susceptibility of either the axons in the dorsal and ventral roots, or the intramedullary

Size: px
Start display at page:

Download "susceptibility of either the axons in the dorsal and ventral roots, or the intramedullary"

Transcription

1 213 J. Physiol. (31958) I40, 2I3-2I9 THE SITE OF ACTION OF PROCAINE ON THE ISOLATED SPINAL CORD OF THE FROG BY M. HARMEL AND J. L. MALCOLM From the Department of Physiology, State University of New York, College of Medicine at New York City, Brooklyn, New York, U.S.A., and the National Institute for Medical Research, Mill Hill, London, N. W. 7 (Received 2 August 1957) It is frequently reported that, in man, the onset of spinal anaesthesia by the intrathecal injection of such local anaesthetics as procaine or allied compounds produces a selective blocking of different types of sensation and reveals a difference in the susceptibility of motor and sensory functions. This selective action of spinal anaesthetics could be due to differences in the susceptibility of either the axons in the dorsal and ventral roots, or the intramedullary branches of these axons and their associated neurones. The experiments described in this paper were designed to determine whether there was a preferred site of action for procaine on intramedullary structures. For such an investigation, the preparation of the cat's spinal cord in situ has the disadvantage that, with it, it is difficult to ensure that the local anaesthetic solution completely surrounds the cord, and that it is not being constantly diluted by the cerebrospinal fluid. The isolated frog's spinal cord provides a simpler and more satisfactory preparation, as it can be completely itmersed in the test solution, while the dorsal and ventral roots are kept clear for stimulating and recording. METHODS The spinal cord of a frog, below the first cervical segment, was removed complete with the dorsal and ventral roots of the 9th and 10th segments, and placed in a Perspex bath (Fig. 1) through which circulated Ringer's solution equilibrated with 95% 02 +5% C02. The composition of the Ringer's solution was: NaCl, 0 7; KCI, 0-014; CaCi,, 0-012; NaHCO3, 0-02 g/100 ml. H20. The dorsal and ventral roots were separated and lifted on to platinum electrodes in the covering layer of paraffin for stimulating and recording. The Ringer's solution was earthed close to the spinal cord. Procaine HCI was added to the Ringer's solution to the concentration required and the effects recorded min later. The temperature of the bath was maintained at from 17 to 200 C. Stimuli were obtained from a Grass square-wave stimulator at a frequency of approximately once every 10 sec. Records were made on 35 mm film from a Cossor oscilloscope after d.c. amplification.

2 214 M. HARMEL AND J. L. MALCOLM Earth Electrodes II 11 I hiiii II IIII 111 Fig. 1. Ringer out Ringer in Cross-sectional view of Perspex bath used to maintain isolated frog spinal cord. Rate of flow of Ringer's solution, 100 ml./hr. t RESULTS Fig. 2 illustrates the results obtained in a typical experiment. The records in column A are the responses of the 10th ventral root to a stimulus applied to the 10th dorsal root on the same side. The only consistent effect recorded with concentrations of 1 x 104 and 3 x 104, as used to obtain the second and third records, is a slight delay in the onset ofthe polysynaptic portion of the response, indicated by the changes in the inflexion on the rising phase of the ventral root response. This inflexion is marked by an arrow in column A. The slight reduction in height in the third record is within the limits of experimental error. Procaine in a concentration of 1 x 10-3 (bottom record) is required in order to reduce the height of the response to a height significantly less than the height of the control (top record). The responses recorded from the 9th dorsal root after the same stimulus to the 10th dorsal root (column B) are more susceptible to procaine. A concentration of 1 x 104 procaine, which had no effect on the height of the ventral root response, definitely diminished the dorsal root response (2nd record), and there is further diminution by higher concentrations (3rd and 4th records, column B). The most susceptible root response, however, is that of the dorsal root to an antidromic volley in the ventral root of the same side and segment (column C). Procaine at a concentration of 1 x 104 markedly diminishes the response (2nd record) and at a concentration of 3 x 104 abolishes it (3rd record). Because this response to an antidromic ventral root volley seemed the most susceptible to procaine, the spread of this volley over the ventral horn cells and their dendrites was further examined by a method of surface recording similar to that used by Lloyd (1951) in the spinal cord of the cat. Fig. 3 shows the records from six points on the surface of the cord between the dorsal root

3 ACTION OF PROCAINE ON FROG SPINAL CORD 215 entry and the ventral root exit, before (column A), and after (column B), bathing the cord in procaine at a concentration of 3 x 104. The pattern of the surface responses is interpreted as follows. The first wave (after the stimulus artifact) marked a is always positive at all points on the surface of the cord, and negative only when the recording electrode is placed on the ventral root. Hence it signals the presence of the incoming volley in the ventral root axons. This a-wave is followed bya short wave marked s that is negative at points on the ventral region of the lateral surface of the cord (points 4-6, Fig. 3) and positive at points on the dorsal region (points 1 and 2, Fig. 3). Such a distribution of positive and negative waves strongly suggests that it signals the invasion of the soma of the ventral horn cells. A B C 4s 0 X~'2x 20 c/s Fig. 2. Records of root potentials of an isolated frog spinal oord. Diagrams at the top of each column indicate the position of stimulating electrodes (S) and recording electrodes (B). Column A, records obtained from the 10th ventral root by stimulating the 10th dorsal root. Column B, records obtained from the 9th dorsal root by stimulating the 10th dorsal root. Column C, records obtained from the 10th dorsal root by stimulating the 10th ventral root. First record in each column obtained with Ringer's solution only bathing the special cord. Second record in each column, after bathing for 30 min in procaine 1 x Third record, after 30 mm in procaine 3 x 10-'. Lowest record, after 30 min in procaine 1 x Arrows on records in column A indicate points of commencement of the polysynaptic component of the ventral root response. The third wave, marked d, is always negative and its characteristics suggest that it signals the invasion of dendrites. Its appearance is increasingly delayed as the recording point is moved away from the region of the ventral horn cells. (Compare d in the records from points 1 and 6, Fig. 3, column A.) At the more distant points (e.g., point 1, Fig. 3), this negative d-wave is preceded by a positive wave that is coincident with the negative d-wave recorded at points adjacent to the ventral horn. The more distant branches of

