Pitch and rhythmic pattern discrimination of percussion instruments for cochlear implant users

Size: px
Start display at page:

Download "Pitch and rhythmic pattern discrimination of percussion instruments for cochlear implant users"

Transcription

1 PROCEEDINGS of the 22 nd International Congress on Acoustics Psychological and Physiological Acoustics (others): Paper ICA Pitch and rhythmic pattern discrimination of percussion instruments for cochlear implant users Federico Nahuel Cacavelos (a), Ricardo L. Marengo (b) Shin-ichi Sato (c) Florent Masson (d) (a) Universidad Nacional de Tres de Febrero, Argentina/Universidad de San Buenaventura Medellín, Colombia, (b) Grupo CIAC, Argentina, (c) Universidad Nacional de Tres de Febrero, Argentina, (d) Universidad Nacional de Tres de Febrero, Argentina, Abstract Cochlear implants are mostly designed for speech understanding of people with hearing impairments. The appreciation of music by cochlear implant (CI) users is still under study. This work investigates the capability of CI users to recognize impulsive pitch sounds. It focuses on the discrimination of rhythmic patterns using percussion instruments samples from a kick, a snare and a ride cymbal. These signals were tuned, without changing the natural sound, into an easily recognizable pitch for CI users and were presented with different rhythmic patterns. An ABX test was carried out with two groups: 30 normal hearing (NH) subjects and 7 people with CI. The test was divided into two sessions. First, the same instrument was used for the whole pattern of each stimulus and the three instruments were compared to each other. Second, the samples of the three instruments were combined in each stimulus and the instrument of only one sample was varied and compared. Results were compared with previous studies which used the continuous tones as test signals. They showed that both groups can distinguish rhythmic differences. However NH subjects can easily recognize patterns with different sample while the CI users have much more difficulties than NH users to discriminate pitch difference in combined samples composed by different percussion instruments sounds. Keywords: Cochlear implant, subjective test, pitch, impulsive, discrimination.

2 Pitch and rhythmic pattern discrimination of percussion instruments for cochlear implant users 1 Introduction Music perception of Cochlear Implant users (CI) has been under study for more than 25 years. Most of the studies investigated the ability of melodic contour identification and timbre recognition, as well as emotional communication, rhythm and meter recognition [1]. The central auditory processing in human being has two possible mechanism to perceive pitch. The temporal theory considers that the perception of time periods smaller than 1 ms enabling people to perceive frequencies up to 1 khz. This is essential to recognize the fine structure of signals. For CI users this mechanism can be hampered by the low stimulation rates used in some coding strategies. The other mechanism used by the central auditory processing is the place theory. It describes how resonances of the basilar membrane produce a spatial arrangement of frequencies, commonly called the tonotopic distribution [2]. The CI cannot stimulate two sectors of the cochlea simultaneously due to electrical interference between electrodes. Therefore the codification strategies keep just the signal s peaks of a period, discarding the weak intensity. This is why CI users have difficulty to detect fine structure of pitch information and impulsive sounds. Cognitive factors may also disturb the identification process. Disturbance Auditory Processing is a hearing impairment in analyzing and/or interpreting sound patterns. In this sense it is necessary to attend the central auditory processing [2, 3]. Several studies clarified that people with hearing impairments, including CI users, perceive rhythm approximately as well as those with normal hearing [1, 4-6]. Gfeller and Lansing performed a test called PMMA (Primary Measures of Music Audition developed by Gordon) to 18 postlingual deafened CI subjects [8]. Mean identification scores on the rhythm subtest (88%) were higher than on the tonal subtest (78%). Leal et al. conducted rhythm discrimination tasks with twenty-nine postlingual deafened adults and showed their score was 95% [9]. Kong et al. performed an identification task with four tempo conditions (60, 80, 100, and 120 beats per minute) and found no significant difference between normal hearing subjects and cochlear implant users [10]. Their participants were asked to read and chose the musical notation displayed on the screen that corresponded to the rhythmic pattern presented. There are few works addressing the perception of impulsive signal sounds and possible identification of CI users. Therefore this study investigates the identification of impulsive signals by using percussion instruments that were tuned in easily distinguishable tones for CI users. The hypothesis is that CI users should perform worse pitch discrimination of impulsive signals than tone signals due to their codification strategies. After describing the methods and procedures for this research, the results of the tests are analyzed and compared with previous studies. 2

3 2 Procedure 2.1 Stimuli preparation This work combines the methodologies of previous studies on pitch and rhythm discriminations [5, 11]. Source signal consist of rhythmic patterns made with three percussion instruments as the kick, snare and ride cymbal. In order to get clear pitch identification, each percussion instrument was carefully processed and transposed to have a 6 semitone distances between each instrument. The kick sound was adjusted to a F3 (170 Hz), the snare to a C4 (261 Hz) and the ride cymbal to a G4 (390 Hz). This distance was based on the minimum change condition found by Kim et al. [6]. Their spectrum is shown in Figure 1. The three instrument signals were normalized in peak amplitude because of peak detection method used in the common coding strategies. These signals were then used to create different rhythmic patterns as test stimuli. Figure 1: The three pitched instrument spectrums used in the patterns. The test was divided in two different sessions. In Session 1, the three instruments are compared to each other using the same pattern. This attempts to discern if CI users really perceive the difference in impulsive pitch. An example of the MIDI sheets to the first session is shown in Figure 2a. In this figure each frame corresponds to a sixteenth note. In Session 2, the three instruments were combined using just a single pattern (Figure 2b). Between two different stimuli just one note for one instrument was changed. This aims to analyze the discrimination in a combined pattern of different instruments, providing more complex information for the recognition. In both sessions, the number of notes for all rhythmic configurations was fixed to six, showing good appreciation by Kim et al. [6] after testing with different quantities of tone intervals. 3

