://doi.org/10.14745/ccdr.v40i08a03 1 What are the new active vaccine recommendations in the Canadian Immunization Guide? Warshawsky B 1 and Gemmill I 2 on behalf

More information

Immunizations for Children and Teens with Suppressed Immune Systems

Immunizations for Children and Teens with Suppressed Immune Systems Immunizations for Children and Teens with Suppressed Immune Systems Your child is starting treatment that will suppress the immune system. This will affect how your child s body responds to routine immunizations

More information

Guideline for the immunization of HIV infected persons in Sri Lanka

Guideline for the immunization of HIV infected persons in Sri Lanka DOI: http://doi.org/10.4038/joshhm.v3i0.64 Guideline for the immunization of HIV infected persons in Sri Lanka Dr. M. K. Darshanie Mallikarachchi, Consultant Venereologist, Provincial General Hospital

More information

Immunization Guidelines For the Use of State Supplied Vaccine July 1, 2011

Immunization Guidelines For the Use of State Supplied Vaccine July 1, 2011 DTaP / DT DTaP/IPV/Hep B Combination (Pediarix ) Children from 6 weeks of age up to the 7 th birthday Children from 2 months of age up to the 7th birthday: Indicated for the primary doses of DTaP, IPV,

More information

Public Statement: Medical Policy. Effective Date: 01/01/2012 Revision Date: 03/24/2014 Code(s): Many. Document: ARB0454:04.

Public Statement: Medical Policy. Effective Date: 01/01/2012 Revision Date: 03/24/2014 Code(s): Many. Document: ARB0454:04. ARBenefits Approval: 01/01/2012 Effective Date: 01/01/2012 Revision Date: 03/24/2014 Code(s): Many Medical Policy Title: Immunization Coverage Document: ARB0454:04 Administered by: Public Statement: 1.

More information

M I C R O B I O L O G Y

M I C R O B I O L O G Y ninth edition TORTORA FUNKE CASE M I C R O B I O L O G Y a n i n t r o d u c t i o n 18 Practical Applications of Immunology PowerPoint Lecture Slide Presentation prepared by Christine L. Case Vaccine

More information

Pregnancy and Shots! Shots! Shots! An Update. Kelli D Barbour, MD 4 December 2015

Pregnancy and Shots! Shots! Shots! An Update. Kelli D Barbour, MD 4 December 2015 Pregnancy and Shots! Shots! Shots! An Update Kelli D Barbour, MD 4 December 2015 Objectives Review recommended adult vaccinations and pregnancy Review recommended immunizations in pregnancy and the puerperium

More information

Practical Applications of Immunology. Chapter 18

Practical Applications of Immunology. Chapter 18 Practical Applications of Immunology Chapter 18 I. Vaccines A. Definition A suspension of organisms or fractions of organisms that is used to induce immunity (immunologic memory). The mechanism of memory

More information

3. Lymphocyte proliferation (fig. 15.4): Clones of responder cells and memory cells are derived from B cells and T cells.

3. Lymphocyte proliferation (fig. 15.4): Clones of responder cells and memory cells are derived from B cells and T cells. Chapter 15 Adaptive, Specific Immunity and Immunization* *Lecture notes are to be used as a study guide only and do not represent the comprehensive information you will need to know for the exams. Specific

More information

Immunization Update Richard M. Lampe M.D.

Immunization Update Richard M. Lampe M.D. Immunization Update 2012 Richard M. Lampe M.D. Immunization Update List the Vaccines recommended for Health Care Personnel Explain why Health Care Personnel are at risk Recognize the importance of these

More information

Vaccine. Specific defenses Immunity. natural. acquired. Live vaccines. Killed Inactivated vaccines. Cellular fraction vaccines

Vaccine. Specific defenses Immunity. natural. acquired. Live vaccines. Killed Inactivated vaccines. Cellular fraction vaccines Introduction Vaccine has been a importance medical breakthrough in preventing morbidity and mortality from infectious diseases worldwide. Vaccination has managed to eradicate the deadly and mutilating

More information

Katherine Julian, MD July 1, Vaccines Generally Available in the U.S. U.S.

