Reducing intracranial pressure in patients with traumatic brain injury

Size: px
Start display at page:

Download "Reducing intracranial pressure in patients with traumatic brain injury"

Transcription

1 Reducing intracranial pressure in patients with traumatic brain injury Learn how to identify rising intracranial pressure early to promote appropriate interventions. By Cindy L. Zerfoss, MSN, RN, ACNP-CS TRAUMATIC BRAIN INJURY (TBI) refers to blunt or penetrating head injury that disrupts normal brain functioning, causing impaired thinking and memory, personality changes, and possible sensory and motor changes. Some people recover completely with no cognitive deficits; others remain in a persistent vegetative state. TBI occurs in all age groups, and its incidence is increasing. It contributes to about 30% of all injuryrelated deaths and accounts for about 2.5 million emergency department (ED) visits annually. Although most TBIs cause only mild effects, roughly 290,000 patients are hospitalized for TBI annually; of those, about 51,000 die. However, over the past 3 decades, the overall mortality rate has declined from nearly 50% to approximately 25%. TBI commonly leads to elevated intracranial pressure (ICP), which can have catastrophic consequences. ICP reflects the pressure of the cranial contents cerebrospinal fluid (CSF), brain tissue, and blood. The cranial vault is a fixed structure, so it can t enlarge when its contents expand. The sum of the volumes of brain tissue, CSF, and intracranial blood is constant; if one increases, one or both of the other two must decrease. Spaceoccupying conditions like tumors, infection, and edema compromise brain tissue when they expand, causing brain structures to alter shape, which can obstruct flow of CSF and blood. Causes of increased ICP All nurses need to be able to identify the factors that can increase ICP, which include: CNE 1.3 contact hours LEARNING OBJECTIVES 1. Describe the role of intracranial pressure (ICP) monitoring in patients with traumatic brain injury. 2. Discuss principles for monitoring ICP. 3. Summarize methods for reducing ICP. The author and planners of this CNE activity have disclosed no relevant financial relationships with any commercial companies pertaining to this activity. Expiration:10/1/19 increased neuronal oxygen consumption from pain, anxiety, agitation, fever, and shivering (which increase metabolic demand) environmental light and sound bathing repositioning in bed seizures. Patients should receive seizure prophylaxis within the first week after TBI; however, early posttraumatic seizures aren t associated with worse outcomes. ICP monitoring We now know that not all the neurologic damage from TBI occurs at the time of injury. Some continues over several hours to days, so early recognition and treatment are crucial for optimizing patient outcome. Continuous ICP monitoring allows early identification of increased ICP. Not only does it reveal how the patient responds to routine activities, such as turning, bathing, and suctioning; it also promotes early interventions to treat rising ICP before it climbs dangerously high. The consensus recommendation is to treat ICP above 20 mm Hg. Pupillary changes can occur at ICP as low as 18 mm Hg; herniation, at ICP as low as 20 to 25 mm Hg. (See Assessment tools for patients with neurologic injuries.) The Brain Trauma Foundation recommends ICP monitoring for all TBI patients who: are capable of recovering AmericanNurseToday.com October 2016 American Nurse Today 1

2 Assessment tools for patients with neurologic injuries Emergency medical responders in the field and clinicians in emergency departments and neurologic intensive care units use the Glasgow Coma Scale (GCS) to gauge the severity of neurologic injury. The patient s score is based on the best eye opening, verbal, and motor responses. Ranging from 3 (deep coma) to 15 (fully awake), it s obtained by totaling the best responses in all categories. GSC scores of 8 or lower indicate severe TBI; 9 to 12, moderate TBI; and 13 to 15, mild TBI. (Note: In the chart below, NT denotes not testable. ) Score Eye opening Verbal response Motor response NT NT NT 1 None None None 2 To pressure Sounds Extension 3 To sound Words Abnormal flexion 4 Spontaneous Confused Normal flexion 5 NA Oriented Localizing 6 NA NA Obeys commands Rancho Los Amigos Scale The Ranchos Los Amigos Scale (also called the Rancho Los Amigos Level of Cognitive Functioning Scale) is used to monitor the patient s readiness for rehabilitation after emerging from a coma following severe TBI. Levels range from 1 (coma) to 8 (oriented and appropriate). Levels 2 and 3 reflect emergence from coma; levels 4 to 6, confusion with nonpurposeful to purposeful behaviors. Patients usually enter rehabilitation at level 4. Levels 7 and 8 show continued improvement and insight approaching the patient s pre-injury level of functioning. have Glasgow Coma Scale (GCS) scores of 3 to 8 have abnormal head computed tomography (CT) scans. ICP monitoring also is recommended for all severe TBI patients with normal head CT scans who are older than age 40 and show motor posturing (decorticate, decerebrate, or both) and systolic blood pressure below 90 mm Hg. In conjunction with mean arterial blood pressure (MAP) monitoring, ICP monitoring is used to calculate cerebral perfusion pressure (CPP), an indirect measure of cerebral perfusion. (See Calculating cerebral perfusion pressure.) Recommended ICP monitoring method The recommended ICP monitoring method involves placement of an external ventricular drain (EVD) in the lateral ventricle using sterile technique. Typically, this takes place either at the bedside or in the operating room. Advantages of an EVD include reliable ICP monitoring, system recalibration, excess CSF drainage, and intrathecal medication administration. Alternatively, a parenchymal ICP monitor can be used, although it loses accuracy over time (drift) and can t be recalibrated after it s placed in the brain. Also, a parenchymal catheter may not transduce accurate measurements if placed at or near the brain injury site. Methods for reducing ICP ICP should be reduced in a stepwise fashion, starting with noninvasive and conservative measures and progressing to other measures as needed. Some interventions may occur simultaneously, depending on the patient s specific needs and severity of increased ICP. First steps: Noninvasive and conservative measures Elevate the head of the patient s bed 30 to 45 degrees and ensure venous outflow isn t obstructed from a kinked neck, constricting tape, or cervical collar. Take steps to prevent shivering, which increases ICP. Avoid hyperthermia, which can increase metabolic demand as much as 10% per degree C. (Fever is a marker of poor outcome in TBI patients.) Be aware that vasodilation from fever increases CPP, which in turn raises ICP. Increased air circulation blankets, cooling catheters, and antipyretics can be used to decrease fever. Take measures to optimize the patient s blood pressure, avoiding both hypotension and hypertension. Know that aggressive fluid resuscitation to drive CPP above 70 mm Hg puts patients at risk for acute respiratory distress syndrome. To avoid hypoxia, strive for an oxygen saturation above 90% or a partial pressure of arterial O 2 (PaO 2 ) above 60 mm Hg. Catecholamine stress response in TBI patients can lead to hyperglycemia, which typically warrants supplemental insulin. Untreated hyperglycemia (blood glucose level above 200 mg/dl) is associated with worse neurologic outcomes. Prolonged hypoglycemia also is dangerous because it can reduce the brain s glucose supply, leading to neurologic deterioration. Experts recommend starting blood glucose monitoring at admission and striving for normoglycemic status. The American College of 2 American Nurse Today Volume 11, Number 10 AmericanNurseToday.com

