Anas Kishawi. Zaid Emad. Nafez abu tarboush

Size: px
Start display at page:

Download "Anas Kishawi. Zaid Emad. Nafez abu tarboush"

Transcription

1 24 Anas Kishawi Zaid Emad Nafez abu tarboush

2 Hello everybody, this sheet is done according to Dr. Nafith s lecture so try to use his slides for the best understanding, and good luck. WAYS OF CHANGING THE ENZYME CONFORMATION 1) THE ALLOSTERIC BEHAVIOUR OF SOME ENZYMES: *Not all enzymes are simple in their behavior. *There are some allosteric enzymes which adopts sigmoidal plot such as: Aspartate carbamoyltransferase (also known as aspartatetranscarbamoylase or ATCase). *Those allosteric enzymes have a Vmax value and they have the same concept as Km, but we don t call it Km (where m refers to Michaelis), we call it (K0.5) as Michaelis-Menten model can`t explain the kinetics of these enzymes. *They re allosteric because materials can bind to certain subunits and affect the behavior of other subunits. *Those materials which are bound to certain subunits (regulatory subunits) in the enzyme affecting the activity of the catalytic subunit are called (allosteric modifiers)>> they modify the allosteric behavior of their protein>> they re either activators or inhibitors. *Those activators or inhibitors can be the substrate itself so we call them a Homotropic effectors or they can be a totally different material so we call them heterotropic effectors. *If u add an allosteric inhibitor to an allosteric enzyme, you re decreasing the velocity per unit of time. SO, in order to keep up with the same velocity, you need to increase the substrate concentration. As a result, the reaction plot will shift to the right and at the end we ll reach Vmax. (Look at the graph below) *Be aware that it s not an irreversible inhibitor, so there will be a shift to the right and the plot will become more sigmoidal and less hyperbolic. *If you add an allosteric activator, with the same substrate concentration, we ll get a higher velocity, so, the plot will shift to the left and it will become less sigmoidal and more hyperbolic. *You have to know that for allosteric enzymes the plot will NEVER be hyperbolic. *There must be a certain lag at the beginning. 1 P a g e

3 *A previous question regarding to the previous plot: You ve done this experiment under the NORMAL CONDITIONS and under ALLOSTERIC INHIBITION only, which line represents the normal behavior of the enzyme?? Ans: Notice that you ve done it under normal conditions and inhibition only THERE IS NO ACTIVATION(NO SHIFT TO THE LEFT ). So the answer will be the one to the left. *Allosteric enzymes, as in hemoglobin and myoglobin, can exist in two states: the T(tight) state and the R(Relaxed) state. *(T) state means that it has LOW affinity for the substrate, while the (R) state means it has HIGH affinity for the substrate. *Sometimes, the allosteric enzymes exist in the active and inactive state. *The inactive state can also exist between the (T & R) state, same as the active state. *Always the ACTIVE state favors the R state, while the INACTIVE state favors the T state. *If we have 100 molecules of the enzyme, and the environment is good for it to function, you ll see that 80 molecules are active, 20 are inactive. *If bad environement then 20 active and 80 inactive. *What determines if the enzyme is active or not is the ratio (T/R) which is called L ratio. *It represents how much do you have T state over the R state of each enzyme and this ratio is usually kept HIGH the inactive state is more than the active state(the DEFAULT SITUATION). *The inactive state should be more Once you need it, you ll activate it and it ll get back to its original situation which is the inactive state. *L ratio is increasing T state is becoming more and more>> The plot will shift to the right the shape becomes more sigmoidal. 2 P a g e

4 *Ex: ATCase catalyzes the conversion of aspartate amino acid through a long metabolic pathway into (UTP &CTP), Which means : it participates in DNA & RNA synthesis. *The behaviour of an uninhibited enzyme: *The final product is CTP CTP comes back and inhibits the enzyme in a feedback manner. *Once you have a high concentraition of CTP, it will come back and inhibit the enzyme. *So, under the high concentration of CTP, the plot will shift to the RIGHT. *ATP as a molecule is considered an allosteric activator for this enzyme. *ATP has a major role in our body, which is making nucleotides (adinine) used in DNA & RNA synthesis, but adinine alone can t make DNA &RNA as we need also CTP &UTP. So we need ATP to activate the pathway for their synthesis to make balance in nucleic acids components. * Once you have a high concentration of ATP, the plot will shift to the LEFT (less sigmoidal and more hyperbolic). ATPCase structure : ( look at the previous picture ) *It has (12) subunits: 6 are regulatory & 6 are catalytic. *Scientists have done an experiment when they detached the REGULATORY subunit from the CATALYTIC subunit & they added aspartate. *The result: the enzyme became hyperbolic as normal, which means, what causes the allosteric behavior of the enzymes are the REGULATORY subunits P a g e