Katherine Julian, MD July 1, Vaccines Generally Available in the U.S. U.S. Katherine Julian, MD July 1, 2008 Vaccines Generally Available in the U.S. Vaccines Generally Available in the U.S. Vaccines for Special Populations Plague Tularemia Smallpox Anthrax Botulism Tuberculosis

More information

Immunization. Immunization procedure called vaccination and the immunizing agent called vaccine (or serum in historical references)

Immunization. Immunization procedure called vaccination and the immunizing agent called vaccine (or serum in historical references) Vaccines BIT 120 Immunization Immunization: a procedure designed to increase concentrations of antibodies and/or effector T-cells which are reactive against infection (or cancer). Immunization procedure

More information

Vaccines: Heroes or Villains?

Vaccines: Heroes or Villains? Vaccines: Heroes or Villains? (Hint: It s the first one) James W. Jarvis, MD, FAAFP Senior Vice President/Senior Physician Executive Northern Light Eastern Maine Medical Center 1 Vaccinations: A brief

More information

Immunization Guidelines for the Use of State Supplied Vaccine May 17, 2015

Immunization Guidelines for the Use of State Supplied Vaccine May 17, 2015 DTaP / DT DTaP/IPV/Hep B Combination (Pediarix ) Children from 6 weeks of age up to the 7 th birthday Children from 2 months of age up to the 7th birthday: Indicated for the primary doses of DTaP, IPV,

More information

Immunization:- Immunization is the process whereby a person is made immune or resistant to a specific infectious disease.

Immunization:- Immunization is the process whereby a person is made immune or resistant to a specific infectious disease. Group C Amr Abdel Raouf Definition:- Immunization:- Immunization is the process whereby a person is made immune or resistant to a specific infectious disease. Vaccine: is the administration of antigenic

More information

Immunization for Adult Hematopoietic Stem Cell Transplant (HSCT) Recipients

Immunization for Adult Hematopoietic Stem Cell Transplant (HSCT) Recipients Immunization for Adult Recipients January 4, 201 Immunization for Adult Hematopoietic Stem Cell Transplant () Recipients Revision Date: January 4, 201 Note: This guide is meant to supplement existing recommendations

More information

Benefit Interpretation

Benefit Interpretation Benefit Interpretation Subject: Part B vs. Part D Vaccines Issue Number: BI-039 Applies to: Medicare Advantage Effective Date: May 1, 2017 Attachments: Part B Vaccines Diagnosis Code Limits Table of Contents

More information

IMMUNIZATION IN CHILDREN WITH CANCER

IMMUNIZATION IN CHILDREN WITH CANCER SIOP PODC Supportive Care Education Presentation Date: 05 th September 2014 Recording Link at www.cure4kids.org: http://www.cure4kids.org/ums/home/conference_rooms/enter.php?room=p2xokm5imdj Email: ahmed.naqvi@sickkids.ca

More information

Vaccination and Immunity

Vaccination and Immunity Vaccination and Immunity Eric A. Utt, PhD Director, Worldwide Science Policy Pfizer Inc California Immunization Coalition Summit 2012 Completing the Circle: Ensuring Adult & Adolescent Vaccination for

More information

Washtenaw County Community Mental Health HEALTH CARE PERSONNEL (HCP) VACCINES (RECOMMENDED EMPLOYEE IMMUNIZATIONS)

Washtenaw County Community Mental Health HEALTH CARE PERSONNEL (HCP) VACCINES (RECOMMENDED EMPLOYEE IMMUNIZATIONS) Washtenaw County Community Mental Health HEALTH CARE PERSONNEL (HCP) VACCINES (RECOMMENDED EMPLOYEE IMMUNIZATIONS) PURPOSE To reduce the risk of exposure of Washtenaw County Community Mental Health (CMH)