3 Calculating cerebral perfusion pressure In patients with traumatic brain injury, cerebral perfusion pressure (CPP) is an important parameter because reduced CPP increases cerebral hypoxia risk. Optimal CPP ranges from 50 to 70 mm Hg. CPP below 50 mm Hg is linked to a poor patient outcome. CPP is calculated using this equation: CPP = mean arterial pressure (MAP) intracranial pressure (ICP) Surgeons recommends a blood glucose range between 80 and 180 mg/dl. However, optimal hyperglycemia treatment in severe TBI remains controversial. Second steps: Pharmacologic interventions If the patient s increased ICP doesn t respond to first steps, pharmacologic interventions are added. To optimize blood pressure and improve cerebral perfusion, the patient may require vasopressors and I.V. fluid boluses to keep systolic pressure above 90 mm Hg. Stay alert for side effects; depending on the agent used to support blood pressure, the patient may experience tachycardia, peripheral vasoconstriction, arrhythmias, platelet inhibition, hyperglycemia, thrombocytopenia, and increased myocardial demand. After TBI, patients may have a stress response marked by hypertension, which may warrant antihypertensive agents. Clinicians should choose agents with the least possible impact on ICP. Be aware that such antihypertensives as nitroglycerin, nitroprusside, and nicardipine can cause side effects that increase ICP namely, orthostatic hypotension, dizziness, nausea, vomiting, headache, reflex tachycardia, preferential peripheral vasodilation before cerebral vasodilation, thiocyanate toxicity, and platelet dysfunction. As needed and ordered, provide interventions for pain, anxiety, and seizures. To monitor for nonconvulsive seizures, the physician may consider continuous electroencephalography if ICP rises inexplicably. If ICP remains elevated after antiseizure measures, the patient may require some of the interventions described next. Third steps: Continuous sedation If elevated ICP persists despite conservative and pharmacologic measures, continuous sedation may be tried; this technique may reduce ICP by eliminating agitation and pain. Opioids or benzodiazepines may be used for sedation; agitated patients also may receive hypnotic or paralytic agents. These drugs may be given individually or in combination. To minimize hypotensive side effects, ensure the patient has normal fluid volume and use smaller doses of opioids, benzodiazepines, or hypnotics, as ordered. Paralytics may be given if posturing and agitation increase ICP. Know that if the patient is paralyzed and sedated, a neurologic exam may be difficult or impossible to conduct; you won t be able to assess mental status, sensation, or movement or obtain a GCS score. Instead, monitor pupillary response and ICP for changes. Serial head CT scans may reveal evolving or resolving abnormalities, such as bleeding or swelling. The EVD may be used to drain off 3 to 5 ml of CSF. Fourth steps: Barbiturates, osmotics, hyperventilation, therapeutic hypothermia, and surgery Patients with refractory ICP elevation may require the additional interventions below. Barbiturates. These drugs reduce cerebral metabolic demand and blood flow, providing cerebral protection. The most commonly used barbiturate is pentobarbital. If ICP doesn t decrease within the first 4 hours after this drug is given, it s unlikely to lower ICP unless given in combination with other drugs. Know that patients on barbiturates won t have a pupillary response, so you ll need to rely on ICP monitoring for evidence of brain herniation. Keep in mind that early changes in pupillary response may indicate early herniation. Osmotics. For patients with persistently elevated ICP, osmotic therapy may be used to expand blood volume by shifting fluid from the brain s extracellular to intravascular spaces. Osmotics also reduce blood viscosity, which raises CPP and lowers ICP. (See Understanding osmotic therapy.) Hyperventilation. The goal of hyperventilation is to reduce PaCO 2, a potent cerebrovascular vasodilator that increases ICP. Hyperventilation reduces ICP by lowering PaCO 2, which causes vasoconstriction. The respiratory therapist induces hyperventilation by adjusting ventilator settings as ordered and monitoring arterial blood gases (ABGs). Usually, PaCO 2 should be decreased no lower than 30 mm Hg. However, in patients with refractory increased ICP (above 20 mm Hg), hyperventilation may be used to reduce PaCO 2 from 35 to 29 mm Hg, which typically lowers ICP 25% to 35%. Hyperventilation isn t recommended as first-line therapy because it leads to cerebral vasoconstriction at a time when cerebral blood flow already is reduced. It s used intermittently and only for several minutes at a time and never when ICP is within normal limits or as continuous therapy. It must be avoided during the first 24 hours after injury because it can further AmericanNurseToday.com October 2016 American Nurse Today 3

4 Understanding osmotic therapy Patients with increased intracranial pressure (ICP) commonly receive bolus or continuous infusions of I.V. mannitol or hypertonic saline solution for osmotic therapy. Mannitol promotes osmotic diuresis, whereas hypertonic saline solution is more likely to maintain plasma volume. The goal of giving hypertonic saline solution is to raise the serum sodium level to 150 or 155 meq/l, which increases serum osmolality and in turn reduces water in the brain. During osmotic therapy, be sure to monitor your patient s serum osmolality. Normally, it ranges from 285 to 295 mosm/l; patients with elevated ICP usually are treated to a range of 300 to 320 mosm/l. Know that although levels above 320 mosm/l lower ICP, higher serum osmolality levels with mannitol use can cause profound diuresis, possibly leading to rebound cerebral edema. Use hypertonic saline solution cautiously in patients with heart failure or a low ejection fraction, as it can increase the risk of acute rapid-onset (flash) pulmonary edema. Be aware that mannitol can cause electrolyte disturbances in patients with renal failure. compromise cerebral perfusion. It shouldn t be used as preventive therapy. Therapeutic hypothermia. This technique has been shown to reduce ICP but not to consistently improve outcomes. Limiting cooling to less than 48 hours can minimize complications, such as cardiac dysfunction and abnormal O 2 delivery. Although cooling protocols vary, body temperature shouldn t be decreased below 89.6 to 91.4 F (32 to 33 C). Surgical options. Surgery may reduce ICP by allowing the brain to swell. Craniectomy removes a large section of bone, which is stored for later replacement. But such decompressive surgery is controversial: Although it lowers ICP, it doesn t change overall mortality. Also, some experts speculate that axonal stretch and altered cerebral blood flow may cause neural injury in craniectomy patients. Timing of surgical intervention may vary. A TBI patient with an expanding hematoma that s causing brain herniation is likely to undergo surgical decompression as soon as possible after arriving at the ED. If the patient doesn t have a hema toma or evidence of cerebral edema, clinicians may decide to monitor ICP and try conservative measures first. Preexisting illness, age, and patient wishes also should be considered before surgical intervention. TBI case study The following case study illustrates the possible course of a hospital stay for a patient with TBI. Anna S, age 17, experiences seizures and loss of consciousness after suffering head trauma in a sports injury. In the field, emergency medical technicians determine her initial GCS score is 3 (eye opening 1, verbal response 1, motor response 1), which warrants intubation. They transport her to the ED, where an initial head CT shows areas of hemorrhage. Subsequent magnetic resonance imaging confirms diffuse axonal injury. Here s a summary of Anna s condition and medical care during her 4-week hospitalization: Day 1: A parenchymal catheter is placed for ICP monitoring. Anna s ICP is 10 mm Hg. Day 4: Anna s ICP increases intermittently up to 30 mm Hg. The physician orders sedation and intermittent boluses of hypertonic saline solution. Day 5: Anna s temperature rises to 104 o F (40 C). A cooling catheter is placed to keep her temperature at 98.6 F (37 C). When her ICP monitor wire fails, the parenchymal catheter is removed and an EVD is placed for continued ICP monitoring and CSF drainage. Day 14: Anna opens her eyes spontaneously and looks around. Day 16: Anna is extubated; she responds purposefully to noxious stimulation. Day 18: Anna s GCS score is 10 (eye opening 4, verbal response 1, motor response 5). Her Rancho Los Amigos Scale score is 2 with emerging 3, as she begins to wake up and respond to her environment. Her ICP drops below 10 mm Hg and her EVD is discontinued. Day 25: Anna is able to follow commands, converse, and eat. Her Rancho Los Amigos Scale score is 4. Day 28: Anna is discharged to a rehabilitation facility for patients with brain injury. Team approach to TBI Managing increased ICP in patients with TBI calls for a team approach to optimize outcomes. Bedside nurses are better positioned than other clinicians to identify rising ICP early to ensure appropriate interventions. Use your critical thinking skills and start conservative measures while anticipating next steps during communication with care providers. Cindy L. Zerfoss is a neuroscience acute care nurse practitioner at Centra-Lynchburg General Hospital in Lynchburg, Virginia. Selected references Abdelhak, T, Abrego GC. Traumatic brain injury. In: Wartenberg KE, Shukri K, Abdelhak T, eds. Neurointensive Care: A Clinical Guide to Patient Safety. New York, NY: Springer; 2015: American College of Surgeons. Trauma Quality Improvement Program. Best practices in the Management of Traumatic Brain Injury facs.org/~/media/files/quality%20programs/trauma/tqip/traumatic%20brain%20injury%20guidelines.ashx SL, Chestnut RM, Ghajar J. Guidelines for the management of severe traumatic brain injury. Antiseizure prophylaxis. J Neurotrau- 4 American Nurse Today Volume 11, Number 10 AmericanNurseToday.com