4 (a) (b) Figure 2: Rhythmic patterns consisting of the three instruments for Session 1 (a) and Session 2 (b). All sounds were made in Albeton Live 7.0 using an Electric Drum Roland DR-909 and DR-707, and transpose of drum rack of native software. The tempo condition was fixed to 120 beats per minute (bpm) following the results of Kong [10] since he did not find significant differences in discrimination skills when the bpm was changed. 2.2 Subjective Test An ABX test was conducted to examine the discrimination of the stimuli. In order to increase the number of trials and improve the confidence interval of the responses, Session 1 was repeated twice while Session 2 was repeated three times since more variation was expected in the results of Session 2. Thus, in total 15 combinations were used in the ABX test. A self-developed algorithm was used in order to present the stimuli randomly. For each repetition the sequence of the stimuli was changed to avoid the subject to remember the judgments of the previous pattern. The subjects were asked to identify if the last signal (X signal) is equal to A (X = A) or B (X = B). Each ABX combination was played only once. The test was carried out with two groups: 30 normal hearing (NH) subjects of years old and 7 postlingual CI user of years old (more than 2 years of experience with CI). Implants with electroacoustic stimulation (EAS) were not considered in this study. Test environments were different for both groups. The NH subjects conducted the tests using a headphone Audio Technica ATH-D49 in a quiet room (NC 25) with acoustic treatment For CI users the line out of the processor was used to avoid the effects of the acoustic field. In all cases a Notebook computer with M-Audio Fast Track was used to perform the test. In both cases, the stimuli were presented to only one ear. The subjects were asked to adjust their own conformable sound level. Total duration of the test was of approximately 5 minutes for each subject depending on the time spent for the judgments. 4

5 3 Results The percentage of correct answers in the ABX test was calculated for all subjects of both groups. Figure 3a shows the results of Session 1 where the different instruments using the same pattern are compared. Figure 3b refers to Session 2 where patterns are composed by different instrument combinations. By the assumption that the statically analysis of an ABX test follows a binomial distribution, [12]. It was able to obtain a 95% of confident interval of each result. (a) (b) Figure 3. Percentage of correct answers for Normal Hearing subjects (NH) and Cochlear Implant users (CI) for Session 1 (a) and Session 2 (b). The error bars show a 95% confident interval. 4 Discussion The percentage of correct answers for NH subjects was more than 89 % in the combined patterns (Session 2) while almost 100% for the patterns with the same instrument (Session 1). As shown in Table 1, these results are consistent according to the previous studies where rhythm discrimination was performed. Although the numbers of responses by CI users were not sufficient to permit a reliable data analysis, it is possible to see that CI user performed worse than NH users. The present results for the CI users revealed lower performance than the previous studies for a rhythm discrimination. 5

6 Table 1: Comparison of the percentage of correct answers with previous studies Present study (Impulsive sounds) Previous studies (Continuous notes) Session 1 Session 2 Sucher and McDermott [5] Gfeller and Lansing [8] Schulz and Kerber [11] NH subjects 95% 89% 89% 95% 95% CI users 86% 45% 60% 78% 68-84% Both groups were able to distinguish pitch differences in accordance with previous studies. However CI users have much more difficulties in discriminate pitch in rhythms composed by different percussion instruments sounds than NH subjects. This result is consistent with the frequency tuning distance of Kim et al. [6]. It is interesting to point out that the previous studies used a continuous note while this study used impulsive sounds. As expected, impulsive sounds composed by different instrument combinations leaded to lower performance in rhythm discrimination for IC users. In the ABX test, some CI users showed a difficulty in the discrimination tasks, and the forced choice obliged them to respond randomly. Furthermore, the subjects expressed that they were not able to identify certain sounds but recognized the difference by the loudness rather than the pitch components. One of the reasons for this is because CI users may have different performance of their calibration. Sounds coincide with specific channels having different impedance and thus generate loudness differences, easily recognizable by the CI users. Some parameters could not be controlled in both groups. The most important factor is the degree of subjects attention during the test because loss of attention may cause a decrease of the test performance. This can be due to limited memory capacities and slower processing speed since IC users normally presents disorders of the central auditory processing according to Oscar Cañete [4]. Furthermore different models, settings and codification strategy of the CI devices may add wide variation to the identification process of the subject. Several authors also pointed out that there is a great variation between the perceptual skills of users because of the resilience of the subjects to electrical stimulation of their particular physiological characteristics [1, 6]. 5 Conclusions As expected in the hypothesis, the CI users have much more difficulties to discriminate the impulsive pitch rhythms than the NH subjects. Particularly, it is much more difficult for them when the signal is composed by a combination of different impulsive instruments. Comparison with previous studies show that for the CI users, discrimination of impulsive pitch is more complex than that of continuous tones. This effect has not been observed for the NH subjects. A further development of this study could reveal valuable data for understanding the phenomenon involving a substantial advance of the hearing aid mechanisms. To achieve more significant results the number of CI users will be increased. Possible future studies can include others factors by using more frequencies in order to achieve greater accuracy in the cochlear implant identification although the previous studies using continuous tone showed no variation in frequency scale. Some cochlear implant users can identify a difference between sounds but it does not mean that they can perceive the sounds correctly. For this reason, future works may consider more numbers of instrument sounds with different harmonic compositions. 6

7 Acknowledgments The authors would like to acknowledge the Board of the International Commission for Acoustics and ICA- ASA Young Scientist Conference Attendance Grants Programme for their financial support to present this work at the congress. The authors also express special gratitude to Nilda Vechiatti for her support in the application for this grant. The deepest gratitude is delivered to the CIAC Argentina institution to provide test environment and the participants for the test as well as the assistance and dedication of ST. Mastroianni S. Also a special thanks to the people who participated in the test without financial remuneration. References [1] Papadogianni-Kouranti, M. Auditive and audiotactile music perception of cochlear implant users, A Thesis presented for the degree of Master of Science, Technical University of Berlin, 2014, pp [2] Valeriewei, L. Music perception of cochlear users, Doctorate Thesis of Department of Otolaryngology, University of Melbourne, 2006, pp [3] Restrepo, I; Medina, J.R. Desórdenes del procesamiento auditivo, IATREIA, 19 (4), 2006, pp [4] Oscar Cañete, S. Central auditory processing disorder, Revista Otorrinolaringológica Cabeza Cuello, (66), 2006, pp [5] Sucher, C.M.; McDermott, H.J. Pitch ranking of complex tones by normally hearing subjects and cochlear implant users, Hear Res 230 (1-2), 2007, pp [6] Kim, E.N.; Lee, H.J.; Kim, H.J. Music perception ability of Korean adult cochlear implant listeners, Clinical and Experimental Otorhinolaryngology, 5 (1), 2012, pp S53-S58. [7] Donnelly, P.; Limb, C. Music Perception in Cochlear Implant Users. The Johns Hopkins University, Baltimore (USA), [8] Gfeller, K.; Lansing, C.R. Melodic, Rhythmic and timbral perception of adult cochlear implant users, Journal of Speech, Language and Hearing Research, 34, 1991, pp [9] Leal, M.C.; Shin, Y.J.; Laborde, M.-L.; Verges, S.; Lugardon, S.; Andrieu, S.; Deguine, O.; Fraysse, B. Music perception in adult cochlear implant recipients, Acta Oto-Laryngologica, 123 (7), 2003, pp [10] Kong, Y.Y.; Cruz, R.; Jones, J.A.; Zeng, F.G. Music perception with temporal cues in acoustic and electric hearing, Ear Hear 25 (2), 2004, pp [11] Schultz, E; Kerber, M., Music perception with the MED-EL implants, Advances in cochlear implants, 1994, pp [12] Boley, J.; Lester, M. Statistical analysis of ABX results using signal detection theory. Proc. Audio Engineering Society Convention 127, October 2009, [13] Fujita, S.; Ito, J. Ability of nucleus cochlear implant to recognize music, Annals Otol Rhinology Laryngology, 108 (7), 1999, pp [14] Phillips-Silver, J.; Toiviainenc, P.; Gosselina, N.; Turgeonb, C.; Leporeb, F.; Peretz, I. Cochlear implant users move in time to the beat of drum music, Hearing Research, 321, 2015, pp [15] Gfeller, K.; Turner, C.; Mehr, M.; Woodworth, G.; Fearn, R.; Knutson, J.F.; Witt, S.; Stordahl, J. Recognition of familiar melodies by adult cochlear implant recipients and normal-hearing adults. Cochlear Implants Int. 3(1), 2002, pp