4 216 M. HARMEL AND J. L. MALCOLM the dendritic tree evidently act as 'sources' of current to the 'sinks' in the proximal branches, before they in turn are invaded, become 'sinks' and give rise to a delayed negative deflexion. The presence of a negative d-wave in all the records in column A, Fig. 3, indicates that some dendrites close to these points on the surface were invaded by the antidromic volley. A d as B d -IUU CIS asd as d Fig. 3. Records obtained from points at mid-segmental level on the surface of the cord as indicated on the diagrammatic section on the left. The cord and a proximal part of the ventral root were fully immersed in the Ringer's solution. Stimulus applied, at S, to the ventral root to initiate an antidromic volley. Column A before, column B after, 30 min in procaine 3 x Stimulus artifact indicated by dot and line. a-, s-, and d-waves, see text. The records in column B, Fig. 3, were taken 20 min after procaine 3 x 10-4 had been added to the perfusing fluid. In this experiment, unlike that illustrated in Fig. 2, such a concentration abolished the dorsal root response to an antidromic volley, but had no effect on either the dorsal or ventral root responses to an orthodromic dorsal root volley. The records from the surface of the cord, however, show that the d-wave is markedly decreased while the a- and s-waves are not significantly altered. The diminution of the d-wave in the regions proximal to the cell bodies (records 5 and 6, Fig. 3) coincides with a decrease in the positive wave in the records from the more distant regions (records 1 and 2, Fig. 3). The positive wave recorded at these more distant

5 ACTION OF PROCAINE ON FROG SPINAL CORD 217 points is followed by only a minute negative wave. This shows that, as a result of the action of procaine, the more distant branches of the dendritic tree can still act as a 'source' to the smaller 'sink' in the proximal branches, while very few of the more distant branches are themselves invaded. Procaine interferes with the normal facilitatory action of a dorsal root volley on an antidromic ventral root volley. This facilitation is confined to the dendritic component as illustrated by Fig. 4. Record A, in Fig. 4, is the normal response to an antidromic volley recorded at a point corresponding to position 4 in Fig. 3, while B is the response to the same volley at the same point 35 msec Cb t1 t IT t a s d a s d Fig. 4. The response of a point in the middle of the lateral surface of a frog's spinal cord to an antidromic volley in the ventral root, Records A and B before, C and D after, bathing the cord in procaine 1 x 10-4 for 30 min. Records A and C without, B and D with, a facilitating dorsal root volley initiated 35 msec earlier. a, s and d, as in Fig. 3 and in text. after a maximal dorsal root volley. The a- and s-waves are unchanged, but the d-wave is greatly increased, i.e. the antidromic volley has now spread into many more branches of the dendritic tree. After bathing the cord in procaine 1 X 10-4 for 30 min the antidromic response alone is slightly depressed (Fig. 3 C) and the extent to which the d-wave can be facilitated greatly diminished (Fig. 3D). At this concentration of procaine, the conditioning facilitating volley was unaffected. 14 PHYSIO. CXL

6 218 M. HARMEL AND J. L. MALCOLM DISCUSSION The effects of low concentrations of procaine are primarily on the dendrites of the ventral horn cell. This is clearly indicated by the block of an antidromic volley before it spreads very far beyond the soma, and the inability of an orthodromic volley, apparently unaffected, to facilitate this spread. More weight is given to this hypothesis by the finding that a dorsal root response to a neighbouring dorsal root volley is little affected by concentrations of procaine that block the dorsal root response to an antidromic ventral root volley. Presumably the terminal ramifications of the afferent fibres are less susceptible than the dendrites of the ventral horn cells. It is not possible to assess the role played by interneurones in these experiments. If they provide the preferential site of action for low concentrations of procaine one would expect that blocking their activity would diminish the spread of the antidromic volley in the ventral root only if they normally maintained a continuous background of facilitating bombardment. The cessation of such a background of facilitation would be at once obvious on the normal ventral root response to a dorsal root volley if the ventral root discharge were dependent on the integrity of the whole motoneurone. This, however, is probably not the case as a nearly normal ventral root discharge can be obtained when the dendrites cannot be antidromically activated. A large factor of safety is seemingly maintained so that activation by the afferent volley of soma and proximal dendrites alone is sufficient to produce a normal response. The slight delay in the initiation of the later, polysynaptic, portion of the response suggests that the presynaptic volleys are not quite so adequate as normally. It is not possible, therefore, to say whether the depression of dendritic activity is due to direct action of procaine on the dendrites or indirect via diminished interneurone activity. It seems unlikely, however, that interneurones would show much continuous activity in such an isolated preparation as used here, especially as the tension of CO2 provided from the perfusing fluid is higher than that normally found in the frog's spinal cord and would be expected therefore to depress the over-all activity of interneurones. The results of these experiments therefore strongly suggest that the dendrites of the motoneurones are the most susceptible to the action of procaine. The reason for this susceptibility does not necessarily lie in a specific chemical difference between dendrites and other structures. Two other possible explanations should be borne in mind. One is that the differences in susceptibility depend upon variations in the safety factor for conduction of nerve volleys in different units. The excitation process, normally, may be only just adequate for conduction over dendrites, whereas for firing a motoneurone it may be many times that needed to reach threshold. In these circumstances,

7 ACTION OF PROCAINE ON FROG SPINAL CORD 219 the procaine would be more effective on dendritic conduction though equally distributed over all the elements in the cord. The other possible explanation is that the procaine diffuses unequally throughout the cord and hence units that ramify over the widest field are the ones most likely to be affected by the procaine. This would account for the greater susceptibility of the motoneurone dendrites which ramify extensively through several segments of the cord. SUMMARY 1. The sensitivity to procaine of different parts of the isolated frog's spinal cord was observed by recording the electrical responses of dorsal and ventral roots and the spinal cord to orthodromic and antidromic nerve volleys. 2. The most sensitive responses were: (a) the dendritic response of the motoneurone to an antidromic, ventral root volley; (b) the dendritic response of the motoneurone to an antidromic volley after facilitation by an orthodromic, dorsal root volley; (c) the dorsal root response to an antidromic, ventral root volley. 3. The most sensitive responses depend primarily on the integrity of the motoneurone dendritic tree, though the possibility of the failure of interneurones, if active, playing some part in the recorded changes cannot be excluded. REFERENCE LLOYD, D. P. C. (1951). Electrical signs of impulse conduction in spinal motor neurones. J. gen. Phy8iol. 35,

(Received 10 April 1956)

(Received 10 April 1956) 446 J. Physiol. (I956) I33, 446-455 A COMPARISON OF FLEXOR AND EXTENSOR REFLEXES OF MUSCULAR ORIGIN BY M. G. F. FUORTES AND D. H. HUBEL From the Department ofneurophysiology, Walter Reed Army Institute