More information

Immunization for Child Hematopoietic Stem Cell Transplant (HSCT) Recipients

Immunization for Child Hematopoietic Stem Cell Transplant (HSCT) Recipients Immunization for Child Recipients January 4, 201 Immunization for Child Hematopoietic Stem Cell Transplant () Recipients Revision Date: January 4, 201 Note: This guide is meant to supplement existing recommendations

More information

CUSOM Student Health Immunization Requirements

CUSOM Student Health Immunization Requirements CUSOM Student Health Immunization Requirements Regulatory and legislative authorities require that students demonstrate immunization, immunity and/or protection from multiple contagious diseases before

More information

SECTION 14 - PRINCIPLES OF IMMUNOLOGY TABLE OF CONTENTS

SECTION 14 - PRINCIPLES OF IMMUNOLOGY TABLE OF CONTENTS SECTION 14 - PRINCIPLES OF IMMUNOLOGY TABLE OF CONTENTS 1.0 THE IMMUNE SYSTEM... 1 1.1 INTRODUCTION... 1 1.2 CELLS OF THE IMMUNE SYSTEM... 1 1.3 LYMPHATIC SYSTEM... 1 1.4 TYPES OF IMMUNITY (SEE FIGURE

More information

! Need to be extremely safe Even greater issue as disease prevalence wanes or uncommon diseases targeted

! Need to be extremely safe Even greater issue as disease prevalence wanes or uncommon diseases targeted Lisa G. Winston, MD University of California, San Francisco San Francisco General Hospital! Need to be extremely safe Even greater issue as disease prevalence wanes or uncommon diseases targeted! Traditionally

More information

Expanded Programme on Immunization (EPI):

Expanded Programme on Immunization (EPI): Expanded Programme on Immunization (EPI): Introduction Four to five million annual deaths could be prevented by 2015 through sustained and appropriate immunization efforts, backed by financial support.

More information

Vaccines, Not Just for Babies

Vaccines, Not Just for Babies Vaccines, Not Just for Babies Meg Fisher, MD Medical Director Disclosures I have no relevant financial relationships with the manufacturers of any commercial products or commercial services discussed in

More information

Immunizations in Adults

Immunizations in Adults National HIV Curriculum PDF created January 27, 2019, 5:12 am Immunizations in Adults This is a PDF version of the following document: Section 1: Basic HIV Primary Care Topic 4: Immunizations in Adults

More information

VACCINATION FOR SPECIAL GROUPS

VACCINATION FOR SPECIAL GROUPS ADULT VACCINATIN UNIT N. 3 VACCINATIN FR SPECIAL GRUPS A/Prof Goh Lee Gan, Dr Tan Ban Hock ABSTRACT Vaccination is an important method of prevention which is superior to therapy for patients with impaired

More information

NOTE: The above recommendations must be read along with the footnotes of this schedule.

NOTE: The above recommendations must be read along with the footnotes of this schedule. Figure 1. Recommended immunization schedule for persons aged 0 through 18 years 2013. (FOR THOSE WHO FALL BEHIND OR START LATE, SEE THE CATCH-UP SCHEDULE [FIGURE 2]). These recommendations must be read

More information

VACCINATIONS AND INFLAMMATORY BOWEL DISEASE

VACCINATIONS AND INFLAMMATORY BOWEL DISEASE VACCINATIONS AND INFLAMMATORY BOWEL DISEASE Bob Kizer MD Assistant Professor of Medicine Creighton University School of Medicine CONFLICTS OF INTEREST None 1 AN OPPORTUNITY FOR IMPROVEMENT IBD patients

More information

Immunization Policy. "UIC/COD-sponsored graduate education program" is one for which UIC/COD maintains academic responsibility.

