Medical device design using Computational Fluid Dynamics (CFD)

Size: px
Start display at page:

Download "Medical device design using Computational Fluid Dynamics (CFD)"

Transcription

1 Medical device design using Computational Fluid Dynamics (CFD) Session: Winter 2016 IMPORTANT NOTE: This project has 8 deliverables, for each one timely work is expected. 1. General Design Specifications Computational Fluid Dynamics (CFD) is used to design blood related medical devices. Some blood medical devices include: ventricular assist devices, pumps, filters, and tubing. When developing procedures for blood medical devices, biophysical factors must be considered. Some of these factors include: physiologic control feasibility, implantability, haemolysis, thrombosis, biocompatibility, and pump performance. CFD is used to predict a variety of blood related data that includes biophysical factors (i.e. blood cell damage), pressure-flow performance, stress levels, hydraulic efficiencies, and the flow profile through the device [1]. The general Design specifications must specifically take into account: The viscosity: Blood is a non-newtonian fluid (as we will see in chapter 6). The assumption of Newtonian viscosity could be acceptable in some cases, but this assumption should be motivated and validated. It could be done, for example by comparing computational results with experimental ones. However, in the scope of this academic exercise, we are going to consider blood as a Newtonian fluid with a viscosity of 3.5cP. The hemolysis: Red blood cells present in blood are susceptible to damage due to stress imposed from many possible factors. Blood damage or trauma depends on the magnitude and duration of stress loading experienced by the cells (Figure 1). The thrombosis: Thrombosis is a process caused by platelet activation (Figure 1). Local blood flow conditions directly affect the shape, size, and structure of the thrombus. Not only does regional stagnant flow contribute to thrombosis, but there also Haemodynamic factors, such as contact between red blood cells and red blood cells, platelets with red blood cells, and platelets with platelets, that also contribute to thrombosis. Collisions between platelets and red blood cells are much higher in low velocity profiles. These collisions increase the probability of aggregation and granule release [1]. Low shear flows do not cause endothelial damage like high shear flows could. Low shear flows may alter the mass transfer properties for the flow but they preserve the

2 structural integrity of the endothelium. In contrast, the endotheliall damage caused by high shear flows trigger platelet clumping onto the vessel wall. These shear stress levels of 10 Pa create platelet aggregates that have low levels of response from platelets or red blood cells in the form of granule release. However, low shear flow could cause thromogenesis by damaging the cells. This is becausee low shear flow is caused by the recirculation flow vortices that trap cells. This increases the local wall shear stress. Furthermore, flow separation and secondary flow conditions can be caused by the abrupt sectional widening of flow regions. These circumstances promote thrombosis [1]. In conclusion, it is imperative to avoid any blood pump design that could allow conditions like haemolysis or thrombosis to occur both upstream and downstream. The flow conditions that need to be avoided or otherwisee minimized while working on the design phase include: (1) recirculation regions, (2) high shear or extraordinarily low shear stress areas, (3) flow separation, (4) surfaces with sharp edges or high roughness, (5) narrow passages or clearances through the pump and (6) flow stasis or stagnation leading to blood pooling [1]. Figure 1: Shear stress exposure time destruction platelets [2]. plot threshold hemolysis of red blood cells and

3 2 Case of study: Nozzle With a Sudden Contraction and Conical Diffuser (Robin1) Link: CFD is a known tool used to analyze and create medical devices such as prosthetic heart valves and stents. Between 2008 and 2013, the U.S. Food and Drug administration hosted a study to assess the CFD s usefulness in assessing medical device safety. 28 laboratories participated in the study known as Robin#1 1. These participants were asked to model the flow in a generic tubular medical device that has similar flow characteristics to a catheter or needle and similar medical device problems such as issues in dialysis tubing. This generic device contained a sudden contraction and conical diffuser. All 28 participants modeled the flow in a generic tubular device with the following specifications: a m diameter cylindrical nozzle with a sudden contraction and 10 conical diffuser, on either side of a 0.04 m long, m diameter throat (Figure 2). Nozzle throat Reynolds numbers (Ret) were specified at 500, 2000, 3500, 5000, and 6500 under steady flow conditions. A Newtonian viscosity of N-s/m2 and a density of 1056 kg/m3 were specified. All other parameters (inlet/outlet lengths, mesh density, cell/element type, axisymmetric vs. 3D mesh, inlet boundary conditions, etc.) were left to the discretion of the individual participants [3]. Furthermore, 5 fluid mechanics laboratories were also asked to perform experimental validations of flow in the nozzle using PIV measurement. Definitions: Nozzle throat Reynolds numbers (Ret) is the Reynolds number based on the nozzle throat diameter (4 mm) Normalized velocity: u u / u Where u is the normalized velocity, u the velocity from PIV or CFD, and u the average velocity at the inlet, calculated as follows. Q is the flow rate at the inlet (calculated from the velocity profile determined from PIV or CFD), and A the area of the m diameter inlet tube 1

4 Figure 2. Robin#1 : Conical Diffuser. Nozzle specifications: (a) dimensions of nozzle (inlet and outlet lengths unspecified); (b) cross-sectional cuts defined for data submission for the Conical Diffuser. reproduced from [3]. References : 1. Wood HG and al. The medical physics of ventricular assist devices Rep. Prog. Phys. 68 (2005) biofluid mechanics, the human circulation p Stewart FC and al, Results of FDA s First Interlaboratory Computational Study of a Nozzle with a Sudden Contraction and Conical Diffuser, Cardiovascular Engineering and Technology. Volume 4, Issue 4, pp Hariharan P. and al. Multilaboratory particle image velocimetry analysis of the FDA benchmark nozzle model to support validation of computational fluid dynamics simulations.j Biomech Eng.;133(4):

5 Deliverable 1: Geometry Objective: Get familiar with the software Work due: Report (2 pages) with clear annotated figures. Marking: 3 marks Follow the tutorial and then, respecting the specification of the Robin #1 project, build the 2D geometry in the CFD software. Deliverable 2: Meshs Objective: Investigation of different mesh generation procedures Work due: Report (4 pages) with clear annotated figures of the different meshing Marking: 5 marks Deliverable 3: CFD i) Model 1: Mesh the 2D model with a homogeny low density mesh (about 5 nodes across the diameter) ii) Model 2: Double the mesh densities in your model (medium density) iii) Model 3: quadruple the mesh densities in your model (high density) iv) Model 4: from model 2 refine mesh in the boundary layer and refine mesh in part you expect to have high gradient in velocity and/or shear and lower the mesh density in part where your expect with low gradient. Objective: flow calculation Work due: Report (3 pages) with clear annotated figures Marking: 7 marks Following the specification of the Robin #1 project, compute the flow in this device for the different meshings. Limit your analysis to Ret=500 and Ret=6500 i) Verify the convergence ii) Plot color map of velocity. iii) Plot the maximum velocity along center the pipe from the entrance to the output. iv) Determine the entry length before the flow becomes fully developed. v) Determine the Wall Shear Stress (WSS) where the fluid is fully developed vi) Compare the result of the different models Deliverable 4: PIV data Objective: Experimental data analysis Work due: Report (5 pages) with clear annotated figures Marking: 15 marks Data base link: The data are provided for 2 flow directions. The flow direction presented figure 2 corresponds to the conical diffuser. (The sudden expansion is the reverse problem, using the same geometry but the flow in an opposite direction)