Music Perception in Cochlear Implant Users

Music Perception in Cochlear Implant Users Music Perception in Cochlear Implant Users Patrick J. Donnelly (2) and Charles J. Limb (1,2) (1) Department of Otolaryngology-Head and Neck Surgery (2) Peabody Conservatory of Music The Johns Hopkins University

More information

Hearing the Universal Language: Music and Cochlear Implants

Hearing the Universal Language: Music and Cochlear Implants Hearing the Universal Language: Music and Cochlear Implants Professor Hugh McDermott Deputy Director (Research) The Bionics Institute of Australia, Professorial Fellow The University of Melbourne Overview?

More information

Music Perception of Cochlear Implant Users Compared with that of Hearing Aid Users

Music Perception of Cochlear Implant Users Compared with that of Hearing Aid Users Music Perception of Cochlear Implant Users Compared with that of Hearing Aid Users Valerie Looi, 1,2,3 Hugh McDermott, 1 Colette McKay, 1,4 and Louise Hickson 5 Objective: To investigate the music perception

More information

International Journal of Audiology. Looi et al. The effect of cochlear implantation on music perception

International Journal of Audiology. Looi et al. The effect of cochlear implantation on music perception Page of 0 0 0 0 0 0 THE EFFECT OF COCHLEAR IMPLANTATION ON MUSIC PERCEPTION BY ADULTS WITH USABLE PRE-OPERATIVE ACOUSTIC HEARING Valerie Looi a,b,c, Hugh McDermott a, Colette McKay a,d, & Louise Hickson

More information

The effects of training on music perception and appreciation in cochlear implant users

The effects of training on music perception and appreciation in cochlear implant users The effects of training on music perception and appreciation in cochlear implant users WONG YUHAN (A0046683X) SUPERVISORS: DR VALRIE LOOI & DR JENNY LOO Introduction CI users experience poor perceptual

More information

Prelude Envelope and temporal fine. What's all the fuss? Modulating a wave. Decomposing waveforms. The psychophysics of cochlear

Prelude Envelope and temporal fine. What's all the fuss? Modulating a wave. Decomposing waveforms. The psychophysics of cochlear The psychophysics of cochlear implants Stuart Rosen Professor of Speech and Hearing Science Speech, Hearing and Phonetic Sciences Division of Psychology & Language Sciences Prelude Envelope and temporal

More information

2/25/2013. Context Effect on Suprasegmental Cues. Supresegmental Cues. Pitch Contour Identification (PCI) Context Effect with Cochlear Implants

2/25/2013. Context Effect on Suprasegmental Cues. Supresegmental Cues. Pitch Contour Identification (PCI) Context Effect with Cochlear Implants Context Effect on Segmental and Supresegmental Cues Preceding context has been found to affect phoneme recognition Stop consonant recognition (Mann, 1980) A continuum from /da/ to /ga/ was preceded by

More information

Critical Review: The Impact of Structured Auditory Training on Musical Pitch and Melody Perception in Individuals with a Unilateral Cochlear Implant

Critical Review: The Impact of Structured Auditory Training on Musical Pitch and Melody Perception in Individuals with a Unilateral Cochlear Implant Critical Review: The Impact of Structured Auditory Training on Musical Pitch and Melody Perception in Individuals with a Unilateral Cochlear Implant Samidha S. Joglekar M.Cl.Sc (AUD) Candidate University

More information

The Effects of Training on Recognition of Musical Instruments by Adults with Cochlear Implants

The Effects of Training on Recognition of Musical Instruments by Adults with Cochlear Implants The Effects of Training on Recognition of Musical Instruments by Adults with Cochlear Implants Virginia D. Driscoll 1 ABSTRACT This study examines the efficiency and effectiveness of three types of training

More information

Music Training Or Focused Music Listening For Cochlear Implant Recipients?

Music Training Or Focused Music Listening For Cochlear Implant Recipients? Music Training Or Focused Music Listening For Cochlear Implant Recipients? Valerie Looi 1, Yuhan Wong 2, Jenny Loo 2 1. SCIC Cochlear Implant Program An RIDBC Service, Australia 2. NaFonal University Singapore,

More information

AUDL GS08/GAV1 Signals, systems, acoustics and the ear. Pitch & Binaural listening

AUDL GS08/GAV1 Signals, systems, acoustics and the ear. Pitch & Binaural listening AUDL GS08/GAV1 Signals, systems, acoustics and the ear Pitch & Binaural listening Review 25 20 15 10 5 0-5 100 1000 10000 25 20 15 10 5 0-5 100 1000 10000 Part I: Auditory frequency selectivity Tuning

More information

An Auditory-Model-Based Electrical Stimulation Strategy Incorporating Tonal Information for Cochlear Implant

An Auditory-Model-Based Electrical Stimulation Strategy Incorporating Tonal Information for Cochlear Implant Annual Progress Report An Auditory-Model-Based Electrical Stimulation Strategy Incorporating Tonal Information for Cochlear Implant Joint Research Centre for Biomedical Engineering Mar.7, 26 Types of Hearing

More information

Hearing Lectures. Acoustics of Speech and Hearing. Auditory Lighthouse. Facts about Timbre. Analysis of Complex Sounds

Hearing Lectures. Acoustics of Speech and Hearing. Auditory Lighthouse. Facts about Timbre. Analysis of Complex Sounds Hearing Lectures Acoustics of Speech and Hearing Week 2-10 Hearing 3: Auditory Filtering 1. Loudness of sinusoids mainly (see Web tutorial for more) 2. Pitch of sinusoids mainly (see Web tutorial for more)

More information

Hearing. PSYCHOLOGY (8th Edition, in Modules) David Myers. Module 14. Hearing. Hearing

Hearing. PSYCHOLOGY (8th Edition, in Modules) David Myers. Module 14. Hearing. Hearing PSYCHOLOGY (8th Edition, in Modules) David Myers PowerPoint Slides Aneeq Ahmad Henderson State University Worth Publishers, 2007 1 Hearing Module 14 2 Hearing Hearing The Stimulus Input: Sound Waves The

More information

The REAL Story on Spectral Resolution How Does Spectral Resolution Impact Everyday Hearing?