5 ma. 2007;24(Suppl 1):S83-8. SL, Chestnut RM, Ghajar J. Guidelines for the management of severe traumatic brain injury. Hyperosmolar therapy. J Neurotrauma. 2007;24(Suppl 1):S SL, Chestnut RM, Ghajar J, et al. VI. Guidelines for the management of severe traumatic brain injury. Indications for intracranial pressure monitoring. J Neurotrauma. 2007;24(Suppl 1):S Neurological Surgeons: Joint Section on Neurotrauma SL, Chestnut RM, Ghajar J, et al. Guidelines for the management of severe traumatic brain injury. Intracranial pressure treatment thresholds. J Neurotrauma. 2007;24(Suppl 1):S55-8. Neurology Surgeons; Joint Section on Neurotrauma and Critical Care, AANS/CSN; Carney NA, Ghajar J. Guidelines for the management of severe traumatic brain injury. Introduction. J Neurotrauma. 2007;24(Suppl 1): S1-2. SL, Chestnut RM, Ghajar J, et al. Guidelines for the management of severe traumatic brain injury. Recommendations for intracranial pressure monitoring technology. J Neurotrauma. 2007;24(Suppl 1):S Centers for Disease Control and Prevention. TBI: Get the Facts. cdc.gov/traumaticbraininjury/get_the_facts.html Cooper DJ, Rosenfeld JV, Murray L, et al. DECRA Trial Investigators; Australian and New Zealand Intensive Care Society Clinical Trials Group. Decompressive craniectomy in diffuse traumatic brain injury. N Engl J Med. 2011;364(16): Cramer D, Miulli D, Siddiqi J. Cerebral protective measures. In: Siddiqi J, ed. Neurosurgical Intensive Care: The Essentials. New York, NY: Thiemes Medical Publishers; 2008: Greenberg MS. Handbook of Neurosurgery. 7th ed. New York, NY: Thieme Medical Publishers; Haddad, SH, Arabi YM. Critical care management of severe traumatic brain injury in adults. Scand J Trauma Resusc Emerg Med. 2012;20:12. Le Roux P, Menon DK, Citerio G, et al. Consensus summary statement of the International Multidisciplinary Consensus Conference on Multimodality Monitoring in Neurocritical Care: a statement for healthcare professionals from the Neurocritical Care Society and the European Society of Intensive Care Medicine. Neurocrit Care. 2014;21(Suppl 2):S1-26. Qandah N, Houck EA, Miulli, D. Neuropharmacology. In: Siddiqi J, ed. Neurosurgical Intensive Care: The Essentials. New York, NY: Thieme Medical Publishers; 2008: Society of Critical Care Medicine. Fundamental Critical Care Support. 5th ed. Mount Prospect, IL: Society of Critical Care Medicine; Teasdale G, Allan D, Brennan P, et al. Forty years on: updating the Glasgow Coma Scale. Nurs Times. 2014;110:(42):12-6. Teasdale, G, Maas A, Lecky F, et al. The Glasgow Coma Scale at 40 years: standing the test of time. Lancet. 2014;13(8): AmericanNurseToday.com October 2016 American Nurse Today 5

6 POST-TEST Reducing intracranial pressure in patients with traumatic brain injury Earn contact hour credit online at CNE: 1.3 contact hours CNE Provider accreditation The American Nurses Association s Center for Continuing Education and Professional Development is accredited as a provider of continuing nursing education by the American Nurses Credentialing Center s Commission on Accreditation. ANCC Provider Number Contact hours: 1.3 ANA s Center for Continuing Education and Professional Development is approved by the California Board of Registered Nursing, Provider Number CEP6178 for 1.6 contact hours. Post-test passing score is 80%. Expiration: 10/1/19 ANA Center for Continuing Education and Professional Development s accredited provider status refers only to CNE activities and does not imply that there is real or implied endorsement of any product, service, or company referred to in this activity nor of any company subsidizing costs related to the activity. The planners and author of this CNE activity have disclosed no relevant financial relationships with any commercial companies pertaining to this CNE. Please mark the correct answer online. 1. Which of the following does not cause increased intracranial pressure (ICP)? a. Repositioning in bed b. Seizures c. Decreased neuronal oxygen con - sumption d. Environmental light and sound 2. Mark, your 44-year-old patient, is hospitalized for traumatic brain injury (TBI) after a snowboarding fall. Which finding would indicate he needs ICP monitoring? a. Glasgow Coma Scale (GCS) score of 12 b. GCS score of 10 c. Systolic blood pressure of 100 mm Hg d. Systolic blood pressure of 80 mm Hg 3. Mark s physician decides to initiate ICP monitoring by placing an external ventricular drain (EVD). Which of the following statements about EVD is correct? a. It s placed in the brain s lateral ventricle using sterile technique. b. It does not allow intrathecal medication administration. c. It can lose accuracy over time because of drift. d. It doesn t allow system recalibration. 4. Mark s mean arterial pressure is 70 mm Hg and his ICP is 15 mm Hg. You calculate his cerebral perfusion pressure (CPP) as: a. 4 mm Hg. b. 8 mm Hg. c. 55 mm Hg. d. 85 mm Hg. 5. Which ICP reading indicates a need for treatment? a. 22 mm Hg b. 16 mm Hg c. 12 mm Hg d. 10 mm Hg 6. Which statement about neurologic assessment tools is correct? a. With the GCS, the patient s score is based on best eye opening, verbal, and sensory responses. b. With the GCS, the patient s score is based on best eye opening, verbal, and motor responses. c. The Ranchos Los Amigos Scale is in - adequate for monitoring a patient s readiness for rehabilitation. d. Scores on the Ranchos Los Amigos Scale range from 0 to To help avoid increased ICP, you keep the head of Mark s bed at: a. 0 to 10 degrees. b. 20 to 25 degrees. c. 30 to 45 degrees. d. 60 to 90 degrees. 8. Which statement should you consider when managing Mark s temperature? a. Temperature elevation is a positive prognostic sign. b. Fever can increase metabolic demands as much as 25% per degree C. c. Fever can increase metabolic demands as much as 10% per degree C. d. Vasodilation from fever reduces CPP. 9. An expected treatment goal for Mark is to: a. avoid antipyretics for managing fever. b. keep his oxygen saturation above 90%. c. keep his blood pressure slightly below normal. d. keep his partial pressure of arterial O 2 (PaO 2 ) above 50 mm Hg. 10. Mark is started on nitroprusside to control his high blood pressure. Which of the following is a potential side effect you should watch for? a. White blood cell dysfunction b. Orthostatic hypertension c. Reflex bradycardia d. Thiocyanate toxicity 11. Mark s increased ICP resists treatment, so clinicians decide to start him on osmotic therapy. Which statement about this therapy is correct? a. Continuous infusion of hypotonic saline solution is a common choice. b. The goal is to achieve a serum sodium level of 125 to 135 meq/l. c. Bolus infusion of hypotonic saline solution is a common choice. d. The goal is to achieve a serum sodium level of 150 to 155 meq/l. 12. If the physician decides to add hyperventilation to Mark s regimen, which of the following should you keep in mind? a. It isn t recommended as a first-line therapy. b. It can cause vasodilation. c. It s administered over a period of several hours. d. It s used on a continuous basis. 13. Which statement about the use of barbiturates in treating patients with TBI is correct? a. They aren t useful if ICP doesn t drop over the first 2 hours. b. They increase cerebral metabolic demand. c. Pentobarbital is the most commonly used barbiturate. d. Patients continue to have a pupillary response. 6 American Nurse Today Volume 11, Number 10 AmericanNurseToday.com

PRACTICE GUIDELINE. DEFINITIONS: Mild head injury: Glasgow Coma Scale* (GCS) score Moderate head injury: GCS 9-12 Severe head injury: GCS 3-8