5 2 ) THE REVERSIBLE COVELANT MODIFICATION : *It changes the conformation of the enzyme due to the binding of small molecules or atoms (like PHOSPHATE) covelantly, soon it will be broken down and changes the activity again. *phosphorylation: it changes the conformation and the activity of enzymes, because it s a BULKY molecule with TWO NEGATIVE CHARGES. *As a result, it ll make conformational changes by binding to the protiens in less than a second or it could take a long time. *This is why phosphorylation is common and linked to amplification of signals in the signaling process. *Notice that phosphorylation is REVERSIBLE, although it s covalently bonded to the protien. So it could dissociate without disrupting the structure of the enzyme. *Phosphorylation adds a PHOSPHATE GROUP to a HYDROXYL GROUP of an aminoacid (Ser, Thr, & Tyr). *The addition of this phosphate is catalyzed by an enzyme called (KINASE) and the removal of this phosphate is catalyzed by another enzyme called (PHOSPHATASE). *ENZYMES can be regulated by ANOTHER ENZYMES. For example, (Kinases & phosphatases) add or remove a phosphate group affecting the activity of another enzyme. **PHOSPHORYLATION DOESN T ALWAYS LEADS TO ACTIVATION** *IS IT LOGICAL THAT PHOSPHORYLATION LEADS TO INACTIVATION?! Human body metabolisms is contradictory to each other whether you are in a feed or fasting state (degarding or building up energy). So, when you are doing phosphorylation it will activate certain enzymes, on the other hand, it should inactivate another enzymes which go in the reverse metabolic pathways of these processes. Eg. Glycogen phosphorylase reaction: *Glycogen phosphorylase phosphorylates glycogen to break it down. *you add phosphate to the terminal glucose, then it breaks down, resulting in another free terminal glucose each time you add phosphate. *Glycogen phosphorylase exists between two states(active or inative). *The inactive state is called PHOSPHORYLAZE B. *The active state is called PHOSPHORYLAZE A. *Both the active and inactive forms exist between two states (T&R). *PHOSPHORYLAZE B (inactive)>> the equilibrium favours the (T STATE). *PHOSPHORYLAZE A (active)>> the equilibrium is favours the (R STATE). 4 P a g e

6 **The transition of phosphorylase B between the T and the R state is controlled by the energy charge of the muscle cell.** *Protein kinase A (PKA): *once the hormone binds to the receptor, the receptor will change its conformation affecting the G protien the G protien affects the Adenylcyclase which produces high concentration of (camp) which will affect Protien kinase A. *Protien kinase A is a TETROMER which is copmosed of two regulatory subunits and two catalytic subunits. *There are 4 binding sites for camp at the regulatory subunits * 1 camp is produced by Adenylcyclase it will bind to the regulatory subunits causing dissociation of the regulatory subunits from the catalytic subunits the catalytic subunits are active now beginning of phosphorylation of an enzyme called glycogen phosphorylase kinase which phosphorylates another enzyme called glycogen phosphorolase which has the ability to phosphorylate glycogen. THIS IS WHAT IS CALLED A PHOSPHORYLATION CASCADE. (FOR MORE EXPLANATION LOOK AT THE NEXT PICTURE ) 5 P a g e

7 *Other reversible covalent modifiers: *1)Adenylylation (addition of AMP) which is bulky and can change the activity of certain cytosolic enzymes. *2)Uridylylation (addition of UMP) which inactivates certain groups on the enzyme. *3)ADP-ribosylation: inactivates key cellular enzymes. (Ribose attached to ADP) *4)Methylation: masks a negative charge & adds hydrophobicity on carboxylate side chains of Aspartate & Glutamate and thus changing the enzyme activity. *5)Acetylation: masks positive charges when added to lysine residues. (Acetate group has a ve charge, so it s added to the +ve charges which are founded in protiens such as Lysine, and as a result, it masks it leading to changes in its activity). 3) Conformational changes due to protein-protein interactions: *Eg: G protien *G protien is a TRIMERIC protien (Alpha, Beta & Gamma). *Alpha, beta & Gamma have a fatty acid which is connected to the membrane to be close to the receptor, so, when a conformational change affects the receptor, it will affect the activity of the G protein. *G protien(alpha is monomer)(beta & Gamma are dimers) they have high affinity to each other, once the receptor changes its conformation, the alpha subunit will have a conformational change leading to decrease in its affinity towards Beta and Gamma subunits. *When the G protien is inactive, alpha subunit is attached to GDP molecule. The reason for calling them G protiens. (attached to guanine molecule) *Once the conformational changes occurs, the affinity towards GDP becomes less, increasing the affinity towards GTP. (It s a REPLACEMENT process). *When GTP is bound, alpha subunit will dissociate leading to another confomational change, and it will bind to Adenylcyclase enzyme mainly causing another conformational change to initiate the activity of camp. 6 P a g e