The REAL Story on Spectral Resolution How Does Spectral Resolution Impact Everyday Hearing? The REAL Story on Spectral Resolution How Does Spectral Resolution Impact Everyday Hearing? Harmony HiResolution Bionic Ear System by Advanced Bionics what it means and why it matters Choosing a cochlear

More information

Who are cochlear implants for?

Who are cochlear implants for? Who are cochlear implants for? People with little or no hearing and little conductive component to the loss who receive little or no benefit from a hearing aid. Implants seem to work best in adults who

More information

Music perception in bimodal cochlear implant users

Music perception in bimodal cochlear implant users Music perception in bimodal cochlear implant users Mohammad Maarefvand Submitted in total fulfilment of the requirements of the degree of Doctor of Philosophy July 2014 Department of Audiology and Speech

More information

2014 European Phoniatrics Hearing EUHA Award

2014 European Phoniatrics Hearing EUHA Award 2014 European Phoniatrics Hearing EUHA Award Processing of music by prelingually and postlingually deafened patients with cochlear implant: Electrophysiological evidence Author: Lisa Bruns, Dresden Published

More information

Essential feature. Who are cochlear implants for? People with little or no hearing. substitute for faulty or missing inner hair

Essential feature. Who are cochlear implants for? People with little or no hearing. substitute for faulty or missing inner hair Who are cochlear implants for? Essential feature People with little or no hearing and little conductive component to the loss who receive little or no benefit from a hearing aid. Implants seem to work

More information

Development and Validation of the University of Washington Clinical Assessment of Music Perception Test

Development and Validation of the University of Washington Clinical Assessment of Music Perception Test Development and Validation of the University of Washington Clinical Assessment of Music Perception Test Robert Kang, 1, Grace Liu Nimmons, 3 Ward Drennan, Jeff Longnion, Chad Ruffin,, Kaibao Nie, 1, Jong

More information

What you re in for. Who are cochlear implants for? The bottom line. Speech processing schemes for

What you re in for. Who are cochlear implants for? The bottom line. Speech processing schemes for What you re in for Speech processing schemes for cochlear implants Stuart Rosen Professor of Speech and Hearing Science Speech, Hearing and Phonetic Sciences Division of Psychology & Language Sciences

More information

Variability in Word Recognition by Adults with Cochlear Implants: The Role of Language Knowledge

Variability in Word Recognition by Adults with Cochlear Implants: The Role of Language Knowledge Variability in Word Recognition by Adults with Cochlear Implants: The Role of Language Knowledge Aaron C. Moberly, M.D. CI2015 Washington, D.C. Disclosures ASA and ASHFoundation Speech Science Research

More information

PLEASE SCROLL DOWN FOR ARTICLE

PLEASE SCROLL DOWN FOR ARTICLE This article was downloaded by:[michigan State University Libraries] On: 9 October 2007 Access Details: [subscription number 768501380] Publisher: Informa Healthcare Informa Ltd Registered in England and

More information

16.400/453J Human Factors Engineering /453. Audition. Prof. D. C. Chandra Lecture 14

16.400/453J Human Factors Engineering /453. Audition. Prof. D. C. Chandra Lecture 14 J Human Factors Engineering Audition Prof. D. C. Chandra Lecture 14 1 Overview Human ear anatomy and hearing Auditory perception Brainstorming about sounds Auditory vs. visual displays Considerations for

More information

Essential feature. Who are cochlear implants for? People with little or no hearing. substitute for faulty or missing inner hair

Essential feature. Who are cochlear implants for? People with little or no hearing. substitute for faulty or missing inner hair Who are cochlear implants for? Essential feature People with little or no hearing and little conductive component to the loss who receive little or no benefit from a hearing aid. Implants seem to work

More information

Auditory scene analysis in humans: Implications for computational implementations.

Auditory scene analysis in humans: Implications for computational implementations. Auditory scene analysis in humans: Implications for computational implementations. Albert S. Bregman McGill University Introduction. The scene analysis problem. Two dimensions of grouping. Recognition

More information

Hearing. Juan P Bello

Hearing. Juan P Bello Hearing Juan P Bello The human ear The human ear Outer Ear The human ear Middle Ear The human ear Inner Ear The cochlea (1) It separates sound into its various components If uncoiled it becomes a tapering

More information

USING AUDITORY SALIENCY TO UNDERSTAND COMPLEX AUDITORY SCENES

USING AUDITORY SALIENCY TO UNDERSTAND COMPLEX AUDITORY SCENES USING AUDITORY SALIENCY TO UNDERSTAND COMPLEX AUDITORY SCENES Varinthira Duangudom and David V Anderson School of Electrical and Computer Engineering, Georgia Institute of Technology Atlanta, GA 30332

More information

DO NOT DUPLICATE. Copyrighted Material

DO NOT DUPLICATE. Copyrighted Material Annals of Otology, Rhinology & Laryngology 115(6):425-432. 2006 Annals Publishing Company. All rights reserved. Effects of Converting Bilateral Cochlear Implant Subjects to a Strategy With Increased Rate

More information

Congruency Effects with Dynamic Auditory Stimuli: Design Implications

Congruency Effects with Dynamic Auditory Stimuli: Design Implications Congruency Effects with Dynamic Auditory Stimuli: Design Implications Bruce N. Walker and Addie Ehrenstein Psychology Department Rice University 6100 Main Street Houston, TX 77005-1892 USA +1 (713) 527-8101

More information

What is sound? Range of Human Hearing. Sound Waveforms. Speech Acoustics 5/14/2016. The Ear. Threshold of Hearing Weighting

What is sound? Range of Human Hearing. Sound Waveforms. Speech Acoustics 5/14/2016. The Ear. Threshold of Hearing Weighting Speech Acoustics Agnes A Allen Head of Service / Consultant Clinical Physicist Scottish Cochlear Implant Programme University Hospital Crosshouse What is sound? When an object vibrates it causes movement