PRACTICE GUIDELINE. DEFINITIONS: Mild head injury: Glasgow Coma Scale* (GCS) score Moderate head injury: GCS 9-12 Severe head injury: GCS 3-8 PRACTICE GUIDELINE Effective Date: 9-1-2012 Manual Reference: Deaconess Trauma Services TITLE: TRAUMATIC BRAIN INJURY GUIDELINE OBJECTIVE: To provide practice management guidelines for traumatic brain

More information

Standardize comprehensive care of the patient with severe traumatic brain injury

Standardize comprehensive care of the patient with severe traumatic brain injury Trauma Center Practice Management Guideline Iowa Methodist Medical Center Des Moines Management of Patients with Severe Traumatic Brain Injury (GCS < 9) ADULT Practice Management Guideline Contact: Trauma

More information

Case 1. Case 5/30/2013. Traumatic Brain Injury : Review, Update, and Controversies

Case 1. Case 5/30/2013. Traumatic Brain Injury : Review, Update, and Controversies Case 1 Traumatic Brain Injury : Review, Update, and Controversies Shirley I. Stiver MD, PhD 32 year old male s/p high speed MVA Difficult extrication Intubated at scene Case BP 75 systolic / palp GCS 3

More information

Head injuries. Severity of head injuries

Head injuries. Severity of head injuries Head injuries ED Teaching day 23 rd October Severity of head injuries Minor GCS 14-15 Must not have any of the following: Amnesia 10min Neurological sign or symptom Skull fracture (clinically or radiologically)

More information

Introduction to Neurosurgical Subspecialties:

Introduction to Neurosurgical Subspecialties: Introduction to Neurosurgical Subspecialties: Trauma and Critical Care Neurosurgery Brian L. Hoh, MD 1, Gregory J. Zipfel, MD 2 and Stacey Q. Wolfe, MD 3 1 University of Florida, 2 Washington University,

More information

Traumatic Brain Injury:

Traumatic Brain Injury: Traumatic Brain Injury: Changes in Management Across the Spectrum of Age and Time Omaha 2018 Trauma Symposium June 15, 2018 Gail T. Tominaga, M.D., F.A.C.S. Scripps Memorial Hospital La Jolla Outline Background

More information

Update on Guidelines for Traumatic Brain Injury

Update on Guidelines for Traumatic Brain Injury Update on Guidelines for Traumatic Brain Injury Current TBI Guidelines Shirley I. Stiver MD, PhD Department of Neurosurgery Guidelines for the management of traumatic brain injury Journal of Neurotrauma

More information

Moron General Hospital Ciego de Avila Cuba. Department of Neurological Surgery

Moron General Hospital Ciego de Avila Cuba. Department of Neurological Surgery Moron General Hospital Ciego de Avila Cuba Department of Neurological Surgery Early decompressive craniectomy in severe head injury with intracranial hypertension Angel J. Lacerda MD PhD, Daisy Abreu MD,

More information

HEAD INJURY. Dept Neurosurgery

HEAD INJURY. Dept Neurosurgery HEAD INJURY Dept Neurosurgery INTRODUCTION PATHOPHYSIOLOGY CLINICAL CLASSIFICATION MANAGEMENT - INVESTIGATIONS - TREATMENT INTRODUCTION Most head injuries are due to an impact between the head and another

More information

Traumatic Brain Injury Pathways for Adult ED Patients Being Admitted to Trauma Service

Traumatic Brain Injury Pathways for Adult ED Patients Being Admitted to Trauma Service tic Brain Injury Pathways for Adult ED Patients Being Admitted to Service Revision Team Tyler W. Barrett, MD, MSCI Elizabeth S. Compton, NP Bradley M. Dennis, MD Oscar D. Guillamondegui, MD, MPH Michael

More information

Medical Management of Intracranial Hypertension. Joao A. Gomes, MD FAHA Head, Neurointensive Care Unit Cerebrovascular Center

Medical Management of Intracranial Hypertension. Joao A. Gomes, MD FAHA Head, Neurointensive Care Unit Cerebrovascular Center Medical Management of Intracranial Hypertension Joao A. Gomes, MD FAHA Head, Neurointensive Care Unit Cerebrovascular Center Anatomic and Physiologic Principles Intracranial compartments Brain 80% (1,400

More information

Any closer to evidence based practice? Asma Salloo Chris Hani Baragwantah Academic Hospital University of Witwatersrand

Any closer to evidence based practice? Asma Salloo Chris Hani Baragwantah Academic Hospital University of Witwatersrand Any closer to evidence based practice? Asma Salloo Chris Hani Baragwantah Academic Hospital University of Witwatersrand Evidence Pathophysiology Why? Management Non-degenerative, Non-congenital insult

More information

8/29/2011. Brain Injury Incidence: 200/100,000. Prehospital Brain Injury Mortality Incidence: 20/100,000

8/29/2011. Brain Injury Incidence: 200/100,000. Prehospital Brain Injury Mortality Incidence: 20/100,000 Traumatic Brain Injury Almario G. Jabson MD Section Of Neurosurgery Asian Hospital And Medical Center Brain Injury Incidence: 200/100,000 Prehospital Brain Injury Mortality Incidence: 20/100,000 Hospital

More information

Traumatic Brain Injuries

Traumatic Brain Injuries Traumatic Brain Injuries Scott P. Sherry, MS, PA-C, FCCM Assistant Professor Department of Surgery Division of Trauma, Critical Care and Acute Care Surgery DISCLOSURES Nothing to disclose Discussion of

More information

Traumatic Brain Injury

Traumatic Brain Injury Traumatic Brain Injury Mark J. Harris M.D. Associate Professor University of Utah Salt Lake City USA Overview In US HI responsible for 33% trauma deaths. Closed HI 80% Missile / Penetrating HI 20% Glasgow

More information

SUBJECT: Clinical Practice Guideline for the Management of Severe Traumatic Brain Injury

SUBJECT: Clinical Practice Guideline for the Management of Severe Traumatic Brain Injury ASPIRUS WAUSAU HOSPITAL, INC. Passion for excellence. Compassion for people. Effective Date: December 1, 2005 Proposed By: Samuel Picone III, MD, Trauma Medical Director Approval and Dates: Dr. Bunch,

More information

Pediatric Subdural Hematoma and Traumatic Brain Injury J. Charles Mace MD FACS Springfield Neurological Institute CoxHealth. Objectives 11/7/2017

Pediatric Subdural Hematoma and Traumatic Brain Injury J. Charles Mace MD FACS Springfield Neurological Institute CoxHealth. Objectives 11/7/2017 Pediatric Subdural Hematoma and Traumatic Brain Injury J. Charles Mace MD FACS Springfield Neurological Institute CoxHealth Objectives 1. Be able to discuss brain anatomy and physiology as it applies to

More information

Medicines Protocol HYPERTONIC SALINE 5%

Medicines Protocol HYPERTONIC SALINE 5% Medicines Protocol HYPERTONIC SALINE 5% HYPERTONIC SALINE 5% v1.0 1/4 Protocol Details Version 1.0 Legal category POM Staff grades Registered Paramedic Registered Nurse Specialist Paramedic (Critical Care)

More information

Traumatic Brain Injury Pathway, GCS 15 Closed head injury

Traumatic Brain Injury Pathway, GCS 15 Closed head injury Traumatic Brain Injury Pathway, GCS 15 Closed head injury Plus Any One of the Following Mild TBI 2010 Consensus Definition of TBI from CDC, NINDS, NIDDR, VA, DVBIC, DCoE Plus Any One of the Following New

More information

Traumatic brain Injury- An open eye approach

Traumatic brain Injury- An open eye approach Traumatic brain Injury- An open eye approach Dr. Sunit Dr Sunit, Apollo children's hospital Blah blah Lots of head injury Lot of ill children Various methods of injury Various mechanisms of brain damage

More information

Perioperative Management of Traumatic Brain Injury. C. Werner

Perioperative Management of Traumatic Brain Injury. C. Werner Perioperative Management of Traumatic Brain Injury C. Werner Perioperative Management of TBI Pathophysiology Monitoring Oxygenation CPP Fluid Management Glycemic Control Temperature Management Surgical