Immunization Policy. UIC/COD-sponsored graduate education program is one for which UIC/COD maintains academic responsibility. I. PURPOSE Immunization Policy TITLE: CLINICAL HEALTHCARE PROVIDERS - IMMUNIZATIONS AND HEALTH REQUIREMENTS To prevent or reduce the risk of transmission of vaccine-preventable and other communicable diseases

More information

Routine Adult Immunization: American College of Preventive Medicine Practice Policy Statement, updated 2002

Routine Adult Immunization: American College of Preventive Medicine Practice Policy Statement, updated 2002 Routine Adult Immunization: American College of Preventive Medicine Practice Policy Statement, updated 2002 Ann R. Fingar, MD, MPH, and Byron J. Francis, MD, MPH Burden of suffering Vaccines are available

More information

How does the body defend itself?

How does the body defend itself? Prevention of Infection 2 Immunisation 3 rd BDS B. Martin Major World Causes Of Death COUNTRIES Developing Developed Total x10-6 Population 5400 (80%) 1200 (20%) 6600 CAUSE OF DEATH % % % Infectious diseases

More information

Biotechnology-Based Vaccines. Dr. Aws Alshamsan Department of Pharmaceutics Office: AA87 Tel:

Biotechnology-Based Vaccines. Dr. Aws Alshamsan Department of Pharmaceutics Office: AA87 Tel: Biotechnology-Based Vaccines Dr. Aws Alshamsan Department of Pharmaceutics Office: AA87 Tel: 4677363 aalshamsan@ksu.edu.sa Objectives of this lecture By the end of this lecture you will be able to: 1.

More information

These slides are the property of the presenter. Do not duplicate without express written consent.

These slides are the property of the presenter. Do not duplicate without express written consent. Cancer Survivorship Protecting Against Vaccine Preventable Diseases Heidi Loynes BSN, RN Immunization Nurse Educator Michigan Department of health and Human Services (MDHHS) loynesh@michigan.gov Are Vaccine-Preventable

More information

Contents. Part One Vaccine Use. Acknowledgments

Contents. Part One Vaccine Use. Acknowledgments Contents Foreword Acknowledgments xiii xv Part One Vaccine Use Chapter 1 Introduction 1 To Vaccinate or Not to Vaccinate? 2 Not the Last Word 3 Permission Granted 4 Your Right to Know 4 The Goals of This

More information

Immunizations are among the most cost effective and widely used public health interventions.

Immunizations are among the most cost effective and widely used public health interventions. Focused Issue of This Month Recommended by the Korean Pediatric Society, 2008 Hoan Jong Lee, MD Department of Pediatrics, Seoul National University College of Medicine E mail : hoanlee@snu.ac.kr J Korean

More information

Lines of Defense. Immunology, Immune Response, and Immunological Testing. Immunology Terminology

Lines of Defense. Immunology, Immune Response, and Immunological Testing. Immunology Terminology Immunology, Immune Response, and Immunological Testing Lines of Defense If the First and Second lines of defense fail, then the Third line of defense is activated. B and T lymphocytes undergo a selective

More information

Vaccinology 101 for Fellows

Vaccinology 101 for Fellows Vaccinology 101 for Fellows Meg Fisher, MD Medical Director, The Children s Hospital Monmouth Medical Center An affiliate of the Saint Barnabas Health Care System Long Branch, NJ Disclosures I have no

More information

What DO the childhood immunization footnotes reveal? Questions and answers

What DO the childhood immunization footnotes reveal? Questions and answers What DO the childhood immunization footnotes reveal? Questions and answers Stanley E. Grogg, DO, FACOP, FAAP he Advisory Committee on Immunization Practices (ACIP) recommends the childhood vaccination

More information

Student Health Requirements Master of Arts, Biomedical Sciences Program

Student Health Requirements Master of Arts, Biomedical Sciences Program Student Health Requirements Master of Arts, Biomedical Sciences Program All students in medically related programs, just as physicians in practice, are required to be current with required immunizations

More information

7.0 Nunavut Childhood and Adult Immunization Schedules and Catch-up Aids

7.0 Nunavut Childhood and Adult Immunization Schedules and Catch-up Aids 7.0 Nunavut Childhood and Adult Immunization Schedules and Catch-up Aids Contents Introduction Nunavut Recommended Childhood Immunization Schedule Nunavut Routine Adult Immunization Schedule Nunavut Immunization

More information

History and aims of immunisation. Dr Anna Clarke Department of Public Health Dr. Steevens Hospital Dublin 8

History and aims of immunisation. Dr Anna Clarke Department of Public Health Dr. Steevens Hospital Dublin 8 History and aims of immunisation Dr Anna Clarke Department of Public Health Dr. Steevens Hospital Dublin 8 Objectives To examine the history of immunisation To explain the aim of immunisation To develop

More information

NOTE: The above recommendations must be read along with the footnotes of this schedule.