More information

Music for Deaf and Hard of Hearing Persons: on Beat

Music for Deaf and Hard of Hearing Persons: on Beat Music for Deaf and Hard of Hearing Persons: on Beat Rumi Hiraga and Hiroko Terasawa KTH: Royal Institute of Technology, Sweden University of California San Diego, USA Deaf and Hard of Hearing Students

More information

Chapter 11: Sound, The Auditory System, and Pitch Perception

Chapter 11: Sound, The Auditory System, and Pitch Perception Chapter 11: Sound, The Auditory System, and Pitch Perception Overview of Questions What is it that makes sounds high pitched or low pitched? How do sound vibrations inside the ear lead to the perception

More information

Hearing II Perceptual Aspects

Hearing II Perceptual Aspects Hearing II Perceptual Aspects Overview of Topics Chapter 6 in Chaudhuri Intensity & Loudness Frequency & Pitch Auditory Space Perception 1 2 Intensity & Loudness Loudness is the subjective perceptual quality

More information

Complete Cochlear Coverage WITH MED-EL S DEEP INSERTION ELECTRODE

Complete Cochlear Coverage WITH MED-EL S DEEP INSERTION ELECTRODE Complete Cochlear Coverage WITH MED-EL S DEEP INSERTION ELECTRODE hearlife CONTENTS A Factor To Consider... 3 The Cochlea In the Normal Hearing Process... 5 The Cochlea In the Cochlear Implant Hearing

More information

Spectrograms (revisited)

Spectrograms (revisited) Spectrograms (revisited) We begin the lecture by reviewing the units of spectrograms, which I had only glossed over when I covered spectrograms at the end of lecture 19. We then relate the blocks of a

More information

New Methodology for Fitting Cochlear Implants

New Methodology for Fitting Cochlear Implants New Methodology for Fitting Cochlear Implants Advanced Bionics Corporation Valencia, CA 91355 NEW METHODOLOGY FOR FITTING COCHLEAR IMPLANTS Sound coding strategies for cochlear implants have evolved over

More information

Hearing. istockphoto/thinkstock

Hearing. istockphoto/thinkstock Hearing istockphoto/thinkstock Audition The sense or act of hearing The Stimulus Input: Sound Waves Sound waves are composed of changes in air pressure unfolding over time. Acoustical transduction: Conversion

More information

The development of a modified spectral ripple test

The development of a modified spectral ripple test The development of a modified spectral ripple test Justin M. Aronoff a) and David M. Landsberger Communication and Neuroscience Division, House Research Institute, 2100 West 3rd Street, Los Angeles, California

More information

Improving Music Percep1on With Cochlear Implants David M. Landsberger

Improving Music Percep1on With Cochlear Implants David M. Landsberger Improving Music Percep1on With Cochlear Implants David M. Landsberger Music Enjoyment With a Cochlear Implant is Low Tested music enjoyment with people with one Normal Hearing Ear and one ear with a cochlear

More information

Topic 4. Pitch & Frequency

Topic 4. Pitch & Frequency Topic 4 Pitch & Frequency A musical interlude KOMBU This solo by Kaigal-ool of Huun-Huur-Tu (accompanying himself on doshpuluur) demonstrates perfectly the characteristic sound of the Xorekteer voice An

More information

Systems Neuroscience Oct. 16, Auditory system. http:

Systems Neuroscience Oct. 16, Auditory system. http: Systems Neuroscience Oct. 16, 2018 Auditory system http: www.ini.unizh.ch/~kiper/system_neurosci.html The physics of sound Measuring sound intensity We are sensitive to an enormous range of intensities,

More information

BORDERLINE PATIENTS AND THE BRIDGE BETWEEN HEARING AIDS AND COCHLEAR IMPLANTS

BORDERLINE PATIENTS AND THE BRIDGE BETWEEN HEARING AIDS AND COCHLEAR IMPLANTS BORDERLINE PATIENTS AND THE BRIDGE BETWEEN HEARING AIDS AND COCHLEAR IMPLANTS Richard C Dowell Graeme Clark Chair in Audiology and Speech Science The University of Melbourne, Australia Hearing Aid Developers

More information

SOLUTIONS Homework #3. Introduction to Engineering in Medicine and Biology ECEN 1001 Due Tues. 9/30/03

SOLUTIONS Homework #3. Introduction to Engineering in Medicine and Biology ECEN 1001 Due Tues. 9/30/03 SOLUTIONS Homework #3 Introduction to Engineering in Medicine and Biology ECEN 1001 Due Tues. 9/30/03 Problem 1: a) Where in the cochlea would you say the process of "fourier decomposition" of the incoming

More information

ADVANCES in NATURAL and APPLIED SCIENCES

ADVANCES in NATURAL and APPLIED SCIENCES ADVANCES in NATURAL and APPLIED SCIENCES ISSN: 1995-0772 Published BYAENSI Publication EISSN: 1998-1090 http://www.aensiweb.com/anas 2016 December10(17):pages 275-280 Open Access Journal Improvements in

More information

COCHLEAR IMPLANTS CAN TALK BUT CANNOT SING IN TUNE

COCHLEAR IMPLANTS CAN TALK BUT CANNOT SING IN TUNE COCHLEAR IMPLANTS CAN TALK BUT CANNOT SING IN TUNE Jeremy Marozeau, Ninia Simon and Hamish Innes-Brown The Bionics Institute, East Melbourne, Australia jmarozeau@bionicsinstitute.org The cochlear implant

More information

Binaural Hearing and Speech Laboratory. In un

Binaural Hearing and Speech Laboratory. In un In un Pitch ranking, pitch matching, and binaural fusion in children with bilateral cochlear implants: bringing research into clinical practice Co-authors: Ruth Litovsky, Ph.D. Professor, Depts. of Communication

More information

Hearing in the Environment

Hearing in the Environment 10 Hearing in the Environment Click Chapter to edit 10 Master Hearing title in the style Environment Sound Localization Complex Sounds Auditory Scene Analysis Continuity and Restoration Effects Auditory

More information

Effects of Setting Thresholds for the MED- EL Cochlear Implant System in Children

Effects of Setting Thresholds for the MED- EL Cochlear Implant System in Children Effects of Setting Thresholds for the MED- EL Cochlear Implant System in Children Stacy Payne, MA, CCC-A Drew Horlbeck, MD Cochlear Implant Program 1 Background Movement in CI programming is to shorten

More information

The role of periodicity in the perception of masked speech with simulated and real cochlear implants

The role of periodicity in the perception of masked speech with simulated and real cochlear implants The role of periodicity in the perception of masked speech with simulated and real cochlear implants Kurt Steinmetzger and Stuart Rosen UCL Speech, Hearing and Phonetic Sciences Heidelberg, 09. November