More information

Chapter 8: Cerebral protection Stephen Lo

Chapter 8: Cerebral protection Stephen Lo Chapter 8: Cerebral protection Stephen Lo Introduction There will be a variety of neurological pathologies that you will see within the intensive care. The purpose of this chapter is not to cover all neurological

More information

ICP. A Stepwise Approach. Stephan A. Mayer, MD Professor, Neurology & Neurosurgery Director, Neurocritical Care, Mount Sinai Health System

ICP. A Stepwise Approach. Stephan A. Mayer, MD Professor, Neurology & Neurosurgery Director, Neurocritical Care, Mount Sinai Health System ICP A Stepwise Approach Stephan A. Mayer, MD Professor, Neurology & Neurosurgery Director, Neurocritical Care, Mount Sinai Health System ICP: Basic Concepts Monroe-Kellie doctrine: skull = fixed volume

More information

Management of Severe Traumatic Brain Injury

Management of Severe Traumatic Brain Injury Guideline for North Bristol Trust Management of Severe Traumatic Brain Injury This guideline describes the following: Initial assessment and management of the patient with head injury Indications for CT

More information

Pre-hospital Response to Trauma and Brain Injury. Hans Notenboom, M.D. Asst. Medical Director Sacred Heart Medical Center

Pre-hospital Response to Trauma and Brain Injury. Hans Notenboom, M.D. Asst. Medical Director Sacred Heart Medical Center Pre-hospital Response to Trauma and Brain Injury Hans Notenboom, M.D. Asst. Medical Director Sacred Heart Medical Center Traumatic Brain Injury is Common 235,000 Americans hospitalized for non-fatal TBI

More information

Postanesthesia Care of the Patient Suffering From Traumatic Brain Injury

Postanesthesia Care of the Patient Suffering From Traumatic Brain Injury Postanesthesia Care of the Patient Suffering From Traumatic Brain Injury By: Susan Letvak, PhD, RN Rick Hand, CRNA, DNSc Letvak, S. & Hand, R. (2003). Postanesthesia care of the traumatic brain injured

More information

CrackCast Episode 8 Brain Resuscitation

CrackCast Episode 8 Brain Resuscitation CrackCast Episode 8 Brain Resuscitation Episode Overview: 1) Describe 6 therapeutic interventions for the post-arrest brain 2) List 5 techniques for initiating therapeutic hypothermia 3) List 4 mechanisms

More information

11/27/2017. Stroke Management in the Neurocritical Care Unit. Conflict of interest. Karel Fuentes MD Medical Director of Neurocritical Care

11/27/2017. Stroke Management in the Neurocritical Care Unit. Conflict of interest. Karel Fuentes MD Medical Director of Neurocritical Care Stroke Management in the Neurocritical Care Unit Karel Fuentes MD Medical Director of Neurocritical Care Conflict of interest None Introduction Reperfusion therapy remains the mainstay in the treatment

More information

Neuroprotective Effects for TBI. Craig Williamson, MD

Neuroprotective Effects for TBI. Craig Williamson, MD Neuroprotective Effects for TBI Craig Williamson, MD Neuroprotection in Traumatic Brain Injury Craig Williamson Clinical Assistant Professor Neurocritical Care Fellowship Director Disclosures I will discuss

More information

Post-Cardiac Arrest Syndrome. MICU Lecture Series

Post-Cardiac Arrest Syndrome. MICU Lecture Series Post-Cardiac Arrest Syndrome MICU Lecture Series Case 58 y/o female collapses at home, family attempts CPR, EMS arrives and notes VF, defibrillation x 3 with return of spontaneous circulation, brought

More information

Brain under pressure Managing ICP. Giuseppe

Brain under pressure Managing ICP. Giuseppe Brain under pressure Managing ICP Giuseppe Citerio giuseppe.citerio@unimib.it @Dr_Cit Intro Thresholds Treating HICP Conclusions NO COI for this presentation Produces pressure gradients: herniation HIGH

More information

H Alex Choi, MD MSc Assistant Professor of Neurology and Neurosurgery The University of Texas Health Science Center Mischer Neuroscience Institute

H Alex Choi, MD MSc Assistant Professor of Neurology and Neurosurgery The University of Texas Health Science Center Mischer Neuroscience Institute H Alex Choi, MD MSc Assistant Professor of Neurology and Neurosurgery The University of Texas Health Science Center Mischer Neuroscience Institute Memorial Hermann- Texas Medical Center Learning Objectives

More information

11/23/2015. Disclosures. Stroke Management in the Neurocritical Care Unit. Karel Fuentes MD Medical Director of Neurocritical Care.

11/23/2015. Disclosures. Stroke Management in the Neurocritical Care Unit. Karel Fuentes MD Medical Director of Neurocritical Care. Stroke Management in the Neurocritical Care Unit Karel Fuentes MD Medical Director of Neurocritical Care Disclosures I have no relevant commercial relationships to disclose, and my presentations will not

More information

9/19/2011. Damien Beilman, RRT Adult Clinical Specialist Wesley Medical Center. Epidural Hematoma: Lens Shaped.

9/19/2011. Damien Beilman, RRT Adult Clinical Specialist Wesley Medical Center. Epidural Hematoma: Lens Shaped. Damien Beilman, RRT Adult Clinical Specialist Wesley Medical Center Epidural Hematoma: Lens Shaped. 1 Epidural Hematoma Subdural Hematoma: Crescent-shaped Subdural Hematoma 2 Cerebral Contusion Cause of

More information

Stroke & Neurovascular Center of New Jersey. Jawad F. Kirmani, MD Director, Stroke and Neurovascular Center

Stroke & Neurovascular Center of New Jersey. Jawad F. Kirmani, MD Director, Stroke and Neurovascular Center Stroke & Neurovascular Center of New Jersey Jawad F. Kirmani, MD Director, Stroke and Neurovascular Center Past, present and future Past, present and future Cerebral Blood Flow Past, present and future

More information

CARES Targeted Temperature Management (TTM) Module

CARES Targeted Temperature Management (TTM) Module CARES Targeted Temperature Management (TTM) Module OHCA Data Dictionary June 2014 1 CASE NUMBER This is the number assigned to the patient by the hospital. The case number is the number the hospital assigns

More information

Pediatric emergencies (SHOCK & COMA) Dr Mubarak Abdelrahman Assistant Professor Jazan University

Pediatric emergencies (SHOCK & COMA) Dr Mubarak Abdelrahman Assistant Professor Jazan University Pediatric emergencies (SHOCK & COMA) Dr Mubarak Abdelrahman Assistant Professor Jazan University SHOCK Definition: Shock is a syndrome = inability to provide sufficient oxygenated blood to tissues. Oxygen

More information

INTRACRANIAL PRESSURE -!!

INTRACRANIAL PRESSURE -!! INTRACRANIAL PRESSURE - Significance raised ICP main cause of death in severe head injury main cause of morbidity in moderate and mild head injury main target and prognostic indicator in the ITU setting

More information

8th Annual NKY TBI Conference 3/28/2014

8th Annual NKY TBI Conference 3/28/2014 Closed Head Injury: Headache to Herniation A N T H O N Y T. K R A M E R U N I V E R S I T Y O F C I N C I N N A T I B L U E A S H E M S T E C H N O L O G Y P R O G R A M Objectives Describe the pathological

More information

Management of Traumatic Brain Injury. Olaide O. Ajayi, MD

Management of Traumatic Brain Injury. Olaide O. Ajayi, MD Management of Traumatic Brain Injury Olaide O. Ajayi, MD Traumatic Brain Injury (TBI) A bump, blow or jolt to the head that disrupts the normal function of the brain 1 Mild: Brief change in mental status

More information

Michael Avant, M.D. The Children s Hospital of GHS

Michael Avant, M.D. The Children s Hospital of GHS Michael Avant, M.D. The Children s Hospital of GHS OVERVIEW ER to ICU Transition Early Management Priorities the First 48 hours Organ System Support Complications THE FIRST 48 HOURS Communication Damage

More information

INCREASED INTRACRANIAL PRESSURE

INCREASED INTRACRANIAL PRESSURE INCREASED INTRACRANIAL PRESSURE Sheba Medical Center, Acute Medicine Department Irene Frantzis P-Year student SGUL 2013 Normal Values Normal intracranial volume: 1700 ml Volume of brain: 1200-1400 ml CSF:

More information

European Resuscitation Council

European Resuscitation Council European Resuscitation Council Incidence of Trauma in Childhood Leading cause of death and disability in children older than one year all over the world Structured approach Primary survey and resuscitation

More information

Management of Traumatic Brain Injury (and other neurosurgical emergencies)

Management of Traumatic Brain Injury (and other neurosurgical emergencies) Management of Traumatic Brain Injury (and other neurosurgical emergencies) Laurel Moore, M.D. University of Michigan 22 nd Annual Review February 7, 2019 Greetings from Michigan! Objectives for Today s

More information

UAMS MEDICAL CENTER TRAUMA and CRITICAL CARE SERVICES MANUAL. SUPERSEDES: New PAGE: 1 of 5. RECOMMENDATION(S): Drs. Bill Beck/J.R.