6 Extract the PIV data for Ret=500 and Present: - Color map of velocity - Velocity profiles at key location (1 to 12) - Velocity along the center line - WSS along the wall Deliverable 5: Validation Ret=500 Objective: Mesh optimisation, CFD validation Work due: Report (5 pages) with clear annotated figures Marking: 10 marks Optimise the mesh, to get a solution as accurate as possible with the fewer nodes as possible. Hint: You may want to discretize your domain not homogeneously; increase the mesh density where it s needed only. i) Present the error of WSS relative to experimental data ii) the error in velocity profile relative to experimental data iii) the time of computation function of the number of nodes. Deliverable 6: Validation Ret=6500 Objective: Mesh optimisation, CFD validation Work due: Report (5 pages) with clear annotated figures Marking: 10 marks Reedo 5, but Increasing the Reynolds number to get a turbulent flow (Ret=6500). Test different solvers: laminar, k-epsilon etc.... Discuss the difference obtained. Deliverable 7: Objective: Extracorporeal blood device design Work due: Report (20 pages) with clear annotated figures Marking: 40 marks Design the geometry of an extracorporeal detection cell used during hemodialysis procedure. The cell needs to be clear in orderr to measuree the hematocrit with light transmission. To allow the light go through the flowing blood the diameter of the cell should not be greater than 2mm. The total flow rate could be up to 2l/second. The cell will be mounted on as extracorporeal line with an internal dimeter of 5mm The flow design should ensure that hemolysis and thrombosis are avoided

7 Figure 3 : Example of such existing devices: 1) Pressure measurement in Cardiovascular bypass loop (BLOP4 CPB, medtronics) 2) hematocrit measurement during hemodialisis, light transmission (Critline) 3) blood concentration measurement during hemodialisis, ultrason (BVM Fresenius) Deliverable 8 (individual): Objective: Quality control, recommendation Work due: Report (2 pages max) Marking: 10 marks In the context of quality control in a biomedical company, write a clear recommendation for the use of CFD in medical device design processes.

8

CFD Analysis of Pulsatile Flow and Non-Newtonian Behavior of Blood in Arteries

CFD Analysis of Pulsatile Flow and Non-Newtonian Behavior of Blood in Arteries Copyright 2015 Tech Science Press MCB, vol.12, no.1, pp.37-47, 2015 CFD Analysis of Pulsatile Flow and Non-Newtonian Behavior of Blood in Arteries P. Jhunjhunwala,, P.M. Padole, and S.B. Thombre, Abstract:

More information

Computational Fluid Dynamics Analysis of Blalock-Taussig Shunt

Computational Fluid Dynamics Analysis of Blalock-Taussig Shunt Washington University in St. Louis Washington University Open Scholarship Mechanical Engineering and Materials Science Independent Study Mechanical Engineering & Materials Science 12-23-2017 Computational

More information

Numerical Simulation of Blood Flow through Asymmetric and Symmetric Occlusion in Carotid Artery

Numerical Simulation of Blood Flow through Asymmetric and Symmetric Occlusion in Carotid Artery Proceedings of the 3 rd International Conference on Fluid Flow, Heat and Mass Transfer (FFHMT 16) Ottawa, Canada May 2 3, 2016 Paper No. 170 Numerical Simulation of Blood Flow through Asymmetric and Symmetric

More information

Contents 1 Computational Haemodynamics An Introduction 2 The Human Cardiovascular System

Contents 1 Computational Haemodynamics An Introduction 2 The Human Cardiovascular System Contents 1 Computational Haemodynamics An Introduction... 1 1.1 What is Computational Haemodynamics (CHD)... 1 1.2 Advantages of CHD... 3 1.3 Applications in the Cardiovascular System... 4 1.3.1 CHD as

More information

Numerical Analysis of Blood Flow in Human Arteries and Medical Devices

Numerical Analysis of Blood Flow in Human Arteries and Medical Devices Numerical Analysis of Blood Flow in Human Arteries and Medical Devices Prof. Dr.-Ing. Mehdi Behbahani Faculty of Medical Engineering and Technomathematics FH Aachen, Campus Jülich, Institute of Bioengineering,

More information

FLUID MECHANICAL PERTURBATIONS INDUCED BY STENT IMPLANTATION: A NUMERICAL STUDY

FLUID MECHANICAL PERTURBATIONS INDUCED BY STENT IMPLANTATION: A NUMERICAL STUDY LABORATORY OF BIOLOGICAL STRUCTURE MECHANICS www.labsmech.polimi.it FLUID MECHANICAL PERTURBATIONS INDUCED BY STENT IMPLANTATION: A NUMERICAL STUDY Rossella Balossino, Francesca Gervaso, Francesco Migliavacca,

More information

JADAVPUR UNIVERSITY & 2 SCHOOL OF BIOSCIENCE AND ENGINEERING ABHIRUP ROY CHOUDHURY 1, KRITTIKA DASGUPTA 2, ABHIJIT CHANDA 1,2, DEBABRATA NAG 1

JADAVPUR UNIVERSITY & 2 SCHOOL OF BIOSCIENCE AND ENGINEERING ABHIRUP ROY CHOUDHURY 1, KRITTIKA DASGUPTA 2, ABHIJIT CHANDA 1,2, DEBABRATA NAG 1 Presented at the COMSOL Conference 2010 India ABHIRUP ROY CHOUDHURY 1, KRITTIKA DASGUPTA 2, ABHIJIT CHANDA 1,2, DEBABRATA NAG 1 1 DEPARTMENT OF MECHANICAL ENGINEERING & 2 SCHOOL OF BIOSCIENCE AND ENGINEERING

More information

Numerical simulations of fluid mechanical interactions between two abdominal aortic branches

Numerical simulations of fluid mechanical interactions between two abdominal aortic branches Korea-Australia Rheology Journal Vol. 16, No. 2, June 2004 pp. 75-83 Numerical simulations of fluid mechanical interactions between two abdominal aortic branches Taedong Kim, Taewon Seo* 1,2 and Abdul.I.