More information

J. Physiol. (I957) I35, (Received 20 July 1956) The interpretation ofthe experimental results ofthe preceding paper (Matthews

J. Physiol. (I957) I35, (Received 20 July 1956) The interpretation ofthe experimental results ofthe preceding paper (Matthews 263 J. Physiol. (I957) I35, 263-269 THE RELATIVE SENSITIVITY OF MUSCLE NERVE FIBRES TO PROCAINE BY PETER B. C. MATTHEWS AND GEOFFREY RUSHWORTH From the Laboratory of Physiology, University of Oxford (Received

More information

(Received 10 April 1958)

(Received 10 April 1958) 138 J. Physiol. (I958) I43, I38-I48 THE SITE OF IMPULSE INITIATION IN A NERVE CELL OF A CRUSTACEAN STRETCH RECEPTOR BY C. EDWARDS* AND D. OTTOSONt From the Wilmer Institute, The Johns Hopkins Hospital

More information

(Received 14 January 1954)

(Received 14 January 1954) 278 J3 Physiol. (I954) I25, 278-29I ELECTRICAL STIMULATION OF THE UNEXPOSED CEREBRAL CORTEX BY T. GUALTIEROTTI* AND A. SPENCER PATERSON From the West London Hospital Medical School, Dan Mason Research

More information

['j.~~~~~~~~~~~~~~. ij.:wjj. 111 ;b Lii-1 j L. synchronism (Fig. 1). From the Physiological Laboratory, University of Cambridge

['j.~~~~~~~~~~~~~~. ij.:wjj. 111 ;b Lii-1 j L. synchronism (Fig. 1). From the Physiological Laboratory, University of Cambridge 106 _ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~... _.. J. Physiol. (I953) I21, Io6-iI6 SYNCHRONIZATION OF ACTION POTENTIALS IN THE SPINAL FROG BY T. GUALTIEROTTI* (Fellow of the Rockefeller Foundation) From the Physiological

More information

Chapter 34 The Nervous System:

Chapter 34 The Nervous System: Chapter 34 The Nervous System: 3.5 Learning Objectives 3.5.3 Responses in the human 1. The nervous system: two-part division into the CNS and the PNS. 2. Neurons, name 3 types, give structure and function

More information

Clarke's Column Neurons as the Focus of a Corticospinal Corollary Circuit. Supplementary Information. Adam W. Hantman and Thomas M.

Clarke's Column Neurons as the Focus of a Corticospinal Corollary Circuit. Supplementary Information. Adam W. Hantman and Thomas M. Clarke's Column Neurons as the Focus of a Corticospinal Corollary Circuit Supplementary Information Adam W. Hantman and Thomas M. Jessell Supplementary Results Characterizing the origin of primary

More information

closely resembling that following an antidromic impulse [Eccles and

closely resembling that following an antidromic impulse [Eccles and 185 6I2.833. 96 REFLEX INTERRUPTIONS OF RHYTHMIC DISCHARGE. By E. C. HOFF, H. E. HOFF AND D. SHEEHAN1. (New Haven, Conn.) (From the Laboratory of Physiology, Yale University School of Medicine.) (Received

More information

Integrative Synaptic Mechanisms in the Caudal Ganglion of the Crayfish

Integrative Synaptic Mechanisms in the Caudal Ganglion of the Crayfish Integrative Synaptic Mechanisms in the Caudal Ganglion of the Crayfish JAMES B. PRESTON and DONALD KENNEDY ABSTRACT A study of activity recorded with intracellular micropipettes was undertaken in the caudal

More information

J. Physiol. (I955) I30, 396-4I3

J. Physiol. (I955) I30, 396-4I3 396 J. Physiol. (I955) I30, 396-4I3 THE INHIBITORY SUPPRESSIO1N OF REFLEX DISCHARGES FROM MOTONEURONES By J. S. COOMBS, J. C. ECCLES AND P. FATT From the Department of Physiology, The Australian National

More information

Australian National University, Canberra, Australia

Australian National University, Canberra, Australia 430 J. Phy8iol. (1965), 179, pp. 430-441 With 6 text-figures Printed in Great Britain MUSCLE STRETCH AND THE PRESYNAPTIC INHIBITION OF THE GROUP Ia PATHWAY TO MOTONEURONES BY M. S. DEVANANDAN, ROSAMOND

More information

35-2 The Nervous System Slide 1 of 38

35-2 The Nervous System Slide 1 of 38 1 of 38 35-2 The Nervous System The nervous system controls and coordinates functions throughout the body and responds to internal and external stimuli. 2 of 38 Neurons Neurons The messages carried by

More information

Chapter 17 Nervous System

Chapter 17 Nervous System Chapter 17 Nervous System 1 The Nervous System Two Anatomical Divisions Central Nervous System (CNS) Brain and Spinal Cord Peripheral Nervous System (PNS) Two Types of Cells Neurons Transmit nerve impulses

More information

Medical Center, Washington, D.C.

Medical Center, Washington, D.C. 625 J. Physiol. (I955) I30, 625-654 POTENTIALS RECORDED FROM THE SPINAL CORD WITH MICROELECTRODES By K. FRANK AND M. G. F. FUORTES From the Laboratory of Neurophysiology, National Institutes of Health,

More information

Franklin, 1933; Waterman, 1933]; indeed, the only negative findings, [Waterman, 1933]. Inasmuch, then, as Donegan was misled with

Franklin, 1933; Waterman, 1933]; indeed, the only negative findings, [Waterman, 1933]. Inasmuch, then, as Donegan was misled with 381 6I2.I34:6I2.893 THE CONSTRICTOR RESPONSE OF THE INFERIOR VENA CAVA TO STIMULATION OF THE SPLANCHNIC NERVE BY K. J. FRANKLIN AND A. D. McLACHLIN (From the University Department of Pharmacology, Oxford)

More information

Human Anatomy and Physiology - Problem Drill 11: Neural Tissue & The Nervous System

Human Anatomy and Physiology - Problem Drill 11: Neural Tissue & The Nervous System Human Anatomy and Physiology - Problem Drill 11: Neural Tissue & The Nervous System Question No. 1 of 10 The human body contains different types of tissue. The tissue is formed into organs and organ systems.