UAMS MEDICAL CENTER TRAUMA and CRITICAL CARE SERVICES MANUAL. SUPERSEDES: New PAGE: 1 of 5. RECOMMENDATION(S): Drs. Bill Beck/J.R. SUPERSEDES: New PAGE: 1 of 5 Purpose: To provide recommendations for the treatment and management of patients with traumatic brain injury. Definitions: Severe TBI - Glasgow Coma Scale (GCS) of 3 to 8 without

More information

Pediatric Head Trauma August 2016

Pediatric Head Trauma August 2016 PEDIATRIC HEAD TRAUMA AUGUST 2016 Pediatric Head Trauma August 2016 EDUCATION COMMITTEE PEER EDUCATION Quick Review of Pathophysiology of TBI Nuggets of knowledge to keep in mind with TBI Intracranial

More information

Care for patients with Neurological disorders

Care for patients with Neurological disorders King Saud University College of Nursing Medical Surgical Department Application of Adult Health Nursing Skills ( NUR 317 ) Care for patients with Neurological disorders Outline; EEG Overview. Nursing Interventions;

More information

Linee guida sul trauma cranico: sempre attuali? Leonardo Bussolin AOU Meyer

Linee guida sul trauma cranico: sempre attuali? Leonardo Bussolin AOU Meyer Linee guida sul trauma cranico: sempre attuali? Leonardo Bussolin AOU Meyer Vavilala MS, et al Retrospective multicenter cohort study Prehospital Arena ED OR - ICU Each 1% increase in adherence was associated

More information

: STROKE. other pertinent information such as recent trauma, illicit drug use, pertinent medical history or use of oral contraceptives.

: STROKE. other pertinent information such as recent trauma, illicit drug use, pertinent medical history or use of oral contraceptives. INTRODUCTION A cerebral vascular accident (CVA) or stroke is a lack of blood supply to the brain as a result of either ischemia or hemorrhage. 80% of CVAs are a result of ischemia (embolic or thrombotic)

More information

Hypothermia in Neonates with HIE TARA JENDZIO, DNP(C), RN, RNC-NIC

Hypothermia in Neonates with HIE TARA JENDZIO, DNP(C), RN, RNC-NIC Hypothermia in Neonates with HIE TARA JENDZIO, DNP(C), RN, RNC-NIC Objectives 1. Define Hypoxic-Ischemic Encephalopathy (HIE) 2. Identify the criteria used to determine if an infant qualifies for therapeutic

More information

Neurointensive Care of Aneurysmal Subarachnoid Hemorrhage. Alejandro A. Rabinstein Department of Neurology Mayo Clinic, Rochester, USA

Neurointensive Care of Aneurysmal Subarachnoid Hemorrhage. Alejandro A. Rabinstein Department of Neurology Mayo Clinic, Rochester, USA Neurointensive Care of Aneurysmal Subarachnoid Hemorrhage Alejandro A. Rabinstein Department of Neurology Mayo Clinic, Rochester, USA The traditional view: asah is a bad disease Pre-hospital mortality

More information

IV Fluids. I.V. Fluid Osmolarity Composition 0.9% NaCL (Normal Saline Solution, NSS) Uses/Clinical Considerations

IV Fluids. I.V. Fluid Osmolarity Composition 0.9% NaCL (Normal Saline Solution, NSS) Uses/Clinical Considerations IV Fluids When administering IV fluids, the type and amount of fluid may influence patient outcomes. Make sure to understand the differences between fluid products and their effects. Crystalloids Crystalloid

More information

Mild Traumatic Brain Injury

Mild Traumatic Brain Injury Mild Traumatic Brain Injury Concussions This presentation is for information purposes only, not for any commercial purpose, and may not be sold or redistributed. David Wesley, M.D. Outline Epidemiology

More information

CEREBRAL DECONGESTANTS. Dr. Dwarakanath Srinivas Additional Professor Neurosurgery, NIMHANS

CEREBRAL DECONGESTANTS. Dr. Dwarakanath Srinivas Additional Professor Neurosurgery, NIMHANS CEREBRAL DECONGESTANTS Dr. Dwarakanath Srinivas Additional Professor Neurosurgery, NIMHANS Cerebral Oedema Increase in brain water content above normal (80%) in response to primary brain insult. Intracranial

More information

Supplementary Online Content

Supplementary Online Content Supplementary Online Content Cooper DJ, Nichol A, Bailey M, et al. Effect of early sustained prophylactic hypothermia on neurologic outcomes among patients with severe traumatic brain injury: the POLAR

More information

BRAIN TRAUMA THERAPEUTIC RECOMMENDATIONS

BRAIN TRAUMA THERAPEUTIC RECOMMENDATIONS 1 BRAIN TRAUMA THERAPEUTIC RECOMMENDATIONS Richard A. LeCouteur, BVSc, PhD, Dip ACVIM (Neurology), Dip ECVN Professor Emeritus, University of California, Davis, California, USA Definitions Hemorrhage:

More information

Severe traumatic brain injury. Fellowship Training Intensive Care Radboud University Nijmegen Medical Centre

Severe traumatic brain injury. Fellowship Training Intensive Care Radboud University Nijmegen Medical Centre Severe traumatic brain injury Fellowship Training Intensive Care Radboud University Nijmegen Medical Centre Primary focus of care Prevent ischemia, hypoxia and hypoglycemia Nutrient & oxygen supply Limited

More information

Hyperglycaemic Emergencies GRI EDUCATION

Hyperglycaemic Emergencies GRI EDUCATION Hyperglycaemic Emergencies GRI EDUCATION LEARNING OUTCOMES Develop and describe your system of blood gas interpretation and recognise common patterns of acid-base abnormality. Describe the pathophysiology

More information

Acute Neurosurgical Emergency Transfer [see also CATS SOP neurosurgical]

Acute Neurosurgical Emergency Transfer [see also CATS SOP neurosurgical] Children s Acute Transport Service Clinical Guidelines Acute Neurosurgical Emergency Transfer [see also CATS SOP neurosurgical] Document Control Information Author D Lutman Author Position Head of Clinical

More information

Mini Research Paper: Traumatic Brain Injury. Allison M McGee. Salt Lake Community College

Mini Research Paper: Traumatic Brain Injury. Allison M McGee. Salt Lake Community College Running Head: Mini Research Paper: Traumatic Brain Injury Mini Research Paper: Traumatic Brain Injury Allison M McGee Salt Lake Community College Abstract A Traumatic Brain Injury (also known as a TBI)

More information

APACHE II: A Severity of Disease Classification System Standard Operating Procedure for Accurate Calculations

APACHE II: A Severity of Disease Classification System Standard Operating Procedure for Accurate Calculations BACKGROUND APACHE II: A Severity of Disease Classification System Standard Operating Procedure for Accurate Calculations The APACHE prognostic scoring system was developed in 1981 at the George Washington

More information

Traumatic Brain Injury

Traumatic Brain Injury General Information Traumatic Brain Injury What you need to know Complicated condition with high variability in etiology, severity, distribution of injury, and pattern of functional impairment (Klyce,