More information

PHYSIOLOGICAL PULSATILE WAVEFORM THROUGH AXISYMMETRIC STENOSED ARTERIES: NUMERICAL SIMULATION

PHYSIOLOGICAL PULSATILE WAVEFORM THROUGH AXISYMMETRIC STENOSED ARTERIES: NUMERICAL SIMULATION PHYSIOLOGICAL PULSATILE WAVEFORM THROUGH AXISYMMETRIC STENOSED ARTERIES: NUMERICAL SIMULATION Jayme Pinto Ortiz University of São Paulo - Avenida Prof. Luciano Gualberto, travessa3 nº 380 - CEP - 05508-900

More information

Flow Evaluation and Hemolysis Analysis of BVAD Centrifugal Blood Pump by Computational Fluids Dynamics

Flow Evaluation and Hemolysis Analysis of BVAD Centrifugal Blood Pump by Computational Fluids Dynamics International Journal of Fluid Machinery and Systems DOI: http://dx.doi.org/10.5293/ijfms.2014.7.1.034 Vol. 7, No. 1, January-March 2014 ISSN (Online): 1882-9554 Original Paper (Invited) Flow Evaluation

More information

Simulations of the blood flow in the arterio-venous fistula for haemodialysis

Simulations of the blood flow in the arterio-venous fistula for haemodialysis Acta of Bioengineering and Biomechanics Vol. 16, No. 1, 2014 Original paper DOI: 10.5277/abb140109 Simulations of the blood flow in the arterio-venous fistula for haemodialysis DANIEL JODKO*, DAMIAN OBIDOWSKI,

More information

COMPUTER SIMULATION OF BLOOD FLOW IN ARTERIES AFFECTED BY MULTIPLE ANEURYSM

COMPUTER SIMULATION OF BLOOD FLOW IN ARTERIES AFFECTED BY MULTIPLE ANEURYSM COMPUTER SIMULATION OF BLOOD FLOW IN ARTERIES AFFECTED BY MULTIPLE ANEURYSM H. GIRIJA BAI 1 and K.B. NAIDU 2 Department of Mathematics, Sathyabama University, Chennai-600 119, Tamil Nadu, India 1 girijanameprakash@gmail.com

More information

Non-Newtonian pulsatile blood flow in a modeled artery with a stenosis and an aneurysm

Non-Newtonian pulsatile blood flow in a modeled artery with a stenosis and an aneurysm Non-Newtonian pulsatile blood flow in a modeled artery with a stenosis and an aneurysm I. Husain, C. Langdon and J. Schwark Department of Mathematics Luther College University of Regina Regina, Saskatchewan

More information

Refinements in Mathematical Models to Predict Aneurysm Growth and Rupture

Refinements in Mathematical Models to Predict Aneurysm Growth and Rupture Refinements in Mathematical Models to Predict Aneurysm Growth and Rupture RAMON BERGUER, a,b JOSEPH L. BULL, a,b AND KHALIL KHANAFER a a Vascular Mechanics Laboratory, Department of Biomedical Engineering,

More information

CFD Study of the Blood Flow in Cerebral Aneurysms Treated with Flow Diverter Stents

CFD Study of the Blood Flow in Cerebral Aneurysms Treated with Flow Diverter Stents CFD Study of the Blood Flow in Cerebral Aneurysms Treated with Flow Diverter Stents Augusto F. Sanches and Eva Gutheil Interdisciplinary Center for Scientific Computing, Heidelberg University Flow diverters

More information

Effects of Non-Newtonian Behavior of Blood on Wall Shear Stress in an Elastic Vessel with Simple and Consecutive Stenosis

Effects of Non-Newtonian Behavior of Blood on Wall Shear Stress in an Elastic Vessel with Simple and Consecutive Stenosis Biomedical & Pharmacology Journal Vol. 8(1), 123-131 (2015) Effects of Non-Newtonian Behavior of Blood on Wall Shear Stress in an Elastic Vessel with Simple and Consecutive Stenosis M. JAHANGIRI 1 *, M.

More information

Comparison of Stent Designs using Computational Fluid Dynamics

Comparison of Stent Designs using Computational Fluid Dynamics Dublin Institute of Technology ARROW@DIT Conference Papers School of Mechanical and Design Engineering 2007-03-28 Comparison of Stent Designs using Computational Fluid Dynamics Jonathan Murphy Dublin Institute

More information

54. Simulation and research on the influence of the shape and the geometrical parameters of a blood vessel bypass graft upon hemodynamics

54. Simulation and research on the influence of the shape and the geometrical parameters of a blood vessel bypass graft upon hemodynamics 54. Simulation and research on the influence of the shape and the geometrical parameters of a blood vessel bypass graft upon hemodynamics Andžela Šešok 1, Donatas Lukšys 2 Vilnius Gediminas Technical University,

More information

Edinburgh Imaging Academy online distance learning courses

Edinburgh Imaging Academy online distance learning courses Course: Biomechanics Semester 1 / Autumn 10 Credits Each Course is composed of Modules & Activities. Modules: Biomechanics basics Ultrasound advanced Cardiovascular IMSc IMSc IMSc Each Module is composed

More information

Analysis of the effects of plaque deposits on the blood flow through human artery

Analysis of the effects of plaque deposits on the blood flow through human artery ISSN 2395-1621 Analysis of the effects of plaque deposits on the blood flow through human artery #1 Sajid S. Mulani, #2 Pankaj I. Jagad 1 sajidsmulani21@gmail.com 2 pjjagad.scoe@sinhgad.edu #12 Department

More information

A numerical study on the effect of hematocrit on hemodynamic characteristics in arteriovenous graft

A numerical study on the effect of hematocrit on hemodynamic characteristics in arteriovenous graft Korea-Australia Rheology Journal, Vol.26, No.3, pp.327-334 (August 2014) DOI: 10.1007/s13367-014-0037-x www.springer.com/13367 A numerical study on the effect of hematocrit on hemodynamic characteristics

More information

BLOOD FLOW VISUALISATION THROUGH CAROTID BIFURCATION USING ANSYS CFD

BLOOD FLOW VISUALISATION THROUGH CAROTID BIFURCATION USING ANSYS CFD BLOOD FLOW VISUALISATION THROUGH CAROTID BIFURCATION USING ANSYS CFD Roopa.V.Chanashetty 1, Dr.Channappa Bhyri 2 and Vijaykumar Chanashetty 3 1 Department of Electronics and Communication Engineering,