8 *Are all G protiens a multi-subunit protiens?! No, there are some monomeric G protiens. *Alpha subunit has enzymatic activity. It slowly hydrolyzes the GTP to GDP and thus increasing its affinity toward the Beta-Gamma dimer. *Monomeric G protiens work in the same manner as trimeric G protiens. *They have one subunit that works exactly as alpha subunit in the trimeric G protiens. *The mechanism is the same as the one mentioned above. *Eg: RAS protien. *** G protiens, whether monomeric or trimeric, don t always lead to activation (same concept as phosphorylation) so, Gα could be devided into stimulatory (S) or inhibitory (I) by their nature. 4) PROTEOLYTIC CLEAVAGE: (Zymogens) *The active site of the enzyme is blocked by a piece of the same enzyme, so to activate the enzyme you need to do proteolytic cleavage. **Usually cleavage happens irrevesibly at the N-terminus. *you cleave this piece of peptide, leading to the exposure of the active site. *We need the enzyme in the inactive form due to two reasons: 1)When you produce it at a place and you need it to be used in another place. *Eg. Digestive enzymes. They re made in pancreas in the inactive form and they re being transformed to the active form in the intestine. 7 P a g e

9 2) When u produce it but you don t want it to function right now. Eg. Pepsin which is found in stomach. *Once the food is ingested, HCL is sectreted leading to the activity of the pepsin. *Zymogens either start with (pro-) or end with (-gen) Eg: Trypsin, chymotrypsin, pepsin and Thrombin all were trypsinogen, chymotrypsinogen, pepsinogen, prothrombin. you have to be familiar with these names NON-SPECIFIC REGULATION: *All what we discussed before can be specific for a certain enzyme. But the following regulatory mechanisms always apply for all enzymes : A. Regulating Enzyme Synthesis: Regulated by increasing or decreasing the rate of gene transcription. Usually slow in humans (hours to days) Sometimes through stabilization of the messenger RNA. B. Regulating Protein Degradation: Can be degraded with a characteristic half-life within lysosomes. 1) EFFECTS OF TEMPERATURE: *Temperature affects all the enzymes at the same way regardless of their nature. *As long as u are increasing the temperature, the activity of the enzyme should increase, WHY? Ans: because you are increasing the KINETIC ENERGY, so you are increasing the probability of binding per the same unit of time.(velocity) *So as the temperature is being increased, the enzyme activity should increase and the rate should increase until it reaches a maximum between 40 and 50 degrees ( Denaturation temperature ). *Most of enzymes are protiens, so after reaching these high temperatures they will denaturate. *Some enzymes tolerate higher temperatures. *CLINICAL CASE: *In cardiac surgery, there is no problem when you remove the heart and connect the body with a machine that pumps blood. 8 P a g e

10 *The problem is that when you do a surgery on a MAJOR ARTERY, as it distributes the blood to all of the body, but you need to prevent the blood from being transported through it, so, HOW WILL THE BLOOD REACH THE TISSUES? Ans: The metabolisms of the human body are controlled by enzymes, so, when we lower the temperature, all the enzymatic activity will become less. The same as the concept of the freezer which stops the metabolism of microrganisms to preserve food. *Some organisms, when you remove them from the low temperautre, they live again, but it s too risky in the human body. *They put ice around the patient to lower the temperature decreasing the metabolic activity performing the operation more efficiently and at the end of the surgery they must heat the body again. 2)EFFECTS OF ph: *ph is different than temperature as it depends on the amount of +ve or ve amino acids which perform an important function to the enzyme and the amount of ionic and electrostatic interactions within the enzyme. *When you change the ph, you change the PROTONATION STATE, so if a change in ph occurs, the ionic or electrostatic interactions between amino acids will be broken resulting in denaturation of the enzyme. *If the enzyme has high number of those ionic interactions and the ph was changed, the effect in the activity of the enzyme will be remarkable, but if u have a very low number of those interactions, it won t be affected verry much. **This is why the effect of ph on enzymes is called ENZYME-DEPENDANT. *Most enzymes have their maximum activity at ph between (5-9) *Enzymes are affected in different ways: Some enzymes don t change their bahviour when changing the ph because they don t have ionic interactions to preserve the 3D structure of the protien. **MOST DENATURATIONS ARE IRREVERSIBLE** 9 P a g e