More information

THE ROLE OF VISUAL SPEECH CUES IN THE AUDITORY PERCEPTION OF SYNTHETIC STIMULI BY CHILDREN USING A COCHLEAR IMPLANT AND CHILDREN WITH NORMAL HEARING

THE ROLE OF VISUAL SPEECH CUES IN THE AUDITORY PERCEPTION OF SYNTHETIC STIMULI BY CHILDREN USING A COCHLEAR IMPLANT AND CHILDREN WITH NORMAL HEARING THE ROLE OF VISUAL SPEECH CUES IN THE AUDITORY PERCEPTION OF SYNTHETIC STIMULI BY CHILDREN USING A COCHLEAR IMPLANT AND CHILDREN WITH NORMAL HEARING Vanessa Surowiecki 1, vid Grayden 1, Richard Dowell

More information

COM3502/4502/6502 SPEECH PROCESSING

COM3502/4502/6502 SPEECH PROCESSING COM3502/4502/6502 SPEECH PROCESSING Lecture 4 Hearing COM3502/4502/6502 Speech Processing: Lecture 4, slide 1 The Speech Chain SPEAKER Ear LISTENER Feedback Link Vocal Muscles Ear Sound Waves Taken from:

More information

HEARING. Structure and Function

HEARING. Structure and Function HEARING Structure and Function Rory Attwood MBChB,FRCS Division of Otorhinolaryngology Faculty of Health Sciences Tygerberg Campus, University of Stellenbosch Analyse Function of auditory system Discriminate

More information

Hearing. and other senses

Hearing. and other senses Hearing and other senses Sound Sound: sensed variations in air pressure Frequency: number of peaks that pass a point per second (Hz) Pitch 2 Some Sound and Hearing Links Useful (and moderately entertaining)

More information

Peter S Roland M.D. UTSouthwestern Medical Center Dallas, Texas Developments

Peter S Roland M.D. UTSouthwestern Medical Center Dallas, Texas Developments Peter S Roland M.D. UTSouthwestern Medical Center Dallas, Texas Developments New electrodes New speech processing strategies Bilateral implants Hybrid implants ABI in Kids MRI vs CT Meningitis Totally

More information

! Can hear whistle? ! Where are we on course map? ! What we did in lab last week. ! Psychoacoustics

! Can hear whistle? ! Where are we on course map? ! What we did in lab last week. ! Psychoacoustics 2/14/18 Can hear whistle? Lecture 5 Psychoacoustics Based on slides 2009--2018 DeHon, Koditschek Additional Material 2014 Farmer 1 2 There are sounds we cannot hear Depends on frequency Where are we on

More information

TitleSimulation of Cochlear Implant Usin. Citation 音声科学研究 = Studia phonologica (1990),

TitleSimulation of Cochlear Implant Usin. Citation 音声科学研究 = Studia phonologica (1990), TitleSimulation of Cochlear Implant Usin Author(s) Sakakihara, Junji; Takeuchi, Mariko Juichi; Honjo, Iwao Citation 音声科学研究 = Studia phonologica (1990), Issue Date 1990 URL http://hdl.handle.net/2433/52483

More information

Audio Quality Assessment

Audio Quality Assessment Audio Quality Assessment ECE 511 Guest Lecture Michael Lester Purdue University Audio Quality Assessment Audio can have many difference purposes Audio is a signal which is a carrier of information We can

More information

Envelope Versus Fine Structure Speech Coding Strategy: A Crossover Study

Envelope Versus Fine Structure Speech Coding Strategy: A Crossover Study Otology & Neurotology 32:1094Y1101 Ó 2011, Otology & Neurotology, Inc. Envelope Versus Fine Structure Speech Coding Strategy: A Crossover Study *Dominik Riss, *Jafar-Sasan Hamzavi, *Andreas Selberherr,

More information

Wheaton Journal of Neuroscience Senior Seminar Research

Wheaton Journal of Neuroscience Senior Seminar Research Wheaton Journal of Neuroscience Senior Seminar Research Issue 1, Spring 2016: "Life 2.0: Blurring the Boundary Between our Tech and Ourselves" R.L. Morris, Editor. Wheaton College, Norton Massachusetts.

More information

Music Processing in Deaf Adults. with Cochlear Implants

Music Processing in Deaf Adults. with Cochlear Implants Music Processing in Deaf Adults with Cochlear Implants by Mathieu R. Saindon A thesis submitted in conformity with the requirements for the degree of Master of Arts Graduate Department of Psychology University

More information

Auditory System & Hearing

Auditory System & Hearing Auditory System & Hearing Chapters 9 and 10 Lecture 17 Jonathan Pillow Sensation & Perception (PSY 345 / NEU 325) Spring 2015 1 Cochlea: physical device tuned to frequency! place code: tuning of different

More information

PHYS 1240 Sound and Music Professor John Price. Cell Phones off Laptops closed Clickers on Transporter energized

PHYS 1240 Sound and Music Professor John Price. Cell Phones off Laptops closed Clickers on Transporter energized PHYS 1240 Sound and Music Professor John Price Cell Phones off Laptops closed Clickers on Transporter energized The Ear and Hearing Thanks to Jed Whittaker for many of these slides Ear anatomy substructures

More information

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution

More information

Psychoacoustical Models WS 2016/17

Psychoacoustical Models WS 2016/17 Psychoacoustical Models WS 2016/17 related lectures: Applied and Virtual Acoustics (Winter Term) Advanced Psychoacoustics (Summer Term) Sound Perception 2 Frequency and Level Range of Human Hearing Source:

More information

Fitting of the Hearing System Affects Partial Deafness Cochlear Implant Performance

Fitting of the Hearing System Affects Partial Deafness Cochlear Implant Performance 1 Fitting of the Hearing System Affects Partial Deafness Cochlear Implant Performance Marek Polak 1, Artur Lorens 2, Silke Helbig 3, Sonelle McDonald 4, Sheena McDonald 4 ; Katrien Vermeire 5 1 MED-EL,

More information

Auditory Scene Analysis

Auditory Scene Analysis 1 Auditory Scene Analysis Albert S. Bregman Department of Psychology McGill University 1205 Docteur Penfield Avenue Montreal, QC Canada H3A 1B1 E-mail: bregman@hebb.psych.mcgill.ca To appear in N.J. Smelzer

More information

A dissertation presented to. the faculty of. In partial fulfillment. of the requirements for the degree. Doctor of Philosophy. Ning Zhou.