More information

Closed-loop CFD Model of the Self-Powered Fontan Circulation for the Hypoplastic Left Heart Syndrome

Closed-loop CFD Model of the Self-Powered Fontan Circulation for the Hypoplastic Left Heart Syndrome McNair Scholars Research Journal Volume 3 Article 4 016 Closed-loop CFD Model of the Self-Powered Fontan Circulation for the Hypoplastic Left Heart Syndrome Nathalie E. Quintero Embry-Riddle Aeronautical

More information

Computational design of Intracranial Stent using 3D visualization system

Computational design of Intracranial Stent using 3D visualization system Computational design of Intracranial Stent using 3D visualization system Institute of Fluid Science, Tohoku University Makoto OHTA Graduate school of Engineering Hitomi Anzai Graduate school of Biomedical

More information

Vascular reconstruction: CFD predictions of bypass graft haemodynamics

Vascular reconstruction: CFD predictions of bypass graft haemodynamics Vascular reconstruction: CFD predictions of bypass graft haemodynamics J.S. Cole 1, J.K. Watterson 1 & M.J.G. O Reilly 2 1 School of Mechanical and Aerospace Engineering, The Queen s University of Belfast,

More information

Design and Simulation of Blocked Blood Vessel for Early Detection of Heart Diseases

Design and Simulation of Blocked Blood Vessel for Early Detection of Heart Diseases Proceedings of the 215 2nd International Symposium on Physics and Technology of Sensors, 8-1th March, 215, Pune, India Design and Simulation of Blocked Blood Vessel for Early Detection of Heart Diseases

More information

Post-conditioning. P a g e 1. To my Thesis Committee,

Post-conditioning. P a g e 1. To my Thesis Committee, P a g e 1 To my Thesis Committee, This document seeks to clarify my research project. After describing what post-conditioning (PC) is, I will explain differences between my research and the recent peristaltic

More information

NUMERICAL SIMULATION OF EFFECTS OF REYNOLDS NUMBER ON NON-NEWTONIAN BLOOD FLOW WITH SPIRAL COMPONENT THROUGH A REGULAR STENOSED ARTERY

NUMERICAL SIMULATION OF EFFECTS OF REYNOLDS NUMBER ON NON-NEWTONIAN BLOOD FLOW WITH SPIRAL COMPONENT THROUGH A REGULAR STENOSED ARTERY Proceedings of the International Conference on Mechanical Engineering and Renewable Energy 2017 (ICMERE2017) 18 20 December, 2017, Chittagong, Bangladesh ICMERE2017-PI-325 NUMERICAL SIMULATION OF EFFECTS

More information

A computational fluid dynamics simulation study of coronary blood flow affected by graft placement

A computational fluid dynamics simulation study of coronary blood flow affected by graft placement Interactive CardioVascular and Thoracic Surgery 19 (2014) 16 20 doi:10.1093/icvts/ivu034 Advance Access publication 22 April 2014 ORIGINAL ARTICLE ADULTCARDIAC A computational fluid dynamics simulation

More information

Vascular Stenosis Asymmetry Influences Considerably Pressure Gradient and Flow Volume

Vascular Stenosis Asymmetry Influences Considerably Pressure Gradient and Flow Volume Physiol. Res. 65: 63-69, 2016 Vascular Stenosis Asymmetry Influences Considerably Pressure Gradient and Flow Volume L. NOVAKOVA 1, J. KOLINSKY 1, J. ADAMEC 1, J. KUDLICKA 2, J. MALIK 2 1 Department of

More information

Study of Newtonian and Non-Newtonian Effect of Blood Flow in Portal Vein in Normal and Hypertension Conditions using CFD Technique

Study of Newtonian and Non-Newtonian Effect of Blood Flow in Portal Vein in Normal and Hypertension Conditions using CFD Technique International Journal of Engineering Research and Technology. ISSN 0974-3154 Volume 6, Number 3 (2013), pp. 399-406 International Research Publication House http://www.irphouse.com Study of Newtonian and

More information

Development of Computational Models for Evaluation of Mechanical and Hemodynamic Behavior of an Intravascular Stent

Development of Computational Models for Evaluation of Mechanical and Hemodynamic Behavior of an Intravascular Stent Development of Computational Models for Evaluation of Mechanical and Hemodynamic Behavior of an Intravascular Stent Kuang-Huei Lee, Hao-Ming Hsiao, Ying-Chih Liao, Yi-Hsiang Chiu, Yu-Seng Tee Dept. of

More information

Analysis of the GPATD : Geometrical Influence on Blood Clot Extraction using CFD Simulation

Analysis of the GPATD : Geometrical Influence on Blood Clot Extraction using CFD Simulation 2014 UKSim-AMSS 16th International Conference on Computer Modelling and Simulation Analysis of the GPATD : Geometrical Influence on Blood Clot Extraction using CFD Simulation Gregorio Romero, M.Luisa Martínez

More information

Blood Flow Simulation toward Actual Application at Hospital

Blood Flow Simulation toward Actual Application at Hospital THE 5 TH ASIAN COMPUTAITIONAL FLUID DYNAMICS BUSAN, KOREA, OCTOBER 27 ~ OCTOBER 30, 2003 Blood Flow Simulation toward Actual Application at Hospital Abstract R. Himeno 1 1. Advanced Center for Computing

More information

Developing Pulsatile Flow in a Deployed Coronary Stent

Developing Pulsatile Flow in a Deployed Coronary Stent Divakar Rajamohan Department of Mechanical Engineering, University of Cincinnati, Cincinnati, OH 45221 Rupak K. Banerjee 1 Department of Mechanical Engineering, and Department of Biomedical Engineering,

More information

CFD Challenge: Simulation of Hemodynamics in a Patient-Specific Aortic Coarctation Model

CFD Challenge: Simulation of Hemodynamics in a Patient-Specific Aortic Coarctation Model CFD Challenge: Simulation of Hemodynamics in a Patient-Specific Aortic Coarctation Model Background Coarctation of the aorta (CoA) accounts for 8%-11% of congenital heart defects, affecting tens of thousands

More information

Shear stress: Computer simulation of coagulation and blood trauma

Shear stress: Computer simulation of coagulation and blood trauma Shear stress: Computer simulation of coagulation and blood trauma David N. Ku, MD, PhD Regents Professor L P Huang Chair Prof for Engineering Entrepreneurship Georgia Institute of Technology Professor

More information

Advances in Engineering Mechanics and Materials. Novel Aortic Cannula with Spiral Flow Inducing Design