More information

J. Physiol. (I956) I33,

J. Physiol. (I956) I33, 232 J. Physiol. (I956) I33, 232-242 A STUDY OF THE EFFECT OF THE PATTERN OF ELECTRICAL STIMULATION OF THE AORTIC NERVE ON THE REFLEX DEPRESSOR RESPONSES By W. W. DOUGLAS, J. M. RITCHIE AND W. SCHAUMANN*

More information

STRUCTURAL ELEMENTS OF THE NERVOUS SYSTEM

STRUCTURAL ELEMENTS OF THE NERVOUS SYSTEM STRUCTURAL ELEMENTS OF THE NERVOUS SYSTEM STRUCTURE AND MAINTENANCE OF NEURONS (a) (b) Dendrites Cell body Initial segment collateral terminals (a) Diagrammatic representation of a neuron. The break in

More information

Lesson 33. Objectives: References: Chapter 16: Reading for Next Lesson: Chapter 16:

Lesson 33. Objectives: References: Chapter 16: Reading for Next Lesson: Chapter 16: Lesson 33 Lesson Outline: Nervous System Structure and Function Neuronal Tissue Supporting Cells Neurons Nerves Functional Classification of Neuronal Tissue Organization of the Nervous System Peripheral

More information

by interneurones which are themselves inhibited by Renshaw cells, these

by interneurones which are themselves inhibited by Renshaw cells, these J. Phyaiol. (1978), 285, pp. 425-444 425 With 9 text-ftgure Printed in Great Britain CROSSED DISYNAPTIC INHIBITION OF SACRAL MOTONEURONES BY ELZB1ETA JANKOWSKA, YVES PADEL* AND PETER ZARZECKIt From the

More information

POSTSYNAPTIC INHIBITION OF CRAYFISH TONIC FLEXOR MOTOR NEURONES BY ESCAPE COMMANDS

POSTSYNAPTIC INHIBITION OF CRAYFISH TONIC FLEXOR MOTOR NEURONES BY ESCAPE COMMANDS J. exp. Biol. (1980), 85, 343-347 343 With a figures Printed in Great Britain POSTSYNAPTIC INHIBITION OF CRAYFISH TONIC FLEXOR MOTOR NEURONES BY ESCAPE COMMANDS BY J. Y. KUWADA, G. HAGIWARA AND J. J. WINE

More information

Scheminzky's phenomenon was attempted by studying the actions of galvanic. Scheminzky (see Scheminzky, 1940, 1947, and the papers quoted therein) has

Scheminzky's phenomenon was attempted by studying the actions of galvanic. Scheminzky (see Scheminzky, 1940, 1947, and the papers quoted therein) has 316 J. Physiol. (I95I) II3, 3I6-32I EFFECTS OF DIRECT CURRENTS ON THE ELECTRICAL ACTIVITY OF THE SPINAL CORD BY C. AJMONE MARSAN, M. G. F. FUORTES AND F. MAROSSERO From the Clinica Malattie Nervose e Mentali,

More information

Meyers' A&P February 15, Unit 7. The Nervous System. I. Functions of the Nervous System. Monitors body's internal and external enviornments

Meyers' A&P February 15, Unit 7. The Nervous System. I. Functions of the Nervous System. Monitors body's internal and external enviornments Unit 7 The Nervous System I. Functions of the Nervous System Monitors body's internal and external enviornments Integrates sensory information Coordinates voluntary & involuntary responses of many other

More information

LESSON 3.3 WORKBOOK. Why does applying pressure relieve pain?

LESSON 3.3 WORKBOOK. Why does applying pressure relieve pain? Postsynaptic potentials small changes in voltage (membrane potential) due to the binding of neurotransmitter. Receptor-gated ion channels ion channels that open or close in response to the binding of a

More information

Neurophysiology scripts. Slide 2

Neurophysiology scripts. Slide 2 Neurophysiology scripts Slide 2 Nervous system and Endocrine system both maintain homeostasis in the body. Nervous system by nerve impulse and Endocrine system by hormones. Since the nerve impulse is an

More information

change capable of exciting nerve terminals; (c) the initiation of impulses at the

change capable of exciting nerve terminals; (c) the initiation of impulses at the 248 J. Physiol. (I 950) III, 248-260 6I2.885.6I2.8I3 ACTION POTENTIALS FROM A SENSORY NERVE ENDING By BERNHARD KATZ From the Biophysics Research Unit, University College, London (Received 10 November 1949)

More information

Neurons Chapter 7 2/19/2016. Learning Objectives. Cells of the Nervous System. Cells of the Nervous System. Cells of the Nervous System

Neurons Chapter 7 2/19/2016. Learning Objectives. Cells of the Nervous System. Cells of the Nervous System. Cells of the Nervous System Learning Objectives Neurons Chapter 7 Identify and describe the functions of the two main divisions of the nervous system. Differentiate between a neuron and neuroglial cells in terms of structure and

More information

Microelectrode studies in the frog isolated spinal cord during depression by general anaesthetic agents

Microelectrode studies in the frog isolated spinal cord during depression by general anaesthetic agents Br. J. Pharmac. (1969), 36, 312-328. Microelectrode studies in the frog isolated spinal cord during depression by general anaesthetic agents A. RICHENS Department of Pharmacology, Medical College of St.

More information

Reflexes. Handout on The Basic Reflex Arc and Stretch and Tendon Reflexes. -55 mv -70 mv EPSP. By Noel Ways

Reflexes. Handout on The Basic Reflex Arc and Stretch and Tendon Reflexes. -55 mv -70 mv EPSP. By Noel Ways Reflexes Handout on The Basic Reflex Arc and Stretch and Tendon Reflexes By Noel Ways Basic Reflex Arch 2. : s are always unipolar and will conduct and impulse to a control center. In this case the control

More information

6I2.8I3. preceding paper. Leads were placed on one of the dorsal cutaneous

6I2.8I3. preceding paper. Leads were placed on one of the dorsal cutaneous 6I2.8I3 RESPONSE OF TACTILE RECEPTORS TO INTERMITTENT STIMULATION. BY McKEEN CATTELL1 AND HUDSON HOAGLAND2. (From the Physiological Laboratory, Cambridge.) THE preceding paper [Adrian, Cattell and Hoagland]

More information

The Journal of General Physiology

The Journal of General Physiology FURTHER STUDY OF SOMA, DENDRITE, AND AXON EXCITATION IN SINGLE NEURONS* BY CARLOS EYZAGUIRRE:~ A~ STEPHEN W. KUFFLER (From the Wiimer Institute, Johns Hopkins Hospital and University, Baltimore) (Received

More information

Orbeli are of sympathetic origin. Moreover he found relatively little

Orbeli are of sympathetic origin. Moreover he found relatively little THE SYMPATHETIC INNERVATION OF THE SKIN OF THE TOAD. BY K. UYENO. THE general scheme of sympathetic innervation in the frog has been determined by Langley and Orbeli(i) on the basis of the visceromotor