More information

10. Severe traumatic brain injury also see flow chart Appendix 5

10. Severe traumatic brain injury also see flow chart Appendix 5 10. Severe traumatic brain injury also see flow chart Appendix 5 Introduction Severe traumatic brain injury (TBI) is the leading cause of death in children in the UK, accounting for 15% of deaths in 1-15

More information

Anesthetic Management of a Patient with Traumatic Brain Injury

Anesthetic Management of a Patient with Traumatic Brain Injury Anesthetic Management of a Patient with Traumatic Brain Injury Arne O. Budde, MD, DEAA Associate Professor of Anesthesiology Director, Division of Neuroanesthesia Department of Anesthesiology Milton S

More information

Severe Traumatic Brain Injury Protocol

Severe Traumatic Brain Injury Protocol Severe Traumatic Brain Injury Protocol PROTOCOL I. Objective II. Definition of Severe TBI III. Patient Care: Parameters IV. Patient Care: Management Timeline (First 7 days of TBI) V. Nursing Care: Communication

More information

YALE-NEW HAVEN HOSPITAL CLINICAL ADMINISTRATIVE POLICY & PROCEDURE MANUAL

YALE-NEW HAVEN HOSPITAL CLINICAL ADMINISTRATIVE POLICY & PROCEDURE MANUAL YALE-NEW HAVEN HOSPITAL CLINICAL ADMINISTRATIVE POLICY & PROCEDURE MANUAL Administrative Policy Title: Brain Death, Guidelines Determination of Death by Neurological Criteria in the Pediatric Patient Manual

More information

Post-Anesthesia Care In the ICU

Post-Anesthesia Care In the ICU Post-Anesthesia Care In the ICU The following is based on current research and regional standards of care. At completion you will be able to identify Basic equipment needed at the bedside. Aldrete scoring

More information

Example Clinician Educational Material for Providers of Immune Effector Cellular Therapy

Example Clinician Educational Material for Providers of Immune Effector Cellular Therapy Example Clinician Educational Material for Providers of Immune Effector Cellular Therapy Disclaimer: This example is just one of many potential examples of clinician education material that can be provided

More information

Perioperative Management Of Extra-Ventricular Drains (EVD)

Perioperative Management Of Extra-Ventricular Drains (EVD) Perioperative Management Of Extra-Ventricular Drains (EVD) Dr. Vijay Tarnal MBBS, FRCA Clinical Assistant Professor Division of Neuroanesthesiology Division of Head & Neck Anesthesiology Michigan Medicine

More information

Stroke - Intracranial hemorrhage. Dr. Amitesh Aggarwal Associate Professor Department of Medicine

Stroke - Intracranial hemorrhage. Dr. Amitesh Aggarwal Associate Professor Department of Medicine Stroke - Intracranial hemorrhage Dr. Amitesh Aggarwal Associate Professor Department of Medicine Etiology and pathogenesis ICH accounts for ~10% of all strokes 30 day mortality - 35 45% Incidence rates

More information

PATHOPHYSIOLOGY OF ACUTE TRAUMATIC BRAIN INJURY. Dr Nick Taylor MBBS FACEM

PATHOPHYSIOLOGY OF ACUTE TRAUMATIC BRAIN INJURY. Dr Nick Taylor MBBS FACEM PATHOPHYSIOLOGY OF ACUTE TRAUMATIC BRAIN INJURY Dr Nick Taylor MBBS FACEM The Monro Kellie Doctrine CPP= MAP-ICP PRIMARY DAMAGE TBI is a heterogeneous disorder Brain damage results from external forces,

More information

Protocol for IV rtpa Treatment of Acute Ischemic Stroke

Protocol for IV rtpa Treatment of Acute Ischemic Stroke Protocol for IV rtpa Treatment of Acute Ischemic Stroke Acute stroke management is progressing very rapidly. Our team offers several options for acute stroke therapy, including endovascular therapy and

More information

INDUCED HYPOTHERMIA A Hot Topic. R. Darrell Nelson, MD, FACEP Emergency Medicine Wake Forest University Health Sciences

INDUCED HYPOTHERMIA A Hot Topic. R. Darrell Nelson, MD, FACEP Emergency Medicine Wake Forest University Health Sciences INDUCED HYPOTHERMIA A Hot Topic R. Darrell Nelson, MD, FACEP Emergency Medicine Wake Forest University Health Sciences Conflicts of Interest Sadly, we have no financial or industrial conflicts of interest

More information

Paediatric Neurosurgical Emergencies. Kate Parkins Consultant Paediatric Intensivist Alder Hey

Paediatric Neurosurgical Emergencies. Kate Parkins Consultant Paediatric Intensivist Alder Hey Paediatric Neurosurgical Emergencies Kate Parkins Consultant Paediatric Intensivist Alder Hey Level of consciousness AVPU GCS D Neurological Assessment Pupillary reaction to light Limb movements History

More information

PEDIATRIC BRAIN CARE

PEDIATRIC BRAIN CARE PEDIATRIC BRAIN CARE The brain matters most! OVERVIEW OF NEURO ASSESSMENT 1. Overall responsiveness/activity 2. The eyes 3.? Increased ICP 4. Movements 5.? Seizures 6. Other OVERALL RESPONSIVENESS/ ACTIVITY

More information

A Study to Describe Cerebral Perfusion Pressure Optimization Practice among ICU Patients of Tertiary Hospital of South India

A Study to Describe Cerebral Perfusion Pressure Optimization Practice among ICU Patients of Tertiary Hospital of South India International Journal of Caring Sciences January-April 2018 Volume 11 Issue 1 Page 296 Original Article A Study to Describe Cerebral Perfusion Pressure Optimization Practice among ICU Patients of Tertiary

More information

Neurocritical Care Basics. Tapan Kavi, MD Christina Fox, RN

Neurocritical Care Basics. Tapan Kavi, MD Christina Fox, RN Neurocritical Care Basics Tapan Kavi, MD Christina Fox, RN GOAL 1: DON T LET THE PATIENT DIE Not unique ACLS, ATLS, ENLS, other strategies common to all emergency medical care ABCs MORE not less important

More information

Care of the Deteriorating Patient in Recovery NADIA TICEHURST : CLINICAL NURSE EDUCATOR PERI ANAESTHETICS BENDIGO HEALTH

Care of the Deteriorating Patient in Recovery NADIA TICEHURST : CLINICAL NURSE EDUCATOR PERI ANAESTHETICS BENDIGO HEALTH Care of the Deteriorating Patient in Recovery NADIA TICEHURST : CLINICAL NURSE EDUCATOR PERI ANAESTHETICS BENDIGO HEALTH Intended learning outcomes Describe the components of a comprehensive clinician

More information

LOSS OF CONSCIOUSNESS & ASSESSMENT. Sheba Medical Center Acute Medicine Department MATTHEW WRIGHT

LOSS OF CONSCIOUSNESS & ASSESSMENT. Sheba Medical Center Acute Medicine Department MATTHEW WRIGHT LOSS OF CONSCIOUSNESS & ASSESSMENT Sheba Medical Center Acute Medicine Department MATTHEW WRIGHT OUTLINE Causes Head Injury Clinical Features Complications Rapid Assessment Glasgow Coma Scale Classification

More information

THREE HUNDRED AND ten TBI patients with a

THREE HUNDRED AND ten TBI patients with a Acute Medicine & Surgery 2014; 1: 31 36 doi: 10.1002/ams2.5 Original Article Outcome prediction model for severe traumatic brain injury Jiro Iba, 1 Osamu Tasaki, 2 Tomohito Hirao, 2 Tomoyoshi Mohri, 3

More information

10/6/2017. Notice. Traumatic Brain Injury & Head Trauma

10/6/2017. Notice. Traumatic Brain Injury & Head Trauma Notice All EMS Live@Nite presentations will be recorded (both audio and video) and available for public viewing online. By participating in EMS Live@Nite, you consent to audio and video recording and its/their

More information

Sedation Hold/Interruption and Weaning Protocol ( Wake-up and Breathe )

Sedation Hold/Interruption and Weaning Protocol ( Wake-up and Breathe ) PROTOCOL Sedation Hold/Interruption and Weaning Protocol ( Wake-up and Breathe ) Page 1 of 6 Scope: Population: Outcome: Critical care clinicians and providers. All ICU patients intubated or mechanically

More information

Proceedings of the Southern European Veterinary Conference - SEVC -

Proceedings of the Southern European Veterinary Conference - SEVC - www.ivis.org Proceedings of the Southern European Veterinary Conference - SEVC - Sep. 29-Oct. 2, 2011, Barcelona, Spain Next SEVC Conference: Oct. 18-21, 2012 - Barcelona, Spain Reprinted in the IVIS website

More information

www.yassermetwally.com MANAGEMENT OF CEREBRAL HAEMORRHAGE (ICH): A QUICK GUIDE Overview 10% of strokes is caused by ICH. Main Causes: Less than 40 years old: vascular malformations and illicit drug use.