Advances in Engineering Mechanics and Materials. Novel Aortic Cannula with Spiral Flow Inducing Design Novel Aortic Cannula with Spiral Flow Inducing Design Nadia S. Shafii, N. Darlis, Jeswant Dillon, Kahar Osman,Ahmad Zahran Md Khudzari, and E. Supriyanto Abstract Aortic cannula is one of the medical parts

More information

4D model of hemodynamics in the abdominal aorta

4D model of hemodynamics in the abdominal aorta Bio-Medical Materials and Engineering 26 (2015) S257 S264 DOI 10.3233/BME-151312 IOS Press S257 4D model of hemodynamics in the abdominal aorta Ireneusz Zbicinski a,*, Natalia Veshkina a and Ludomir Stefa

More information

Arteriovenous Graft Modeling and Hemodynamic Interpretation

Arteriovenous Graft Modeling and Hemodynamic Interpretation Open Journal of Fluid Dynamics, 2012, 2, 324-330 http://dx.doi.org/10.4236/ojfd.2012.24a040 Published Online December 2012 (http://www.scirp.org/journal/ojfd) Arteriovenous Graft Modeling and Hemodynamic

More information

Undesirable Haemodynamics in Aneurysms

Undesirable Haemodynamics in Aneurysms ANEURYSM HAEMODYNAMICS Undesirable Haemodynamics in Aneurysms Gregory J. SHEARD, 1,3, Roger G. EVANS, 1,2 Kate M. DENTON 1,2 and Kerry HOURIGAN 1,3 1 Monash University Biomedical Engineering Technology

More information

Computational Analysis on Commercially Available Stent Designs

Computational Analysis on Commercially Available Stent Designs Computational Analysis on Commercially Available Stent Designs Abhijit Chanda 1, Shuvrangsu Das 2, Sounak Bhattacharjee 2, Pranab Ghosh 2, K. Basu 3 1 School of Bio Science and Engineering, Jadavpur University,

More information

Numerical investigation on the blood flow characteristics considering the axial rotation in stenosed artery

Numerical investigation on the blood flow characteristics considering the axial rotation in stenosed artery Korea-Australia Rheology Journal Vol. 21, No. 2, June 2009 pp. 119-126 Numerical investigation on the blood flow characteristics considering the axial rotation in stenosed artery Kun Hyuk Sung, Kyoung

More information

Pro 01: Development and In Vitro Evaluation of a Hydraulic System for a Mini axial Flow Blood Pump

Pro 01: Development and In Vitro Evaluation of a Hydraulic System for a Mini axial Flow Blood Pump Pro 01: Development and In Vitro Evaluation of a Hydraulic System for a Mini axial Flow Blood Pump Background: Fully implantable rotary blood pumps are used for mechanical circulatory support of heart

More information

Experimental Flow Studies on Carotid Artery Models with and without Stents

Experimental Flow Studies on Carotid Artery Models with and without Stents Experimental Flow Studies on Carotid Artery Models with and without Stents Liepsch, D 1, Schmid, Th. 1, Klügel, G. 1, Sakurai, A. 3, Berger, H. 2, Greil, O. 2 1 FB 05, Fachhochschule München, Lothstr.

More information

Research Article Hemodynamic Features in Stenosed Coronary Arteries: CFD Analysis Based on Histological Images

Research Article Hemodynamic Features in Stenosed Coronary Arteries: CFD Analysis Based on Histological Images Applied Mathematics Volume, Article ID 77, pages http://dx.doi.org/.//77 Research Article Hemodynamic Features in Stenosed Coronary Arteries: CFD Analysis Based on Histological Images Mahsa Dabagh,, Wakako

More information

Numerical analysis of blood flow in human abdominal aorta

Numerical analysis of blood flow in human abdominal aorta Advances in Fluid Mechanics VI 603 Numerical analysis of blood flow in human abdominal aorta M. Podyma 1, I. Zbicinski 1, J. Walecki 2, M. L. Nowicki 2, P. Andziak 3, P. Makowski 4 & L. Stefanczyk 5 1

More information

Microrheology P38. Laminar blood flow in stenotic microchannels

Microrheology P38. Laminar blood flow in stenotic microchannels Microrheology P38 Laminar blood flow in stenotic microchannels Joana A. C. Calejo, Valdemar Garcia, Carla S. Fernandes School of Technology and Management, Polytechnic Institute of Bragança, Campus de

More information

Effects Of Red Blood Cell Aggregation On Wall Shear Stress In µ-tube System

Effects Of Red Blood Cell Aggregation On Wall Shear Stress In µ-tube System Effects Of Red Blood Cell Aggregation On Wall Shear Stress In µ-tube System Tan Z. 1, Yang S 2 and Kim S.H. 3 Division of Bioengineering, Faculty of Engineering, National University of Singapore 21 Lower

More information

A STUDY OF BIOMECHANICAL BEHAVIOUR OF FENESTRATED CAPILLARIES IN THE GLYCOCALYX OF GLOMERULUS

A STUDY OF BIOMECHANICAL BEHAVIOUR OF FENESTRATED CAPILLARIES IN THE GLYCOCALYX OF GLOMERULUS A STUDY OF BIOMECHANICAL BEHAVIOUR OF FENESTRATED CAPILLARIES IN THE GLYCOCALYX OF GLOMERULUS G Lavanya**, Anbarasu S*, Sarathkumar A*, Mohammed Shaheen P P* ** Assistant Professor, Department of Biomedical

More information

BLOOD FLOW THROUGH A COMPOSITE STENOSIS IN CATHETERIZED ARTERIES INTRODUCTION

BLOOD FLOW THROUGH A COMPOSITE STENOSIS IN CATHETERIZED ARTERIES INTRODUCTION 55 BLOOD FLOW THROUGH A COMPOSITE STENOSIS IN CATHETERIZED ARTERIES V P Srivastava, Rochana Vishnoi, Shailesh Mishra, Poonam Sinha * Department of Mathematics, Krishna Girls Engineering College, Kanpur-917,

More information

FFR Fundamentals and Measurements

FFR Fundamentals and Measurements FFR Fundamentals and Measurements Ghassan S. Kassab Thomas Linnemeier Chair Professor Biomedical Engineering, Indiana University Purdue University Indianapolis Principle of FFR Q S ( P P ) / R P max d

More information

Simulating the Motion of Heart Valves Under Fluid Flows Induced by Cardiac Contraction

Simulating the Motion of Heart Valves Under Fluid Flows Induced by Cardiac Contraction Simulating the Motion of Heart Valves Under Fluid Flows Induced by Cardiac Contraction Eann A. Patterson Department of Mechanical Engineering, The University of Sheffield Mappin Street, Sheffield, S1 3JD