More information

increasing pressure registered in kilograms was applied until the subject began to feel a sensation of pain. With an intelligent person the responses

increasing pressure registered in kilograms was applied until the subject began to feel a sensation of pain. With an intelligent person the responses VARIATIONS IN THE SENSIBILITY TO PRESSURE PAIN CAUSED BY NERVE STIMULATION IN MAN. BY R. C. SHAWE. (From the Royal Infirmary, Manchester.) IN a previous paper (Brit. Journ. Surgery, Jan. 1922) I have given

More information

along the dendrites. BY L. G. BROCK, J. S. COOMBS AND J. C. ECCLES From the Departments of Physiology, University of Otago, New Zealand,

along the dendrites. BY L. G. BROCK, J. S. COOMBS AND J. C. ECCLES From the Departments of Physiology, University of Otago, New Zealand, 429 J. Physiol. (I 953) I 22, 429-46 I INTRACELLULAR RECORDING FROM ANTIDROMICALLY ACTIVATED MOTONEURONES BY L. G. BROCK, J. S. COOMBS AND J. C. ECCLES From the Departments of Physiology, University of

More information

CHAPTER 10 THE SOMATOSENSORY SYSTEM

CHAPTER 10 THE SOMATOSENSORY SYSTEM CHAPTER 10 THE SOMATOSENSORY SYSTEM 10.1. SOMATOSENSORY MODALITIES "Somatosensory" is really a catch-all term to designate senses other than vision, hearing, balance, taste and smell. Receptors that could

More information

(Received 8 December 1966)

(Received 8 December 1966) J. Physiol. (1967), 189, pp. 545-550 545 With 2 text-figure8 Printed in Great Britain FUSIMOTOR STIMULATION AND THE DYNAMIC SENSITIVITY OF THE SECONDARY ENDING OF THE MUSCLE SPINDLE BY M. C. BROWN, I.

More information

Differential presynaptic inhibition of actions of group II afferents in di- and polysynaptic pathways to feline motoneurones

Differential presynaptic inhibition of actions of group II afferents in di- and polysynaptic pathways to feline motoneurones Journal of Physiology (2002), 542.1, pp. 287 299 DOI: 10.1113/jphysiol.2001.014068 The Physiological Society 2002 www.jphysiol.org Differential presynaptic inhibition of actions of group II afferents in

More information

LESSON 3.3 WORKBOOK. Why does applying pressure relieve pain? Workbook. Postsynaptic potentials

LESSON 3.3 WORKBOOK. Why does applying pressure relieve pain? Workbook. Postsynaptic potentials Depolarize to decrease the resting membrane potential. Decreasing membrane potential means that the membrane potential is becoming more positive. Excitatory postsynaptic potentials (EPSP) graded postsynaptic

More information

Chapter 7. Objectives

Chapter 7. Objectives Chapter 7 The Nervous System: Structure and Control of Movement Objectives Discuss the general organization of the nervous system Describe the structure & function of a nerve Draw and label the pathways

More information

Chapter 7. The Nervous System: Structure and Control of Movement

Chapter 7. The Nervous System: Structure and Control of Movement Chapter 7 The Nervous System: Structure and Control of Movement Objectives Discuss the general organization of the nervous system Describe the structure & function of a nerve Draw and label the pathways

More information

Nervous system Overview ( The master communication system)

Nervous system Overview ( The master communication system) Nervous system Overview ( The master communication system) Neuron process Cell body nucleus Neuroglia Nerve Tissue COMPOSITION OF NERVE TISSUE Two principal types of cells, neurons and supporting cells

More information

(From the Kerckhoff Laboratories of Biology, California Institute of Technology, Pasadena)

(From the Kerckhoff Laboratories of Biology, California Institute of Technology, Pasadena) Published Online: 20 November, 1950 Supp Info: http://doi.org/10.1085/jgp.34.2.137 Downloaded from jgp.rupress.org on January 12, 2019 THE INTERACTION BETWEEN THE SYNAPSES OF A SINGLE MOTOR FIBER BY C.

More information

BIOH111. o Cell Module o Tissue Module o Integumentary system o Skeletal system o Muscle system o Nervous system o Endocrine system

BIOH111. o Cell Module o Tissue Module o Integumentary system o Skeletal system o Muscle system o Nervous system o Endocrine system BIOH111 o Cell Module o Tissue Module o Integumentary system o Skeletal system o Muscle system o Nervous system o Endocrine system Endeavour College of Natural Health endeavour.edu.au 1 Textbook and required/recommended

More information

California Institute of Technology, Pasadena, California

California Institute of Technology, Pasadena, California J. Physiol. (1966), 185, pp. 15-29 15 With 8 text-f gures Printed in Great Britain ASPHYXIAL POTENTIALS OF SPINAL GREY MATTER, AND OF VENTRAL AND DORSAL ROOTS BY P. A. BIERSTEKER, H. COLLEWIJN AND A. VAN

More information

ascending phases began to diverge was taken to mark the onset of decay in the

ascending phases began to diverge was taken to mark the onset of decay in the 605 J. Physiol. (I954) I24, 605-6I2 THE DURATION OF THE PLATEAU OF FULL ACTIVITY IN FROG MUSCLE BY J. M. RITCHIE From the National Institute for Medical Research, Mill Hill, London, N.W. 7 (Received 26

More information

Nervous System: Spinal Cord and Spinal Nerves (Chapter 13)

Nervous System: Spinal Cord and Spinal Nerves (Chapter 13) Nervous System: Spinal Cord and Spinal Nerves (Chapter 13) Lecture Materials for Amy Warenda Czura, Ph.D. Suffolk County Community College Eastern Campus Primary Sources for figures and content: Marieb,

More information

Guide to the use of nerve conduction studies (NCS) & electromyography (EMG) for non-neurologists

Guide to the use of nerve conduction studies (NCS) & electromyography (EMG) for non-neurologists Guide to the use of nerve conduction studies (NCS) & electromyography (EMG) for non-neurologists What is NCS/EMG? NCS examines the conduction properties of sensory and motor peripheral nerves. For both

More information

NEURONS Chapter Neurons: specialized cells of the nervous system 2. Nerves: bundles of neuron axons 3. Nervous systems

NEURONS Chapter Neurons: specialized cells of the nervous system 2. Nerves: bundles of neuron axons 3. Nervous systems NEURONS Chapter 12 Figure 12.1 Neuronal and hormonal signaling both convey information over long distances 1. Nervous system A. nervous tissue B. conducts electrical impulses C. rapid communication 2.