More information

TBI are twice as common in males High potential for poor outcome Deaths occur at three points in time after injury

TBI are twice as common in males High potential for poor outcome Deaths occur at three points in time after injury Head Injury Any trauma to (closed vs. open) Skull Scalp Brain Traumatic brain injury (TBI) High incidence Most common causes Falls Motor vehicle accidents Other causes Firearm- related injuries Assaults

More information

Vasoactive Medications. Matthew J. Korobey Pharm.D., BCCCP Critical Care Clinical Specialist Mercy St. Louis

Vasoactive Medications. Matthew J. Korobey Pharm.D., BCCCP Critical Care Clinical Specialist Mercy St. Louis Vasoactive Medications Matthew J. Korobey Pharm.D., BCCCP Critical Care Clinical Specialist Mercy St. Louis Objectives List components of physiology involved in blood pressure Review terminology related

More information

State of the Art Multimodal Monitoring

State of the Art Multimodal Monitoring State of the Art Multimodal Monitoring Baptist Neurological Institute Mohamad Chmayssani, MD Disclosures I have no financial relationships to disclose with makers of the products here discussed. Outline

More information

Conflict of Interest Disclosure J. Claude Hemphill III, MD,MAS. Difficult Diagnosis and Treatment: New Onset Obtundation

Conflict of Interest Disclosure J. Claude Hemphill III, MD,MAS. Difficult Diagnosis and Treatment: New Onset Obtundation Difficult Diagnosis and Treatment: New Onset Obtundation J. Claude Hemphill III, MD, MAS Kenneth Rainin Chair in Neurocritical Care Professor of Neurology and Neurological Surgery University of California,

More information

Rhonda Dixon, DVM Section Head, Emergency and Critical Care Sugar Land Veterinary Specialty and Emergency

Rhonda Dixon, DVM Section Head, Emergency and Critical Care Sugar Land Veterinary Specialty and Emergency Rhonda Dixon, DVM Section Head, Emergency and Critical Care Sugar Land Veterinary Specialty and Emergency Traumatic Brain Injury Causes Pathophysiology Neurologic assessment Therapeutic Approach Status

More information

CHILL OUT! Induced Hypothermia: Challenges & Successes in the

CHILL OUT! Induced Hypothermia: Challenges & Successes in the CHILL OUT! Induced Hypothermia: Challenges & Successes in the ICU Colleen Bell RN, BS, CCRN, Donna Brault RN, BSN, CCRN, Cathy Patnode RN, BSN, CCRN Champlain Valley Physician Hospital November 2012 Objectives

More information

Optimum sodium levels in children with brain injury. Professor Sunit Singhi, Head, Department of Pediatrics, Head, Pediatric

Optimum sodium levels in children with brain injury. Professor Sunit Singhi, Head, Department of Pediatrics, Head, Pediatric India Optimum sodium levels in children with brain injury Professor Sunit Singhi, Head, Department of Pediatrics, Head, Pediatric Sodium and brain Sodium - the major extracellular cation and most important

More information

Shobana Rajan, M.D. Associate staff Anesthesiologist, Cleveland Clinic, Cleveland, Ohio

Shobana Rajan, M.D. Associate staff Anesthesiologist, Cleveland Clinic, Cleveland, Ohio Shobana Rajan, M.D. Associate staff Anesthesiologist, Cleveland Clinic, Cleveland, Ohio Shaheen Shaikh, M.D. Assistant Professor of Anesthesiology, University of Massachusetts Medical center, Worcester,

More information

Therapeutic Hypothermia

Therapeutic Hypothermia Objectives Overview Therapeutic Hypothermia Nerissa U. Ko, MD, MAS UCSF Department of Neurology Critical Care Medicine and Trauma June 4, 2011 Hypothermia as a neuroprotectant Proven indications: Adult

More information

Mannitol for Resuscitation in Acute Head Injury: Effects on Cerebral Perfusion and Osmolality

Mannitol for Resuscitation in Acute Head Injury: Effects on Cerebral Perfusion and Osmolality Original articles Mannitol for Resuscitation in Acute Head Injury: Effects on Cerebral Perfusion and Osmolality J. A. MYBURGH*, S. B. LEWIS *Intensive Care Unit, Royal Adelaide Hospital, Adelaide, SOUTH

More information

NURSING DEPARTMENT CRITICAL CARE POLICY MANUAL CRITICAL CARE PROTOCOLS. ACUTE CEREBROVASCULAR ACCIDENT TPA (ACTIVASE /alteplase) FOR THROMBOLYSIS

NURSING DEPARTMENT CRITICAL CARE POLICY MANUAL CRITICAL CARE PROTOCOLS. ACUTE CEREBROVASCULAR ACCIDENT TPA (ACTIVASE /alteplase) FOR THROMBOLYSIS NURSING DEPARTMENT CRITICAL CARE POLICY MANUAL CRITICAL CARE PROTOCOLS ACUTE CEREBROVASCULAR ACCIDENT TPA (ACTIVASE /alteplase) FOR THROMBOLYSIS I. Purpose : A. To reduce morbidity and mortality associated

More information

Patho-physiology of nervous System Talk 2 Syndromes in neurosciences. Petr Maršálek Dept pathological physiology 1.Med. F. CUNI

Patho-physiology of nervous System Talk 2 Syndromes in neurosciences. Petr Maršálek Dept pathological physiology 1.Med. F. CUNI Patho-physiology of nervous System Talk 2 Syndromes in neurosciences Petr Maršálek Dept pathological physiology 1.Med. F. CUNI Talks on NS Talk 1 - Pain and Motor disorders Talk 2 - This - Syndromes in

More information

Neurocritical Care Monitoring. Academic Half Day Critical Care Fellows

Neurocritical Care Monitoring. Academic Half Day Critical Care Fellows Neurocritical Care Monitoring Academic Half Day Critical Care Fellows Clinical Scenarios for CNS monitoring No Universally accepted Guidelines Traumatic Brain Injury Intracerebral Hemorrhage Subarachnoid

More information

Admission of patient CVICU and hemodynamic monitoring

Admission of patient CVICU and hemodynamic monitoring Admission of patient CVICU and hemodynamic monitoring Prepared by: Rami AL-Khatib King Fahad Medical City Pi Prince Salman Heart tcentre CVICU-RN Admission patient to CVICU Introduction All the patients

More information

excellence in care Procedure Neuroprotection For Review Aug 2015

excellence in care Procedure Neuroprotection For Review Aug 2015 Neuro Projection HELI.CLI.14 Purpose This procedure outlines the management principles of patients being retrieved with traumatic brain injury (TBI), spontaneous intracranial haemorrhage (including subarachnoid

More information

Evaluation & Management of Elevated Intracranial Pressure in Adults. Dr. Tawfiq Almezeiny

Evaluation & Management of Elevated Intracranial Pressure in Adults. Dr. Tawfiq Almezeiny Evaluation & Management of Elevated Intracranial Pressure in Adults Dr. Tawfiq Almezeiny Objectives Pathophsiology of elevated intracranial pressure. Clinical features and sequences. Management : Investigations

More information