More information

Assessment of the Effects of Increasing Levels of Physiological Realism in the Computational Fluid Dynamics Analyses of Implanted Coronary Stents

Assessment of the Effects of Increasing Levels of Physiological Realism in the Computational Fluid Dynamics Analyses of Implanted Coronary Stents Dublin Institute of Technology ARROW@DIT Conference Papers School of Mechanical and Design Engineering 2008-09-01 Assessment of the Effects of Increasing Levels of Physiological Realism in the Computational

More information

UNIVERSITY OF CINCINNATI

UNIVERSITY OF CINCINNATI UNIVERSITY OF CINCINNATI Date: 5-Nov-2010 I, Justin Niehaus, hereby submit this original work as part of the requirements for the degree of: Master of Science in Aerospace Engineering It is entitled: Use

More information

The flow through prosthetic heart valves

The flow through prosthetic heart valves The flow through prosthetic heart valves Roberto Zenit Instituto de Investigaciones en Materiales Universidad Nacional Autónoma de México In collaboration with: Adriana López (UG), René Ledesma (G), Prof.Guillermo

More information

Flow Analysis on Fusiform Aneurysm during Exercise Condition

Flow Analysis on Fusiform Aneurysm during Exercise Condition Flow Analysis on Fusiform Aneurysm during Exercise Condition Ishkrizat Taib 1, Kahar osman 2, Shahrin Hisham Amirnordin 3, Hamidon Salleh 4 1 Faculty of Mechanical and Manufacturing Engineering, Universiti

More information

Using Computational Fluid Dynamics Model to Predict Changes in Velocity properties in Stented Carotid Artery

Using Computational Fluid Dynamics Model to Predict Changes in Velocity properties in Stented Carotid Artery Excerpt from the Proceedings of the COMSOL Conference 2010 Paris (COMSOL Conference) Using Computational Fluid Dynamics Model to Predict Changes in Velocity properties in Stented Carotid Artery Vaidehi

More information

ON FLOW DYNAMICS IN TYPE B AORTIC DISSECTION (TBAD)

ON FLOW DYNAMICS IN TYPE B AORTIC DISSECTION (TBAD) ON FLOW DYNAMICS IN TYPE B AORTIC DISSECTION (TBAD) A. Rabin 1, R. Karmeli 1, P. Bar-Yoseph 2 1- Vascular & Endovascular surgery department Hadassah university hospital, Jerusalem, Israel 2- Mechanical

More information

A Computational Fluid Dynamics Study on Bidirectional Glenn Shunt Flow with an Additional Pulsatile Flow Through a modified Blalock-Taussig Shunt

A Computational Fluid Dynamics Study on Bidirectional Glenn Shunt Flow with an Additional Pulsatile Flow Through a modified Blalock-Taussig Shunt University of New Orleans ScholarWorks@UNO University of New Orleans Theses and Dissertations Dissertations and Theses Spring 5-19-2017 A Computational Fluid Dynamics Study on Bidirectional Glenn Shunt

More information

Mathematical and Computational study of blood flow through diseased artery

Mathematical and Computational study of blood flow through diseased artery Mathematical and Computational study of blood flow through diseased artery Abstract This paper presents the study of blood flow through a tapered stenosed artery. The fluid (blood) medium is assumed to

More information

The effect of the LVAD connecting point on the hemodynamics in the aortic arch BMTE 09.16

The effect of the LVAD connecting point on the hemodynamics in the aortic arch BMTE 09.16 The effect of the LVAD connecting point on the hemodynamics in the aortic arch BMTE 09.16 Author: F.L. Boogaard Supervisor: Dr. Ir. A.C.B. Bogaerds Abstract Left Ventricular Assist Devices (LVADs) are

More information

Flow Analysis with Stent Placement in the Cerebral Aneurysm

Flow Analysis with Stent Placement in the Cerebral Aneurysm Proceedings of the ECCOMAS Thematic International Conference on Simulation and Modeling of Biological Flows (SIMBIO 2011) September 21-23, 2011, VUB, Brussels, Belgium Flow Analysis with Stent Placement

More information

Simulation of blood flow through endovascular prosthesis in patients with Abdominal Aortic Aneurysm

Simulation of blood flow through endovascular prosthesis in patients with Abdominal Aortic Aneurysm Simulation of blood flow through endovascular prosthesis in patients with Abdominal Aortic Aneurysm Andrzej Polańczyk, MSc Ireneusz Zbiciński, PhD, DSc Abstract The aim of this study was to estimate whether

More information

ARTICLE IN PRESS. Journal of Biomechanics

ARTICLE IN PRESS. Journal of Biomechanics Journal of Biomechanics ] (]]]]) ]]] ]]] Contents lists available at ScienceDirect Journal of Biomechanics journal homepage: www.elsevier.com/locate/jbiomech www.jbiomech.com Numerical and experimental

More information

Atlanta, GA, USA Published online: 24 Oct 2014.

Atlanta, GA, USA Published online: 24 Oct 2014. This article was downloaded by: [NUS National University of Singapore] On: 10 February 2015, At: 08:02 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954

More information

Fluid Dynamics of a Centrifugal Left Ventricular Assist Device. Brian P. Selgrade. Department of Biomedical Engineering Duke University

Fluid Dynamics of a Centrifugal Left Ventricular Assist Device. Brian P. Selgrade. Department of Biomedical Engineering Duke University Fluid Dynamics of a Centrifugal Left Ventricular Assist Device by Brian P. Selgrade Department of Biomedical Engineering Duke University Date: Approved: Dr. George A. Truskey, Supervisor Dr. David F. Katz

More information

The Effect of Vascularization and Tissue Type on Cryosurgical Procedures. Reed Magleby Amanda Schallop Eric Shulman Joshua Sterling

The Effect of Vascularization and Tissue Type on Cryosurgical Procedures. Reed Magleby Amanda Schallop Eric Shulman Joshua Sterling The Effect of Vascularization and Tissue Type on Cryosurgical Procedures Reed Magleby Amanda Schallop Eric Shulman Joshua Sterling BEE 453: Computer-Aided Engineering: Applications to Biomedical Processes

More information

Dynamic Role of the Cardiac Jelly

Dynamic Role of the Cardiac Jelly 61 Chapter 6 Dynamic Role of the Cardiac Jelly Before looping, when the embryonic heart is still a straight tube, the cardiac jelly occupies the bulk of the heart tube walls. Despite its preeminence in

More information

Translating In-vitro and Computational Multi-scale Models for the Vascular Surgeon