More information

Nervous Tissue. The unit of nervous tissue is called neuron. It is the longest cell & it doesn t undergo cell division in matured state.

Nervous Tissue. The unit of nervous tissue is called neuron. It is the longest cell & it doesn t undergo cell division in matured state. Nervous Tissue The unit of nervous tissue is called It is the longest cell & it doesn t undergo cell division in matured state. It is a special modified tissuess or cells for getting following two basic

More information

BI 232: Human Anatomy & Physiology

BI 232: Human Anatomy & Physiology BI 232: Human Anatomy & Physiology Roster Business Course Introduction and Syllabus Notecard Name E-mail Why you are taking the course Something interesting you did over break Lecture Tips Use the Study

More information

Cellular Bioelectricity

Cellular Bioelectricity ELEC ENG 3BB3: Cellular Bioelectricity Notes for Lecture 24 Thursday, March 6, 2014 8. NEURAL ELECTROPHYSIOLOGY We will look at: Structure of the nervous system Sensory transducers and neurons Neural coding

More information

Nervous tissue, charachteristics, neurons, glial cells

Nervous tissue, charachteristics, neurons, glial cells Nervous tissue, charachteristics, neurons, glial cells Functional Organization of Nervous Tissue The Nervous System Components Brain, spinal cord, nerves, sensory receptors Responsible for Sensory perceptions,

More information

Functional Organization of Nervous Tissue. Nervous tissue, charachteristics, neurons, glial cells. The Nervous System. The Nervous System 21/12/2010

Functional Organization of Nervous Tissue. Nervous tissue, charachteristics, neurons, glial cells. The Nervous System. The Nervous System 21/12/2010 Nervous tissue, charachteristics, neurons, glial cells Functional Organization of Nervous Tissue The Nervous System Components Brain, spinal cord, nerves, sensory receptors Responsible for Sensory perceptions,

More information

Boston, Ma8ssachusetts 02115, U.S.A. these synapses behaves in a characteristic manner and the nature of the. that correspond to natural firing.

Boston, Ma8ssachusetts 02115, U.S.A. these synapses behaves in a characteristic manner and the nature of the. that correspond to natural firing. J. Physiol. (1972), 225, pp. 637-656 637 With 1 plate and 11 text-figure8 Printed in Great Britain A COMPARISON OF CHEMICAL AND ELECTRICAL SYNAPTIC TRANSMISSION BETWEEN SINGLE SENSORY CELLS AND A MOTONEURONE

More information

Chapter 11 Introduction to the Nervous System and Nervous Tissue Chapter Outline

Chapter 11 Introduction to the Nervous System and Nervous Tissue Chapter Outline Chapter 11 Introduction to the Nervous System and Nervous Tissue Chapter Outline Module 11.1 Overview of the Nervous System (Figures 11.1-11.3) A. The nervous system controls our perception and experience

More information

Nervous system. Made up of. Peripheral nervous system. Central nervous system. The central nervous system The peripheral nervous system.

Nervous system. Made up of. Peripheral nervous system. Central nervous system. The central nervous system The peripheral nervous system. Made up of The central nervous system The peripheral nervous system Nervous system Central nervous system Peripheral nervous system Brain Spinal Cord Cranial nerve Spinal nerve branch from the brain connect

More information

CENTRAL CONTROL OF AN INSECT SENSORY INTERNEURONE

CENTRAL CONTROL OF AN INSECT SENSORY INTERNEURONE J. Exp. Biol. (1970), S3, 137-145 With 4 text-figures Printed in Great Britain CENTRAL CONTROL OF AN INSECT SENSORY INTERNEURONE BY J. M. MCKAY* Department of Zoology, Makerere University College, Kampala,

More information

Physiology of synapses and receptors

Physiology of synapses and receptors Physiology of synapses and receptors Dr Syed Shahid Habib Professor & Consultant Clinical Neurophysiology Dept. of Physiology College of Medicine & KKUH King Saud University REMEMBER These handouts will

More information

The Nervous System. Lab Exercise 29. Objectives. Introduction

The Nervous System. Lab Exercise 29. Objectives. Introduction Lab Exercise The Nervous System Objectives -You should be able to recognize a neuron and identify its components. - Be able to identify the principal components of the brain and be able to name at least

More information

Department of Neurology/Division of Anatomical Sciences

Department of Neurology/Division of Anatomical Sciences Spinal Cord I Lecture Outline and Objectives CNS/Head and Neck Sequence TOPIC: FACULTY: THE SPINAL CORD AND SPINAL NERVES, Part I Department of Neurology/Division of Anatomical Sciences LECTURE: Monday,

More information

Cortical Control of Movement

Cortical Control of Movement Strick Lecture 2 March 24, 2006 Page 1 Cortical Control of Movement Four parts of this lecture: I) Anatomical Framework, II) Physiological Framework, III) Primary Motor Cortex Function and IV) Premotor

More information

Compound Action Potential, CAP

Compound Action Potential, CAP Stimulus Strength UNIVERSITY OF JORDAN FACULTY OF MEDICINE DEPARTMENT OF PHYSIOLOGY & BIOCHEMISTRY INTRODUCTION TO NEUROPHYSIOLOGY Spring, 2013 Textbook of Medical Physiology by: Guyton & Hall, 12 th edition

More information

BIOLOGY 2050 LECTURE NOTES ANATOMY & PHYSIOLOGY I (A. IMHOLTZ) FUNDAMENTALS OF THE NERVOUS SYSTEM AND NERVOUS TISSUE P1 OF 5

BIOLOGY 2050 LECTURE NOTES ANATOMY & PHYSIOLOGY I (A. IMHOLTZ) FUNDAMENTALS OF THE NERVOUS SYSTEM AND NERVOUS TISSUE P1 OF 5 P1 OF 5 The nervous system controls/coordinates the activities of cells, tissues, & organs. The endocrine system also plays a role in control/coordination. The nervous system is more dominant. Its mechanisms

More information

From the Physiology Department, King's College, University of London (Received 14 December 1949)

From the Physiology Department, King's College, University of London (Received 14 December 1949) 382 J. Physiol. (I950) III, 382-387 6I2.817.I*546.32 POTASSIUM AND NEUROMUSCULAR TRANSMISSION BY S. HAJDU, J. A. C. KNOX AND R. J. S. McDOWALL From the Physiology Department, King's College, University

More information

Physiology of the nerve

Physiology of the nerve Physiology of the nerve Objectives Transmembrane potential Action potential Relative and absolute refractory period The all-or-none law Hoorweg Weiss curve Du Bois Reymond principle Types of nerve fibres

More information

Nervous Systems: Diversity & Functional Organization

Nervous Systems: Diversity & Functional Organization Nervous Systems: Diversity & Functional Organization Diversity of Neural Signaling The diversity of neuron structure and function allows neurons to play many roles. 3 basic function of all neurons: Receive

More information

The Nervous System. The right half of the brain controls the left half of the body. This means that only left handed people are in their right mind.