11 3)EXTREMOZYMES: *Extremozymes are enzymes which can tolerate risky temperatures or ph values. *They re found in certain bacteria which lives in a very hot fountains or in a very cold water. *Scientists extracted the enzymes of those bacteria and used them in cleaning materials, paper production..etc. *Xylanases can tolerate very high ph values. *Taq polymerase tolerate very high temperatures. *Note that: Thermophiles means heat lovers. Psychrophiles means cold lovers. *ABZYMES cutting edge technology: *The mechanism: *The substrate is injected to an animal, so this animal will make antibodies which are specific for this substrate the binding site of the antibody looks like an active site, so these antibodies have catalytic activities, then they extracted and used in industry. *Ribozymes: *RNA molecules that have a catalytic activity. *Examples: telomerase & RNase P. *The catalytic efficiency of catalytic RNAs is less than that of proteinaceous enzymes, but can greatly be enhanced by the presence of proteinaceous subunit. **Ribozymes are very weak. Their strength will increase when they bind to a protein, so enzymes are the best biological catalysts in the world. MA Thank you all. Love you all have a good time and sorry for any mistake NEVER GIVE UP!! TODAY IS HARD!! BUT TOMORROW WILL BE SUNSHINE!! 10 P a g e

Tala Saleh. Ahmad Attari. Mamoun Ahram

Tala Saleh. Ahmad Attari. Mamoun Ahram 23 Tala Saleh Ahmad Attari Minna Mushtaha Mamoun Ahram In the previous lecture, we discussed the mechanisms of regulating enzymes through inhibitors. Now, we will start this lecture by discussing regulation

More information

Enzymes Part III: regulation II. Dr. Mamoun Ahram Summer, 2017

Enzymes Part III: regulation II. Dr. Mamoun Ahram Summer, 2017 Enzymes Part III: regulation II Dr. Mamoun Ahram Summer, 2017 Advantage This is a major mechanism for rapid and transient regulation of enzyme activity. A most common mechanism is enzyme phosphorylation

More information

Chapter 10. Regulatory Strategy

Chapter 10. Regulatory Strategy Chapter 10 Regulatory Strategy Regulation of enzymatic activity: 1. Allosteric Control. Allosteric proteins have a regulatory site(s) and multiple functional sites Activity of proteins is regulated by

More information

REGULATION OF ENZYME ACTIVITY. Medical Biochemistry, Lecture 25

REGULATION OF ENZYME ACTIVITY. Medical Biochemistry, Lecture 25 REGULATION OF ENZYME ACTIVITY Medical Biochemistry, Lecture 25 Lecture 25, Outline General properties of enzyme regulation Regulation of enzyme concentrations Allosteric enzymes and feedback inhibition

More information

Margaret A. Daugherty Fall 2003

Margaret A. Daugherty Fall 2003 Enzymes & Kinetics IV Regulation and Allostery ENZYME-SUBSTRATE INTERACTIONS THE LOCK & KEY MODEL Margaret A. Daugherty Fall 2003 A perfect match between enzyme and substrate can explain enzyme specificity

More information

Regulation Through Conformational Changes

Regulation Through Conformational Changes Regulation Through Conformational Changes These regulatory mechanisms (conformational changes) include: 1. Allosteric activation and inhibition. 2. Phoshorylation or other covalent modification. 3. Protein-protein

More information

GENERAL THOUGHTS ON REGULATION. Lecture 16: Enzymes & Kinetics IV Regulation and Allostery REGULATION IS KEY TO VIABILITY

GENERAL THOUGHTS ON REGULATION. Lecture 16: Enzymes & Kinetics IV Regulation and Allostery REGULATION IS KEY TO VIABILITY GENERAL THOUGHTS ON REGULATION Lecture 16: Enzymes & Kinetics IV Regulation and Allostery Margaret A. Daugherty Fall 2004 1). Enzymes slow down as product accumulates 2). Availability of substrates determines

More information

Enzymes: The Catalysts of Life

Enzymes: The Catalysts of Life Chapter 6 Enzymes: The Catalysts of Life Lectures by Kathleen Fitzpatrick Simon Fraser University Activation Energy and the Metastable State Many thermodynamically feasible reactions in a cell that could

More information

The R-subunit would not the able to release the catalytic subunit, so this mutant of protein kinase A would be incapable of being activated.