NOTE: The above recommendations must be read along with the footnotes of this schedule. Figure 1. Recommended immunization schedule for persons aged 0 through 18 years United States, 2014. (FOR THOSE WHO FALL BEHIND OR START LATE, SEE THE CATCH-UP SCHEDULE [FIGURE 2]). These recommendations

More information

Health Care Worker Vaccinations, 2011: EXTENDED CARE FACILITIES

Health Care Worker Vaccinations, 2011: EXTENDED CARE FACILITIES Health Care Worker Vaccinations, 2011: EXTENDED CARE FACILITIES Karen K Hoffmann, RN, MS, CIC, FSHEA. Clinical Instructor, Division of Infectious Diseases University of North Carolina at Chapel Hill Associate

More information

Adult Vaccine Update. NB Internal Medicine Update, April 22 nd, 2016 Dan Smyth, MD, FRCPC, DTMH

Adult Vaccine Update. NB Internal Medicine Update, April 22 nd, 2016 Dan Smyth, MD, FRCPC, DTMH Adult Vaccine Update NB Internal Medicine Update, April 22 nd, 2016 Dan Smyth, MD, FRCPC, DTMH Summary points: Canadian adults > 18 should be regularly assessed to ensure recommended vaccinations are up

More information

Cigna Drug and Biologic Coverage Policy

Cigna Drug and Biologic Coverage Policy Cigna Drug and Biologic Coverage Policy Subject Routine Immunizations Table of Contents Coverage Policy... 1 General Background... 2 Coding/Billing Information... 3 References... 7 Effective Date... 4/15/2018

More information

UPDATE ON IMMUNIZATION GUIDELINES AND PRACTICES

UPDATE ON IMMUNIZATION GUIDELINES AND PRACTICES DISCLOSURES UPDATE ON IMMUNIZATION GUIDELINES AND PRACTICES Nothing to disclose Kylie Mueller, Pharm.D., BCPS Clinical Specialist, Infectious Diseases Spartanburg Regional Medical Center LEARNING OBJECTIVES

More information

Biomedical Engineering for Global Health. Lecture 9 Vaccine development: from idea to product

Biomedical Engineering for Global Health. Lecture 9 Vaccine development: from idea to product Biomedical Engineering for Global Health Lecture 9 Vaccine development: from idea to product Review of lecture 8 Pathogens: Bacteria and Virus Levels of Immunity: Barriers First line of defense Innate

More information

Immunizations (Guideline Intervals Using The Rule of Six for Vaccines Birth to Six Years)

Immunizations (Guideline Intervals Using The Rule of Six for Vaccines Birth to Six Years) Immunizations (Guideline Intervals Using The Rule of Six for Vaccines Birth to Six Years) Guideline developed by Shelly Baldwin, MD, in collaboration with the ANGELS Team. Last reviewed by Shelly Baldwin,

More information

VACCINE DIALOGUE AIDC 2017

VACCINE DIALOGUE AIDC 2017 VACCINE DIALOGUE AIDC 2017 Idea is Not to discuss about each vaccine Discuss about when to use- clinical situations Allaying the fears ADULT VACCINES Question What are the current CDC recommendations on

More information

Viral vaccines. Lec. 3 أ.د.فائزة عبد هللا مخلص

Viral vaccines. Lec. 3 أ.د.فائزة عبد هللا مخلص Lec. 3 أ.د.فائزة عبد هللا مخلص Viral vaccines 0bjectives 1-Define active immunity. 2-Describe the methods used for the preparation of attenuated live & killed virus vaccines. 3- Comparison of Characteristics