The Nervous System. The right half of the brain controls the left half of the body. This means that only left handed people are in their right mind. The Nervous System The right half of the brain controls the left half of the body. This means that only left handed people are in their right mind. Central Nervous System Made up of brain and spinal cord

More information

THE ACTION OF CHLORPHENESIN CARBAMATE ON THE FROG SPINAL CORD

THE ACTION OF CHLORPHENESIN CARBAMATE ON THE FROG SPINAL CORD Japan. J. Pharmacol. 30, 29-36 (1980) 29 THE ACTION OF CHLORPHENESIN CARBAMATE ON THE FROG SPINAL CORD Hironaka AIHARA, Michio KURACHI, Sadao NAKANE, Michitada SASAJIMA and Masahiro OHZEKI Research Laboratories,

More information

College of Medicine, Salt Lake City 12, Utah, U.S.A.

College of Medicine, Salt Lake City 12, Utah, U.S.A. 43 J. Phy8iol. (1962), 164, pp. 43-449 With 9 text-figurea Printed in Great Britain A COMPARZISON OF MONOSYNAPTIC AND POLYSYNAPTIC REFLEX RESPONSES FROM INDIVIDUAL FLEXOR MOTONEURONES BY E. R. PERL From

More information

Chapter 13: The Spinal Cord and Spinal Nerves

Chapter 13: The Spinal Cord and Spinal Nerves Chapter 13: The Spinal Cord and Spinal Nerves Spinal Cord Anatomy Protective structures: Vertebral column and the meninges protect the spinal cord and provide physical stability. a. Dura mater, b. Arachnoid,

More information

Thursday, January 22, Nerve impulse

Thursday, January 22, Nerve impulse Nerve impulse Transmembrane Potential caused by ions moving through cell membrane at different rates Two main ions of concern Na + - Sodium K + - potassium Cell membrane not freely permeable therefore

More information

BY W. W. DOUGLAS AND J. L. MALCOLM From the National Institute for Medical Research, Mill Hill, London, N.W. 7

BY W. W. DOUGLAS AND J. L. MALCOLM From the National Institute for Medical Research, Mill Hill, London, N.W. 7 53 J. Physiol. (1955) I30, 53-7I THE EFFECT OF LOCALIZED COOLING ON CONDUCTION IN CAT NERVES BY W. W. DOUGLAS AND J. L. MALCOLM From the National Institute for Medical Research, Mill Hill, London, N.W.

More information

CHAPTER 3 THE STRUCTURE OF THE NERVOUS SYSTEM

CHAPTER 3 THE STRUCTURE OF THE NERVOUS SYSTEM CHAPTER 3 THE STRUCTURE OF THE NERVOUS SYSTEM 3.1. THE BASIC STRUCTURE OF THE NERVOUS SYSTEM. The nervous system of all animals is made up of groups of neurons that receive information from sensory systems,

More information

Fundamentals of the Nervous System and Nervous Tissue. Nervous System. Basic Divisions of the Nervous System C H A P T E R 12.

Fundamentals of the Nervous System and Nervous Tissue. Nervous System. Basic Divisions of the Nervous System C H A P T E R 12. C H A P T E R 12 Fundamentals of the Nervous System and Nervous Tissue Nervous System Sensory input Integration Motor output Figure 12.1 Basic Divisions of the Nervous System Brain CNS Spinal cord Nerves

More information

Nerve. (2) Duration of the stimulus A certain period can give response. The Strength - Duration Curve

Nerve. (2) Duration of the stimulus A certain period can give response. The Strength - Duration Curve Nerve Neuron (nerve cell) is the structural unit of nervous system. Nerve is formed of large numbers of nerve fibers. Types of nerve fibers Myelinated nerve fibers Covered by myelin sheath interrupted

More information

THE HISTORY OF NEUROSCIENCE

THE HISTORY OF NEUROSCIENCE THE HISTORY OF NEUROSCIENCE BIOLOGICAL ASPECTS OF BEHAVIOR: THE NEURON & NEURAL COMMUNICATION NERVOUS SYSTEM Combined activity of the brain, spinal cord & other nerve fibers Acts as an information processing

More information

Teacher Key. Big Idea Different types of neurons compose the nervous tissue that forms the communication system within the body.

Teacher Key. Big Idea Different types of neurons compose the nervous tissue that forms the communication system within the body. Big Idea Different types of neurons compose the nervous tissue that forms the communication system within the body. Introduction to Neurons An individual s survival and reproductive success depends upon

More information

ANATOMY AND PHYSIOLOGY OF NEURONS. AP Biology Chapter 48

ANATOMY AND PHYSIOLOGY OF NEURONS. AP Biology Chapter 48 ANATOMY AND PHYSIOLOGY OF NEURONS AP Biology Chapter 48 Objectives Describe the different types of neurons Describe the structure and function of dendrites, axons, a synapse, types of ion channels, and

More information

Introduction to Neurobiology

Introduction to Neurobiology Biology 240 General Zoology Introduction to Neurobiology Nervous System functions: communication of information via nerve signals integration and processing of information control of physiological and

More information

The Nervous System PART A

The Nervous System PART A 7 The Nervous System PART A PowerPoint Lecture Slide Presentation by Jerry L. Cook, Sam Houston University ESSENTIALS OF HUMAN ANATOMY & PHYSIOLOGY EIGHTH EDITION ELAINE N. MARIEB Structural Classification

More information

Study Guide Answer Key Nervous System

Study Guide Answer Key Nervous System Biology 12 Human Biology Textbook: BC Biology 12 Study Guide Answer Key Nervous System 1. Draw a neuron, label 3 parts and give the function of those parts. Dendrite: carry signals to the cell body Cell

More information

Chapter 45: Synapses Transmission of Nerve Impulses Between Neurons. Chad Smurthwaite & Jordan Shellmire

Chapter 45: Synapses Transmission of Nerve Impulses Between Neurons. Chad Smurthwaite & Jordan Shellmire Chapter 45: Synapses Transmission of Nerve Impulses Between Neurons Chad Smurthwaite & Jordan Shellmire The Chemical Synapse The most common type of synapse used for signal transmission in the central

More information

NERVOUS SYSTEM ANATOMY

NERVOUS SYSTEM ANATOMY INTRODUCTION to NERVOUS SYSTEM ANATOMY M1 - Gross and Developmental Anatomy Dr. Milton M. Sholley Professor of Anatomy and Neurobiology and Dr. Michael H. Peters Professor of Chemical and Life Science

More information

The Nervous System: Neural Tissue Pearson Education, Inc.