The R-subunit would not the able to release the catalytic subunit, so this mutant of protein kinase A would be incapable of being activated. 1. Explain how one molecule of cyclic AMP can result in activation of thousands of molecules of glycogen phosphorylase. Technically it takes four molecules of cyclic AMP to fully activate one molecule

More information

Lecture 6: Allosteric regulation of enzymes

Lecture 6: Allosteric regulation of enzymes Chem*3560 Lecture 6: Allosteric regulation of enzymes Metabolic pathways do not run on a continuous basis, but are regulated according to need Catabolic pathways run if there is demand for ATP; for example

More information

Past Years Questions Chpater 6

Past Years Questions Chpater 6 Past Years Questions Chpater 6 **************************************** 1) Which of the following about enzymes is Incorrect? A) Most enzymes are proteins. B) Enzymes are biological catalysts. C) Enzymes

More information

Chapter 11: Enzyme Catalysis

Chapter 11: Enzyme Catalysis Chapter 11: Enzyme Catalysis Matching A) high B) deprotonated C) protonated D) least resistance E) motion F) rate-determining G) leaving group H) short peptides I) amino acid J) low K) coenzymes L) concerted

More information

Biochem sheet (5) done by: razan krishan corrected by: Shatha Khtoum DATE :4/10/2016

Biochem sheet (5) done by: razan krishan corrected by: Shatha Khtoum DATE :4/10/2016 Biochem sheet (5) done by: razan krishan corrected by: Shatha Khtoum DATE :4/10/2016 Note about the last lecture: you must know the classification of enzyme Sequentially. * We know that a substrate binds

More information

Tuesday, Sept. 14, Is an enzyme a rigid system?

Tuesday, Sept. 14, Is an enzyme a rigid system? Tuesday, Sept. 14, Is an enzyme a rigid system? Early researchers thought of enzymes as rigid entities, recognizing their substrates the way a lock would recognize a key. Today's researchers, however,

More information

Enzyme Regulation I. Dr. Kevin Ahern

Enzyme Regulation I. Dr. Kevin Ahern Enzyme Regulation I Dr. Kevin Ahern Enzyme Regulation Mechanisms Enzyme Regulation Mechanisms 1. Allosterism Enzyme Regulation Mechanisms 1. Allosterism 2. Covalent Modification Enzyme Regulation Mechanisms

More information

CHAPTER 10: REGULATORY STRATEGIES. Traffic signals control the flow of traffic

CHAPTER 10: REGULATORY STRATEGIES. Traffic signals control the flow of traffic CHAPTER 10: REGULATORY STRATEGIES Traffic signals control the flow of traffic INTRODUCTION CHAPTER 10 The activity of enzymes must often be regulated so that they function at the proper time and place.

More information

Amino acids. Side chain. -Carbon atom. Carboxyl group. Amino group

Amino acids. Side chain. -Carbon atom. Carboxyl group. Amino group PROTEINS Amino acids Side chain -Carbon atom Amino group Carboxyl group Amino acids Primary structure Amino acid monomers Peptide bond Peptide bond Amino group Carboxyl group Peptide bond N-terminal (

More information

Student number. University of Guelph Department of Chemistry and Biochemistry Structure and Function In Biochemistry

Student number. University of Guelph Department of Chemistry and Biochemistry Structure and Function In Biochemistry University of Guelph Department of Chemistry and Biochemistry 19356 Structure and Function In Biochemistry Midterm Test, March 3, 1998. Time allowed, 90 min. Answer questions 120 on the computer scoring

More information

FIRST BIOCHEMISTRY EXAM Tuesday 25/10/ MCQs. Location : 102, 105, 106, 301, 302

FIRST BIOCHEMISTRY EXAM Tuesday 25/10/ MCQs. Location : 102, 105, 106, 301, 302 FIRST BIOCHEMISTRY EXAM Tuesday 25/10/2016 10-11 40 MCQs. Location : 102, 105, 106, 301, 302 The Behavior of Proteins: Enzymes, Mechanisms, and Control General theory of enzyme action, by Leonor Michaelis

More information

Lecture 19: Review of regulation

Lecture 19: Review of regulation Chem*3560 Lecture 19: Review of regulation What is meant by cooperative allosteric regulation? Positive cooperativity - characteristic is the sigmoidal binding/activity curve T-state has weaker affinity,

More information

Signal Transduction Cascades

Signal Transduction Cascades Signal Transduction Cascades Contents of this page: Kinases & phosphatases Protein Kinase A (camp-dependent protein kinase) G-protein signal cascade Structure of G-proteins Small GTP-binding proteins,

More information

number Done by Corrected by Doctor Dr. Diala

number Done by Corrected by Doctor Dr. Diala number 30 Done by Dergam Al-Tarawneh Corrected by Zaid Emad Doctor Dr. Diala 1 After we ve finished talking about lipids metabolism pathways, today we will start talking about another pathway that takes

More information

Lecture 34. Carbohydrate Metabolism 2. Glycogen. Key Concepts. Biochemistry and regulation of glycogen degradation

Lecture 34. Carbohydrate Metabolism 2. Glycogen. Key Concepts. Biochemistry and regulation of glycogen degradation Lecture 34 Carbohydrate Metabolism 2 Glycogen Key Concepts Overview of Glycogen Metabolism Biochemistry and regulation of glycogen degradation Biochemistry and regulation of glycogen synthesis What mechanisms