A dissertation presented to. the faculty of. In partial fulfillment. of the requirements for the degree. Doctor of Philosophy. Ning Zhou. Lexical Tone Development, Music Perception and Speech Perception in Noise with Cochlear Implants: The Effects of Spectral Resolution and Spectral Mismatch A dissertation presented to the faculty of the

More information

Sound and Hearing. Decibels. Frequency Coding & Localization 1. Everything is vibration. The universe is made of waves.

Sound and Hearing. Decibels. Frequency Coding & Localization 1. Everything is vibration. The universe is made of waves. Frequency Coding & Localization 1 Sound and Hearing Everything is vibration The universe is made of waves db = 2log(P1/Po) P1 = amplitude of the sound wave Po = reference pressure =.2 dynes/cm 2 Decibels

More information

ID# Exam 2 PS 325, Fall 2003

ID# Exam 2 PS 325, Fall 2003 ID# Exam 2 PS 325, Fall 2003 As always, the Honor Code is in effect and you ll need to write the code and sign it at the end of the exam. Read each question carefully and answer it completely. Although

More information

RESEARCH ON SPOKEN LANGUAGE PROCESSING Progress Report No. 22 (1998) Indiana University

RESEARCH ON SPOKEN LANGUAGE PROCESSING Progress Report No. 22 (1998) Indiana University SPEECH PERCEPTION IN CHILDREN RESEARCH ON SPOKEN LANGUAGE PROCESSING Progress Report No. 22 (1998) Indiana University Speech Perception in Children with the Clarion (CIS), Nucleus-22 (SPEAK) Cochlear Implant

More information

BCS 221: Auditory Perception BCS 521 & PSY 221

BCS 221: Auditory Perception BCS 521 & PSY 221 BCS 221: Auditory Perception BCS 521 & PSY 221 Time: MW 10:25 11:40 AM Recitation: F 10:25 11:25 AM Room: Hutchinson 473 Lecturer: Dr. Kevin Davis Office: 303E Meliora Hall Office hours: M 1 3 PM kevin_davis@urmc.rochester.edu

More information

Relationship Between Tone Perception and Production in Prelingually Deafened Children With Cochlear Implants

Relationship Between Tone Perception and Production in Prelingually Deafened Children With Cochlear Implants Otology & Neurotology 34:499Y506 Ó 2013, Otology & Neurotology, Inc. Relationship Between Tone Perception and Production in Prelingually Deafened Children With Cochlear Implants * Ning Zhou, Juan Huang,

More information

research directions Cochlear implant G.M.CLARK FREQUENCY CODING ELECTRICAL RATE STIMULATION - PHYSIOLOGY AND PSYCHOPHYSICS Department ofotolaryngology

research directions Cochlear implant G.M.CLARK FREQUENCY CODING ELECTRICAL RATE STIMULATION - PHYSIOLOGY AND PSYCHOPHYSICS Department ofotolaryngology Cochlear implant research directions G.M.CLARK COl1gress of. Sydney, Auslra'ia 2-7 March 1997 Department ofotolaryngology The University ofmelbourne, Melbourne (AUS) The Bionic Ear Institute, Melbourne

More information

Cochlear implants provide auditory percepts by stimulating neurons

Cochlear implants provide auditory percepts by stimulating neurons Simulating the Effects of Spread of Electric Excitation on Musical Tuning and Melody Identification With a Cochlear Implant Anthony J. Spahr Arizona State University, Tempe Leonid M. Litvak Advanced Bionics

More information

Role of F0 differences in source segregation

Role of F0 differences in source segregation Role of F0 differences in source segregation Andrew J. Oxenham Research Laboratory of Electronics, MIT and Harvard-MIT Speech and Hearing Bioscience and Technology Program Rationale Many aspects of segregation

More information

IMPROVING CHANNEL SELECTION OF SOUND CODING ALGORITHMS IN COCHLEAR IMPLANTS. Hussnain Ali, Feng Hong, John H. L. Hansen, and Emily Tobey

IMPROVING CHANNEL SELECTION OF SOUND CODING ALGORITHMS IN COCHLEAR IMPLANTS. Hussnain Ali, Feng Hong, John H. L. Hansen, and Emily Tobey 2014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP) IMPROVING CHANNEL SELECTION OF SOUND CODING ALGORITHMS IN COCHLEAR IMPLANTS Hussnain Ali, Feng Hong, John H. L. Hansen,

More information

Cochlear Implant The only hope for severely Deaf

Cochlear Implant The only hope for severely Deaf Cochlear Implant The only hope for severely Deaf By: Dr. M. Sohail Awan, FCPS (ENT) Aga Khan University Hospital, Karachi - Pakistan For centuries, people believed that only a miracle could restore hearing

More information

J Jeffress model, 3, 66ff

J Jeffress model, 3, 66ff Index A Absolute pitch, 102 Afferent projections, inferior colliculus, 131 132 Amplitude modulation, coincidence detector, 152ff inferior colliculus, 152ff inhibition models, 156ff models, 152ff Anatomy,

More information

Topic 4. Pitch & Frequency. (Some slides are adapted from Zhiyao Duan s course slides on Computer Audition and Its Applications in Music)

Topic 4. Pitch & Frequency. (Some slides are adapted from Zhiyao Duan s course slides on Computer Audition and Its Applications in Music) Topic 4 Pitch & Frequency (Some slides are adapted from Zhiyao Duan s course slides on Computer Audition and Its Applications in Music) A musical interlude KOMBU This solo by Kaigal-ool of Huun-Huur-Tu

More information

Music in the Lives of Deaf Children with Cochlear Implants

Music in the Lives of Deaf Children with Cochlear Implants THE NEUROSCIENCES AND MUSIC III DISORDERS AND PLASTICITY Music in the Lives of Deaf Children with Cochlear Implants Sandra E. Trehub, a Tara Vongpaisal, a and Takayuki Nakata b a University of Toronto,

More information

A Computerized Pitch-Perception Training Program for the Hearing Impaired

A Computerized Pitch-Perception Training Program for the Hearing Impaired A Computerized Pitch-Perception Training Program for the Hearing Impaired by Dona Mariyesa Priyanwada Jayakody, B.Sc, M.Sc A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of

More information

HiRes Fidelity 120 Sound Processing

HiRes Fidelity 120 Sound Processing HiRes Fidelity 120 Sound Processing Implementing Active Current Steering for Increased Spectral Resolution in Harmony HiResolution Bionic Ear Users Spectral Resolution Why is it important? In general,