The Nervous System: Neural Tissue Pearson Education, Inc. 13 The Nervous System: Neural Tissue Introduction Nervous System Characteristics Controls and adjust the activity of the body Provides swift but brief responses The nervous system includes: Central Nervous

More information

Module 5 : Anatomy The nervous system

Module 5 : Anatomy The nervous system Module 5 : Anatomy The nervous system In this module you will learn: The main parts of the nervous system The different sections of the brain and how it functions The structure and function of the spinal

More information

Nervous Tissue and Histology of CNS

Nervous Tissue and Histology of CNS Nervous Tissue and Histology of CNS Functions of Nervous System Like the CPU of a computer, the nervous system is the master controlling system of the body. It is designed to constantly and rapidly adjust

More information

Neurons, Synapses, and Signaling

Neurons, Synapses, and Signaling Neurons, Synapses, and Signaling The Neuron is the functional unit of the nervous system. Neurons are composed of a cell body, which contains the nucleus and organelles; Dendrites which are extensions

More information

You can follow the path of the neural signal. The sensory neurons detect a stimulus in your finger and send that information to the CNS.

You can follow the path of the neural signal. The sensory neurons detect a stimulus in your finger and send that information to the CNS. 1 Nervous system maintains coordination through the use of electrical and chemical processes. There are three aspects: sensory, motor, and integrative, which we will discuss throughout the system. The

More information

10.1: Introduction. Cell types in neural tissue: Neurons Neuroglial cells (also known as neuroglia, glia, and glial cells) Dendrites.

10.1: Introduction. Cell types in neural tissue: Neurons Neuroglial cells (also known as neuroglia, glia, and glial cells) Dendrites. 10.1: Introduction Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Cell types in neural tissue: Neurons Neuroglial cells (also known as neuroglia, glia, and glial

More information

microscope. Wiersma (1947) has recorded the electrical responses of the possibility was, therefore, considered from the beginning that the presynaptic

microscope. Wiersma (1947) has recorded the electrical responses of the possibility was, therefore, considered from the beginning that the presynaptic 289 J. Physiol. (I959) I45, 289-325 TRANSMISSION AT THE GIANT MOTOR SYNAPSES OF THE CRAYFISH BY E. J. FURSHPAN* AND D. D. POTTER* From the Biophysics Department, University College London (Received 30

More information

Nervous system. The main regulation mechanism of organism's functions

Nervous system. The main regulation mechanism of organism's functions Nervous system The main regulation mechanism of organism's functions Questions Neuron The reflex arc The nervous centers Properties of the nervous centers The general principles of coordination Inhibition

More information

EE 791 Lecture 2 Jan 19, 2015

EE 791 Lecture 2 Jan 19, 2015 EE 791 Lecture 2 Jan 19, 2015 Action Potential Conduction And Neural Organization EE 791-Lecture 2 1 Core-conductor model: In the core-conductor model we approximate an axon or a segment of a dendrite

More information

Neurons, Synapses, and Signaling

Neurons, Synapses, and Signaling Chapter 48 Neurons, Synapses, and Signaling PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions

More information

Woodbury, 1950); mammalian heart muscle (Draper & Weidmann, 1950,

Woodbury, 1950); mammalian heart muscle (Draper & Weidmann, 1950, 431 J. Physiol. (I952) II7, 43I-460 THE RECORDING OF POTENTIALS FROM MOTO- NEURONES WITH AN INTRACELLULAR ELECTRODE BY L. G. BROCK, J. S. COOMBS AND J. C. ECCLES From the Departments of Physiology, University

More information

Somatic Sensation (MCB160 Lecture by Mu-ming Poo, Friday March 9, 2007)

Somatic Sensation (MCB160 Lecture by Mu-ming Poo, Friday March 9, 2007) Somatic Sensation (MCB160 Lecture by Mu-ming Poo, Friday March 9, 2007) Introduction Adrian s work on sensory coding Spinal cord and dorsal root ganglia Four somatic sense modalities Touch Mechanoreceptors

More information

1964, 1966) have clearly shown that the intravenous injection of the amine. ACh and carbamylcholine had depressant effects on some NA-sensitive

1964, 1966) have clearly shown that the intravenous injection of the amine. ACh and carbamylcholine had depressant effects on some NA-sensitive 298 J. Physiol. (1966), 185, pp. 298-322 With 11 text-figurem Printed in Great Britain THE INHIBITORY ACTION OF NORADRENALINE AND OTHER MONOAMINES ON SPINAL NEURONES By I. ENGBERG AND R. W. RYALL* From

More information

Axon Nerve impulse. Axoplasm Receptor. Axomembrane Stimuli. Schwann cell Effector. Myelin Cell body

Axon Nerve impulse. Axoplasm Receptor. Axomembrane Stimuli. Schwann cell Effector. Myelin Cell body Nervous System Review 1. Explain a reflex arc. 2. Know the structure, function and location of a sensory neuron, interneuron, and motor neuron 3. What is (a) Neuron Axon Nerve impulse Axoplasm Receptor

More information

ANATOMY & PHYSIOLOGY ONLINE COURSE - SESSION 7 THE NERVOUS SYSTEM

ANATOMY & PHYSIOLOGY ONLINE COURSE - SESSION 7 THE NERVOUS SYSTEM ANATOMY & PHYSIOLOGY ONLINE COURSE - SESSION 7 THE NERVOUS SYSTEM Introduction The nervous system is the major controlling, regulatory, and communicating system in the body. It is the center of all mental

More information

Nervous System. Lesson 11

Nervous System. Lesson 11 Nervous System Lesson 11 Reflex Arcs 1. Patellar reflex Causes leg to kick up 2. Achilles reflex Causes foot to jerk forward 3. Triceps reflex Causes arm to straighten 4. Babinski reflex 4. Pupil Dilation

More information