More information

Biol220 Cell Signalling Cyclic AMP the classical secondary messenger

Biol220 Cell Signalling Cyclic AMP the classical secondary messenger Biol220 Cell Signalling Cyclic AMP the classical secondary messenger The classical secondary messenger model of intracellular signalling A cell surface receptor binds the signal molecule (the primary

More information

increase rate of reaction without being consumed reduce activation energy don t change free energy ( G) released or required

increase rate of reaction without being consumed reduce activation energy don t change free energy ( G) released or required Enzymes Enzymes Biological catalysts proteins (& RNA) facilitate chemical reactions increase rate of reaction without being consumed reduce activation energy don t change free energy ( G) released or required

More information

Enzymes: Regulation 2-3

Enzymes: Regulation 2-3 Enzymes: Regulation 2-3 Reversible covalent modification Association with regulatory proteins Irreversible covalent modification/proteolytic cleavage Reading: Berg, Tymoczko & Stryer, 6th ed., Chapter

More information

ENZYMOLOGY. Regulation of enzyme activity. P.C. Misra Professor Department of Biochemistry Lucknow University Lucknow

ENZYMOLOGY. Regulation of enzyme activity. P.C. Misra Professor Department of Biochemistry Lucknow University Lucknow ENZYMOLOGY Regulation of enzyme activity P.C. Misra Professor Department of Biochemistry Lucknow University Lucknow-226 007 5-May-2006 (Revised 17-Aug-2006) CONTENTS Introduction Regulation of activity

More information

Chapter 8.4, 8.5. Enzymes. AP Biology

Chapter 8.4, 8.5. Enzymes. AP Biology Chapter 8.4, 8.5 Enzymes Activation energy Breaking down large molecules requires an initial input of energy activation energy large biomolecules are stable must absorb energy to break bonds cellulose

More information

FUNDAMENTALS OF BIOCHEMISTRY, CELL BIOLOGY AND BIOPHYSICS Vol. I - Biochemistry of Vitamins, Hormones and Other Messenger Molecules - Chris Whiteley

FUNDAMENTALS OF BIOCHEMISTRY, CELL BIOLOGY AND BIOPHYSICS Vol. I - Biochemistry of Vitamins, Hormones and Other Messenger Molecules - Chris Whiteley BIOCHEMISTRY OF VITAMINS, HORMONES AND OTHER MESSENGER MOLECULES Chris Whiteley Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa Keywords: phosphorylation, phosphorylase,

More information

Lecture 15. Signal Transduction Pathways - Introduction

Lecture 15. Signal Transduction Pathways - Introduction Lecture 15 Signal Transduction Pathways - Introduction So far.. Regulation of mrna synthesis Regulation of rrna synthesis Regulation of trna & 5S rrna synthesis Regulation of gene expression by signals

More information

PAPER No. : 16, Bioorganic and biophysical chemistry MODULE No. : 22, Mechanism of enzyme catalyst reaction (I) Chymotrypsin

PAPER No. : 16, Bioorganic and biophysical chemistry MODULE No. : 22, Mechanism of enzyme catalyst reaction (I) Chymotrypsin Subject Paper No and Title 16 Bio-organic and Biophysical Module No and Title 22 Mechanism of Enzyme Catalyzed reactions I Module Tag CHE_P16_M22 Chymotrypsin TABLE OF CONTENTS 1. Learning outcomes 2.

More information

Enzymes. Enzyme. Aim: understanding the basic concepts of enzyme catalysis and enzyme kinetics

Enzymes. Enzyme. Aim: understanding the basic concepts of enzyme catalysis and enzyme kinetics Enzymes Substrate Enzyme Product Aim: understanding the basic concepts of enzyme catalysis and enzyme kinetics Enzymes are efficient Enzyme Reaction Uncatalysed (k uncat s -1 ) Catalysed (k cat s -1 )

More information

Enzymes. Enzymes : are protein catalysts that increase the rate of reactions without being changed in the overall process.

Enzymes. Enzymes : are protein catalysts that increase the rate of reactions without being changed in the overall process. Enzymes Enzymes Enzymes : are protein catalysts that increase the rate of reactions without being changed in the overall process. All reactions in the body are mediated by enzymes A + B E C A, B: substrate

More information

Enzymes. Ms. Paxson. From food webs to the life of a cell. Enzymes. Metabolism. Flow of energy through life. Examples. Examples

Enzymes. Ms. Paxson. From food webs to the life of a cell. Enzymes. Metabolism. Flow of energy through life. Examples. Examples From food webs to the life of a cell energy energy energy Flow of energy through life Life is built on chemical reactions sun transforming energy from one form to another solar energy ATP & organic molecules