Translating In-vitro and Computational Multi-scale Models for the Vascular Surgeon Translating In-vitro and Computational Multi-scale Models for the Vascular Surgeon Benjamin A. Eslahpazir MS, BSME 1, Kyle W. Beggs 2, Zoe M. Lauters 2 Alain J. Kassab PhD 2 William M. DeCampli MD, PhD

More information

University Turbine System Research (UTSR) 2013 Gas Turbine Industrial Fellowship Program

University Turbine System Research (UTSR) 2013 Gas Turbine Industrial Fellowship Program University Turbine System Research (UTSR) 2013 Gas Turbine Industrial Fellowship Program VALIDATION OF THE FLAMELET-GENERATED MANIFOLDS COMBUSTION MODEL FOR GAS TURBINE ENGINE APPLICATIONS USING ANSYS

More information

Particle Hemodynamics Analysis after Coronary Angioplasty

Particle Hemodynamics Analysis after Coronary Angioplasty , June 30 - July 2, 2010, London, U.K. Particle Hemodynamics Analysis after Coronary Angioplasty S.I. Bernad, A.F. Totorean, V.F. Vinatu, R.F. Susan-Resiga Abstract The resistance to flow through a stenosis

More information

An Evaluation of Proposed and Current Cardiovascular Stent Design Approaches to Aortoiliac Occlusive Disease

An Evaluation of Proposed and Current Cardiovascular Stent Design Approaches to Aortoiliac Occlusive Disease Washington University in St. Louis Washington University Open Scholarship Engineering and Applied Science Theses & Dissertations Engineering and Applied Science Spring 5-18-2018 An Evaluation of Proposed

More information

Correlation of In Vivo Clot Deposition With the Flow Characteristics in the 50 cc Penn State Artificial Heart: A Preliminary Study

Correlation of In Vivo Clot Deposition With the Flow Characteristics in the 50 cc Penn State Artificial Heart: A Preliminary Study ASAIO Journal 2004 Correlation of In Vivo Clot Deposition With the Flow Characteristics in the 50 cc Penn State Artificial Heart: A Preliminary Study PRAMOTE HOCHAREON,* KEEFE B. MANNING,* ARNOLD A. FONTAINE,*

More information

SHREYAS S. HEGDE et al: COMPUTATIONAL FLUID DYNAMIC APPROACH TO UNDERSTAND THE EFFECT

SHREYAS S. HEGDE et al: COMPUTATIONAL FLUID DYNAMIC APPROACH TO UNDERSTAND THE EFFECT Computational Fluid Dynamic Approach to Understand the Effect of Increasing Blockage on Wall Shear Stress and Region of Rupture in Arteries Blocked by Arthesclerotic Plaque Shreyas S. Hegde 1, Anindya

More information

BME. Lesson Title. Grade Level. Stent Design 6-8

BME. Lesson Title. Grade Level. Stent Design 6-8 BME Lesson Title Stent Design Grade Level 6-8 Authors Dr. Brian Davis, Dr. Carin Helfer Purpose This activity aims at using everyday materials to design and develop stents to unclog blood vessels. Materials

More information

INFLUENCE OF AFTERBODY SHAPE ANGLE OF TRAPEZOIDAL BLUFF BODY ON MEASURED SIGNAL PARAMETERS

INFLUENCE OF AFTERBODY SHAPE ANGLE OF TRAPEZOIDAL BLUFF BODY ON MEASURED SIGNAL PARAMETERS 27 P a g e INFLUENCE OF AFTERBODY SHAPE ANGLE OF TRAPEZOIDAL BLUFF BODY ON MEASURED SIGNAL PARAMETERS ATUL BACHAL Mechanical Department, Government College of Engineering Aurnagbad, MH, India, atul.bachal@in.endress.com

More information

Study of Cavitation Instabilities in Double- Suction Centrifugal Pump

Study of Cavitation Instabilities in Double- Suction Centrifugal Pump nternational Journal of Fluid Machinery and Systems DO: http://dx.doi.org/10.5293/jfms.2014.7.3.094 Vol. 7, No. 3, July-September 2014 SSN (Online): 1882-9554 Original Paper (nvited) Study of Cavitation

More information

Keywords: Fluid-Structure Interaction, Heart Valve, Bileaflet, Hemodynamics, Platelet Activation

Keywords: Fluid-Structure Interaction, Heart Valve, Bileaflet, Hemodynamics, Platelet Activation Elsevier Editorial System(tm) for Journal of Biomechanics Manuscript Draft Manuscript Number: Title: Comparison of ATS Open Pivot Valve and St Jude Regent Valve using a CFD model based on fluid-structure

More information

The Science of Mixing Water Storage Tanks and The Tideflex Mixing System (TMS)

The Science of Mixing Water Storage Tanks and The Tideflex Mixing System (TMS) The Science of Mixing Water Storage Tanks and The Tideflex Mixing System (TMS) Presented by: Michael Duer, P.E., Chief Engineer, Red Valve Co. 2009 Red Valve Co. / Tideflex Technologies. All rights reserved.

More information

CFD as Non-Invasive Tool for Patient- Specific Treatment Support in Cardiology

CFD as Non-Invasive Tool for Patient- Specific Treatment Support in Cardiology CFD as Non-Invasive Tool for Patient- Specific Treatment Support in Cardiology Katharina Vellguth U N I V E R S I T Ä T S M E D I Z I N B E R L I N Introduction [1] 2 Introduction 7.200 Heart valve surgeries

More information

Simulation of Chemotractant Gradients in Microfluidic Channels to Study Cell Migration Mechanism in silico

Simulation of Chemotractant Gradients in Microfluidic Channels to Study Cell Migration Mechanism in silico Simulation of Chemotractant Gradients in Microfluidic Channels to Study Cell Migration Mechanism in silico P. Wallin 1*, E. Bernson 1, and J. Gold 1 1 Chalmers University of Technology, Applied Physics,

More information

Hemodynamics and Flow Characteristics of a New Dialysis Port

Hemodynamics and Flow Characteristics of a New Dialysis Port ASAIO Journal 2014 Hemodynamics and Flow Characteristics of a New Dialysis Port Jérémie Guignard,* Muluken Behran Terefe,* Dominik E. Uehlinger, and Justyna Czerwinska* Renal replacement therapy by hemodialysis

More information

A STUDY ON VASCULAR RECONSTRUCTION BY FLOW VISUALIZATION*

A STUDY ON VASCULAR RECONSTRUCTION BY FLOW VISUALIZATION* Nagoya J. med. Sci. 36: 91-100, 197-1 A STUDY ON VASCULAR RECONSTRUCTION BY FLOW VISUALIZATION* MASARU ESAKI 1st Departmetlt of Surgery, Nagoya University School of Medicine (Director: Prof. Yotaro lyomasa)