More information

Introduction. Infections acquired by travellers

Introduction. Infections acquired by travellers Introduction The number of Australians who travel overseas has increased steadily over recent years and now between 3.5 and 4.5 million exits are made annually. Although many of these trips are to countries

More information

PREVENTION OF INFECTIOUS DISEASES

PREVENTION OF INFECTIOUS DISEASES PREVENTION OF INFECTIOUS DISEASES Loughlin AM & Strathdee SA. Vaccines: past, present and future. In Infectious Disease Epidemiology, 2 nd ed, Jones & Bartlett, 2007; p 374. Loughlin AM & Strathdee SA.

More information

4/7/13. Vaccinations for Adults and Adolescents. Effect of Full Use of Adult Immunizations. General Vaccine Information

4/7/13. Vaccinations for Adults and Adolescents. Effect of Full Use of Adult Immunizations. General Vaccine Information Vaccinations for Adults and Adolescents Nicholas A. Daniels, MD MPH Department of Medicine Professor of Clinical Medicine Declaration of full disclosure: No conflict of interest 2 Effect of Full Use of

More information

New Jersey Department of Health Vaccine Preventable Disease Program Childhood and Adolescent Recommended Vaccines

New Jersey Department of Health Vaccine Preventable Disease Program Childhood and Adolescent Recommended Vaccines New Jersey Department of Health Vaccine Preventable Disease Program Childhood and Adolescent Recommended Vaccines Antigens Vaccine Approved Age Daptacel Diphtheria, Tetanus, and acellular Pertussis (DTaP)

More information

BCG vaccine Polio vaccines Poliovirus

BCG vaccine Polio vaccines Poliovirus BCG vaccine It is a live attenuated strain of Mycobacterium bovis known as bacillus Calmette-Guérin (BCG) uses shared antigens to stimulate the development of cross-immunity to Mycobacterium tuberculosis.

More information

Haemophilus influenzae

Haemophilus influenzae Haemophilus influenzae type b Severe bacterial infection, particularly among infants During late 19th century believed to cause influenza Immunology and microbiology clarified in 1930s Haemophilus influenzae

More information

Massachusetts Department of Public Health Recommended Immunization Schedule for Persons Aged 0-6 Years, 2007

Massachusetts Department of Public Health Recommended Immunization Schedule for Persons Aged 0-6 Years, 2007 Vaccine Hepatitis B 1 Birth HepB 1 month Rotavirus 2 Rota Rota Rota Diphtheria, Tetanus, Pertussis 3 DTaP DTaP DTaP Haemophilus influenzae type b 4 Hib Hib Hib 4 Pneumococcal 5 PCV PCV PCV Inactivated

More information

Immunization Recommendations for College Students

Immunization Recommendations for College Students May 2017 ACHA Guidelines Immunization Recommendations for College Students Immunizations offer safe and effective protection from vaccine-preventable diseases and outbreaks. The United States is experiencing

More information

Objectives. Immunity. Childhood Immunization Risk of Non-Vaccinated Children 12/22/2015

Objectives. Immunity. Childhood Immunization Risk of Non-Vaccinated Children 12/22/2015 Childhood Immunization Risk of Non-Vaccinated Children Bertha P. Rojas, Pharm.D. PGY-1 Pharmacy Resident South Miami Hospital Objectives Understand the definition of herd immunity Identify vaccine-preventable

More information

CHAPTER ONE: EXECUTIVE SUMMARY. The Global Vaccine Industry CHAPTER TWO: INTRODUCTION TO VACCINES

CHAPTER ONE: EXECUTIVE SUMMARY. The Global Vaccine Industry CHAPTER TWO: INTRODUCTION TO VACCINES CHAPTER ONE: EXECUTIVE SUMMARY The Global Vaccine Industry o Scope and Methodology o Overview o Pediatric Preventative Vaccines o The Market o Adult Preventative Vaccines o The Market o Total Market o

More information