More information

بسم هللا الرحمن الرحيم

بسم هللا الرحمن الرحيم بسم هللا الرحمن الرحيم Q1: the overall folding of a single protein subunit is called : -tertiary structure -primary structure -secondary structure -quaternary structure -all of the above Q2 : disulfide

More information

Student number. University of Guelph Department of Chemistry and Biochemistry Structure and Function In Biochemistry

Student number. University of Guelph Department of Chemistry and Biochemistry Structure and Function In Biochemistry University of Guelph Department of Chemistry and Biochemistry 19356 Structure and Function In Biochemistry Midterm Test, March 3, 1998. Time allowed, 90 min. Answer questions 120 on the computer scoring

More information

االمتحان النهائي لعام 1122

االمتحان النهائي لعام 1122 االمتحان النهائي لعام 1122 Amino Acids : 1- which of the following amino acid is unlikely to be found in an alpha-helix due to its cyclic structure : -phenylalanine -tryptophan -proline -lysine 2- : assuming

More information

Signal Transduction: G-Protein Coupled Receptors

Signal Transduction: G-Protein Coupled Receptors Signal Transduction: G-Protein Coupled Receptors Federle, M. (2017). Lectures 4-5: Signal Transduction parts 1&2: nuclear receptors and GPCRs. Lecture presented at PHAR 423 Lecture in UIC College of Pharmacy,

More information

AP Biology. Metabolism & Enzymes

AP Biology. Metabolism & Enzymes Metabolism & Enzymes From food webs to the life of a cell energy energy energy Flow of energy through life Life is built on chemical reactions transforming energy from one form to another organic molecules

More information

Previous Class. Today. Detection of enzymatic intermediates: Protein tyrosine phosphatase mechanism. Protein Kinase Catalytic Properties

Previous Class. Today. Detection of enzymatic intermediates: Protein tyrosine phosphatase mechanism. Protein Kinase Catalytic Properties Previous Class Detection of enzymatic intermediates: Protein tyrosine phosphatase mechanism Today Protein Kinase Catalytic Properties Protein Phosphorylation Phosphorylation: key protein modification

More information

Properties of Allosteric Enzymes

Properties of Allosteric Enzymes Properties of Allosteric Enzymes (1) An allosteric enzyme possesses at least spatially distinct binding sites on the protein molecules the active or the catalytic site and the regulator or the allosteric

More information

Figure 1 Original Advantages of biological reactions being catalyzed by enzymes:

Figure 1 Original Advantages of biological reactions being catalyzed by enzymes: Enzyme basic concepts, Enzyme Regulation I III Carmen Sato Bigbee, Ph.D. Objectives: 1) To understand the bases of enzyme catalysis and the mechanisms of enzyme regulation. 2) To understand the role of

More information

Lecture 18 (10/27/17) Lecture 18 (10/27/17)

Lecture 18 (10/27/17) Lecture 18 (10/27/17) Reading: Ch6; 225-232 Lecture 18 (10/27/17) Problems: Ch5 (text); 2 Ch6 (study guide-facts); 5, 6, 7, 14 NEXT Reading: Ch5; 164, 166-169 Problems: none Remember Monday at 6:30 in PHO-206 is the first MB

More information

Bio 366: Biological Chemistry II Final Exam, 100 points total

Bio 366: Biological Chemistry II Final Exam, 100 points total Bio 366: Biological Chemistry II Final Exam, 100 points total Please neatly print your name on the top of each page, and put the last four digits of your social security number and the sticker from your

More information

GRU3L1 Metabolism & Enzymes. AP Biology

GRU3L1 Metabolism & Enzymes. AP Biology GRU3L1 Metabolism & Enzymes From food webs to the life of a cell energy energy energy Flow of energy through life Life is built on chemical reactions u transforming energy from one form to organic molecules

More information

Chapter 6. Metabolism & Enzymes. AP Biology

Chapter 6. Metabolism & Enzymes. AP Biology Chapter 6. Metabolism & Enzymes Flow of energy through life Life is built on chemical reactions Chemical reactions of life Metabolism forming bonds between molecules dehydration synthesis anabolic reactions

More information

Lecture 2: Glycogen metabolism (Chapter 15)

Lecture 2: Glycogen metabolism (Chapter 15) Lecture 2: Glycogen metabolism (Chapter 15) First. Fig. 15.1 Review: Animals use glycogen for ENERGY STORAGE. Glycogen is a highly-branched polymer of glucose units: Basic structure is similar to that

More information

Metabolism & Enzymes. From food webs to the life of a cell. Flow of energy through life. Life is built on chemical reactions

Metabolism & Enzymes. From food webs to the life of a cell. Flow of energy through life. Life is built on chemical reactions Metabolism & Enzymes 2007-2008 From food webs to the life of a cell energy energy energy Flow of energy through life Life is built on chemical reactions transforming energy from one form to another organic