More information

the human 1 of 3 Lecture 6 chapter 1 Remember to start on your paper prototyping

the human 1 of 3 Lecture 6 chapter 1 Remember to start on your paper prototyping Lecture 6 chapter 1 the human 1 of 3 Remember to start on your paper prototyping Use the Tutorials Bring coloured pencil, felts etc Scissor, cello tape, glue Imagination Lecture 6 the human 1 1 Lecture

More information

Separate What and Where Decision Mechanisms In Processing a Dichotic Tonal Sequence

Separate What and Where Decision Mechanisms In Processing a Dichotic Tonal Sequence Journal of Experimental Psychology: Human Perception and Performance 1976, Vol. 2, No. 1, 23-29 Separate What and Where Decision Mechanisms In Processing a Dichotic Tonal Sequence Diana Deutsch and Philip

More information

Source and Description Category of Practice Level of CI User How to Use Additional Information. Intermediate- Advanced. Beginner- Advanced

Source and Description Category of Practice Level of CI User How to Use Additional Information. Intermediate- Advanced. Beginner- Advanced Source and Description Category of Practice Level of CI User How to Use Additional Information Randall s ESL Lab: http://www.esllab.com/ Provide practice in listening and comprehending dialogue. Comprehension

More information

HEARING IMPAIRMENT LEARNING OBJECTIVES: Divisions of the Ear. Inner Ear. The inner ear consists of: Cochlea Vestibular

HEARING IMPAIRMENT LEARNING OBJECTIVES: Divisions of the Ear. Inner Ear. The inner ear consists of: Cochlea Vestibular HEARING IMPAIRMENT LEARNING OBJECTIVES: STUDENTS SHOULD BE ABLE TO: Recognize the clinical manifestation and to be able to request appropriate investigations Interpret lab investigations for basic management.

More information

Effect of spectral content and learning on auditory distance perception

Effect of spectral content and learning on auditory distance perception Effect of spectral content and learning on auditory distance perception Norbert Kopčo 1,2, Dávid Čeljuska 1, Miroslav Puszta 1, Michal Raček 1 a Martin Sarnovský 1 1 Department of Cybernetics and AI, Technical

More information

Speech, Language, and Hearing Sciences. Discovery with delivery as WE BUILD OUR FUTURE

Speech, Language, and Hearing Sciences. Discovery with delivery as WE BUILD OUR FUTURE Speech, Language, and Hearing Sciences Discovery with delivery as WE BUILD OUR FUTURE It began with Dr. Mack Steer.. SLHS celebrates 75 years at Purdue since its beginning in the basement of University

More information

3-D Sound and Spatial Audio. What do these terms mean?

3-D Sound and Spatial Audio. What do these terms mean? 3-D Sound and Spatial Audio What do these terms mean? Both terms are very general. 3-D sound usually implies the perception of point sources in 3-D space (could also be 2-D plane) whether the audio reproduction

More information

Tone perception of Cantonese-speaking prelingually hearingimpaired children with cochlear implants

Tone perception of Cantonese-speaking prelingually hearingimpaired children with cochlear implants Title Tone perception of Cantonese-speaking prelingually hearingimpaired children with cochlear implants Author(s) Wong, AOC; Wong, LLN Citation Otolaryngology - Head And Neck Surgery, 2004, v. 130 n.

More information

Differential-Rate Sound Processing for Cochlear Implants

Differential-Rate Sound Processing for Cochlear Implants PAGE Differential-Rate Sound Processing for Cochlear Implants David B Grayden,, Sylvia Tari,, Rodney D Hollow National ICT Australia, c/- Electrical & Electronic Engineering, The University of Melbourne

More information

PSY 215 Lecture 10 Topic: Hearing Chapter 7, pages

PSY 215 Lecture 10 Topic: Hearing Chapter 7, pages PSY 215 Lecture 10 Topic: Hearing Chapter 7, pages 189-197 Corrections: NTC 09-1, page 3, the Superior Colliculus is in the midbrain (Mesencephalon). Announcements: Movie next Monday: Case of the frozen

More information

Preliminary Results of Adult Patients with Digisonic SP Cohlear Implant System

Preliminary Results of Adult Patients with Digisonic SP Cohlear Implant System Int. Adv. Otol. 2009; 5:(1) 93-99 ORIGINAL ARTICLE Maria-Fotini Grekou, Stavros Mavroidakos, Maria Economides, Xrisa Lira, John Vathilakis Red Cross Hospital of Athens, Greece, Department of Audiology-Neurootology,

More information

Music and Hearing in the Older Population: an Audiologist's Perspective

Music and Hearing in the Older Population: an Audiologist's Perspective Music and Hearing in the Older Population: an Audiologist's Perspective Dwight Ough, M.A., CCC-A Audiologist Charlotte County Hearing Health Care Centre Inc. St. Stephen, New Brunswick Anatomy and Physiology

More information

Static and Dynamic Spectral Acuity in Cochlear Implant Listeners for Simple and Speech-like Stimuli

Static and Dynamic Spectral Acuity in Cochlear Implant Listeners for Simple and Speech-like Stimuli University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School 6-30-2016 Static and Dynamic Spectral Acuity in Cochlear Implant Listeners for Simple and Speech-like Stimuli

More information

Simulations of high-frequency vocoder on Mandarin speech recognition for acoustic hearing preserved cochlear implant

Simulations of high-frequency vocoder on Mandarin speech recognition for acoustic hearing preserved cochlear implant INTERSPEECH 2017 August 20 24, 2017, Stockholm, Sweden Simulations of high-frequency vocoder on Mandarin speech recognition for acoustic hearing preserved cochlear implant Tsung-Chen Wu 1, Tai-Shih Chi

More information

Lecture 3: Perception

Lecture 3: Perception ELEN E4896 MUSIC SIGNAL PROCESSING Lecture 3: Perception 1. Ear Physiology 2. Auditory Psychophysics 3. Pitch Perception 4. Music Perception Dan Ellis Dept. Electrical Engineering, Columbia University

More information

HOW TO IMPROVE COCHLEAR IMPLANT IN ADULT

HOW TO IMPROVE COCHLEAR IMPLANT IN ADULT HOW TO IMPROVE COCHLEAR IMPLANT IN ADULT Poor performances in adult CI patients and its remediation B. FRAYSSE IFOS WORLD MASTER COURSE ON HEARING REHABILITATION DUBAI March 2019, 28-29-30 INTRODUCTION

More information

Rhythm Categorization in Context. Edward W. Large

Rhythm Categorization in Context. Edward W. Large Rhythm Categorization in Context Edward W. Large Center for Complex Systems Florida Atlantic University 777 Glades Road, P.O. Box 39 Boca Raton, FL 3343-99 USA large@walt.ccs.fau.edu Keywords: Rhythm,

More information