More information

Flow in re-stenosed artery after angioplasty

Flow in re-stenosed artery after angioplasty Data Management and Security 209 Flow in re-stenosed artery after angioplasty S. I. Bernad 1, A. Totorean 2, E. S. Bernad 3 & R. Susan-Resiga 2 1 Romanian Academy, Timisoara Branch, Romania 2 Politehnica

More information

EasyChair Preprint. Computational Fluid Dynamics Simulations of Flow in the Renal Arteries after Stent Graft Implantation

EasyChair Preprint. Computational Fluid Dynamics Simulations of Flow in the Renal Arteries after Stent Graft Implantation EasyChair Preprint 259 Computational Fluid Dynamics Simulations of Flow in the Renal Arteries after Stent Graft Implantation Tianyi Xia, Matthew Doyle, Thomas Forbes and Cristina H. Amon EasyChair preprints

More information

SPECIAL BOUNDARY CONDITIONS FOR MODELING DIAPHRAGM MOTION AND MITRAL VALVE

SPECIAL BOUNDARY CONDITIONS FOR MODELING DIAPHRAGM MOTION AND MITRAL VALVE SPECIAL BOUNDARY CONDITIONS FOR MODELING DIAPHRAGM MOTION AND MITRAL VALVE João Anderson Isler, joao.isler@usp.br Bruno Souza Carmo, bruno.carmo@usp.br Julio Romano Meneghini, jmeneg@usp.br NDF, Department

More information

Structure. Arteries. 21_01d 4/18/12. The Cardiovascular System: Blood Vessels and Hemodynamics. Dr Badri Paudel GMC

Structure. Arteries. 21_01d 4/18/12. The Cardiovascular System: Blood Vessels and Hemodynamics. Dr Badri Paudel GMC Goal of the Cardiovascular System: deliver blood to all parts of the body The Cardiovascular System: Blood Vessels and Hemodynamics Dr Badri Paudel GMC Does so by using different types of tubing, attached

More information

Physics of the Cardiovascular System

Physics of the Cardiovascular System Dentistry College Medical Physics Physics of the Cardiovascular System The cells of the body act like individual engines. In order for them to function they must have: - 1. Fuel from our food to supply

More information

CIE Biology GCSE. 9: Transport in animals. Notes.

CIE Biology GCSE. 9: Transport in animals. Notes. CIE Biology GCSE 9: Transport in animals Notes The circulatory system acts as the main transport system in animals. It is made up of blood vessels such as arteries, veins and capillaries, in which blood

More information

STUDY OF FLOW PHENOMENA IN AORTIC DISSECTION

STUDY OF FLOW PHENOMENA IN AORTIC DISSECTION STUDY OF FLOW PHENOMENA IN AORTIC DISSECTION Maurizio Bordone *, Eugenio Oñate *, Paula Rudenick, Bart Bijnens and Eduardo Soudah * * International Centre for Numerical Methods in Engineering (CIMNE) Campus

More information

CVS Hemodynamics. Faisal I. Mohammed, MD,PhD.

CVS Hemodynamics. Faisal I. Mohammed, MD,PhD. CVS Hemodynamics Faisal I. Mohammed, MD,PhD. Objectives point out the physical characteristics of the circulation: distribution of blood volume total cross sectional area velocity blood pressure List the

More information

Predicting Aneurysm Rupture: Computer Modeling of Geometry and Hemodynamics

Predicting Aneurysm Rupture: Computer Modeling of Geometry and Hemodynamics Predicting Aneurysm Rupture: Computer Modeling of Geometry and Hemodynamics Robert E. Harbaugh, MD, FACS, FAHA Director, Penn State Institute of the Neurosciences University Distinguished Professor & Chair,

More information

FOR many decades, cardiovascular disease has been one of

FOR many decades, cardiovascular disease has been one of Vol:1, No:2, 27 Effect of Non-Newtonian Behaviour of Blood on Pulsatile Flows in Stenotic Arteries Somkid Amornsamankul, Benchawan Wiwatanapataphee, Yong Hong Wu, Yongwimon Lenbury International Science

More information

March 12th, 2018, Orlando FL. The American College of Cardiology 67 th Annual Scientific Meeting

March 12th, 2018, Orlando FL. The American College of Cardiology 67 th Annual Scientific Meeting Cavitation Phenomenon Creating Bubbles and their Explosion in the Coronary Artery Causes Damage to the Endothelium and Starts the Atheroslerotic Process Thach N. Nguyen, Nhan MT Nguyen, Tri M. Pham, Quang

More information

Characterization of Disturbed Hemodynamics due to Stenosed Aortic Jets with a Lagrangian Coherent Structures Technique

Characterization of Disturbed Hemodynamics due to Stenosed Aortic Jets with a Lagrangian Coherent Structures Technique Journal of Applied Fluid Mechanics, Vol. 11, No. 2, pp. 375-384, 2018. Available online at www.jafmonline.net, ISSN 1735-3572, EISSN 1735-3645. DOI: 10.18869/acadpub.jafm.73.245.28185 Characterization

More information

Flow dynamics and wall shear-stress variation in a fusiform aneurysm

Flow dynamics and wall shear-stress variation in a fusiform aneurysm J Eng Math (2009) 64:379 390 DOI 10.1007/s10665-008-9261-z Flow dynamics and wall shear-stress variation in a fusiform aneurysm Gregory J. Sheard Received: 8 April 2008 / Accepted: 13 November 2008 / Published

More information

Modelling and simulation of a Thrombectomy Probe applied to the Middle Cerebral Artery by using the Bond Graph technique

Modelling and simulation of a Thrombectomy Probe applied to the Middle Cerebral Artery by using the Bond Graph technique Modelling and simulation of a Thrombectomy Probe applied to the Middle Cerebral Artery by using the Bond Graph technique G. Romero, I. Higuera, J. Félez Higher Technical School of Industrial Engineering

More information

The cardiovascular system is composed of a pump the heart and blood

The cardiovascular system is composed of a pump the heart and blood 5 E X E R C I S E Cardiovascular Dynamics O B J E C T I V E S 1. To understand the relationships among blood flow, pressure gradient, and resistance 2. To define resistance and describe the main factors

More information

Comparison of the Hemodynamic and Thrombogenic Performance of Two Bileaflet Mechanical Heart Valves Using a CFD/FSI Model

Comparison of the Hemodynamic and Thrombogenic Performance of Two Bileaflet Mechanical Heart Valves Using a CFD/FSI Model Kris Dumont Cardiovascular Mechanics and Biofluid Dynamics Research Unit, IBiTech, Ghent University, Belgium; Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794-8181 Jan

More information