More information

Examples. Chapter 8. Metabolism & Enzymes. Flow of energy through life. Examples. Chemical reactions of life. Chemical reactions & energy

Examples. Chapter 8. Metabolism & Enzymes. Flow of energy through life. Examples. Chemical reactions of life. Chemical reactions & energy WH Examples dehydration synthesis Chapter 8 Metabolism & Enzymes + H 2 O hydrolysis + H 2 O Flow of energy through life Life is built on chemical reactions Examples dehydration synthesis hydrolysis 2005-2006

More information

Biological Sciences 4087 Exam I 9/20/11

Biological Sciences 4087 Exam I 9/20/11 Name: Biological Sciences 4087 Exam I 9/20/11 Total: 100 points Be sure to include units where appropriate. Show all calculations. There are 5 pages and 11 questions. 1.(20pts)A. If ph = 4.6, [H + ] =

More information

Six Types of Enzyme Catalysts

Six Types of Enzyme Catalysts Six Types of Enzyme Catalysts Although a huge number of reactions occur in living systems, these reactions fall into only half a dozen types. The reactions are: 1. Oxidation and reduction. Enzymes that

More information

CHEM121. Unit 6: Enzymes. Lecture 10. At the end of the lecture, students should be able to:

CHEM121. Unit 6: Enzymes. Lecture 10. At the end of the lecture, students should be able to: CHEM121 Unit 6: Enzymes Lecture 10 At the end of the lecture, students should be able to: Define the term enzyme Name and classify enzymes according to the: type of reaction catalyzed type of specificity

More information

BIOCHEMISTRY I HOMEWORK III DUE 10/15/03 66 points total + 2 bonus points = 68 points possible Swiss-PDB Viewer Exercise Attached

BIOCHEMISTRY I HOMEWORK III DUE 10/15/03 66 points total + 2 bonus points = 68 points possible Swiss-PDB Viewer Exercise Attached BIOCHEMISTRY I HOMEWORK III DUE 10/15/03 66 points total + 2 bonus points = 68 points possible Swiss-PDB Viewer Exercise Attached 1). 20 points total T or F (2 points each; if false, briefly state why

More information

Theme 1 CONTROL OF ENZYME ACTIVITY

Theme 1 CONTROL OF ENZYME ACTIVITY Theme 1 CONTROL OF ENZYME ACTIVITY Included in this section: Enzyme Activity: Control Notes in study material as well as slides used in class. Please use the study material provide as well as Matthews

More information

Chemical Mechanism of Enzymes

Chemical Mechanism of Enzymes Chemical Mechanism of Enzymes Enzyme Engineering 5.2 Definition of the mechanism 1. The sequence from substrate(s) to product(s) : Reaction steps 2. The rates at which the complex are interconverted 3.

More information

Chapter 6. Flow of energy through life. Chemical reactions of life. Examples. Examples. Chemical reactions & energy 9/7/2012. Enzymes & Metabolism

Chapter 6. Flow of energy through life. Chemical reactions of life. Examples. Examples. Chemical reactions & energy 9/7/2012. Enzymes & Metabolism Flow of energy through life Chapter 6 Life is built on chemical reactions Enzymes & Metabolism Chemical reactions of life Examples Metabolism Forming bonds between molecules Dehydration synthesis Anabolic

More information

Effects of Second Messengers

Effects of Second Messengers Effects of Second Messengers Inositol trisphosphate Diacylglycerol Opens Calcium Channels Binding to IP 3 -gated Channel Cooperative binding Activates Protein Kinase C is required Phosphorylation of many

More information

BIOCHEMISTRY #12 BY: AMMAR AL-HABAHBEH فيصل الخطيب. October 11, 2012

BIOCHEMISTRY #12 BY: AMMAR AL-HABAHBEH فيصل الخطيب. October 11, 2012 BIOCHEMISTRY #12 د. فيصل الخطيب October 11, 2012 BY: AMMAR AL-HABAHBEH The Beginning Degradation and synthesis does not occur in a single step but in several steps where sequence of steps converts starting

More information

Zaid sarhan. Osama Al-Ghafri ... Dr.nayef karadsheh

Zaid sarhan. Osama Al-Ghafri ... Dr.nayef karadsheh 16 Zaid sarhan Osama Al-Ghafri... Dr.nayef karadsheh ALL THE FIGUERS IN THIS SHEET ARE VERY IMPORTANT AND USEFUL, PLEASE DON T SKIP THEM. Glycogen phosphorylase kinase = GPK // glycogen phosphorylase=gp

More information

Cofactors and coenzymes. Reversible, irreversible, competitive, and noncompetitive inhibitors. Allosteric enzymes. Feedback inhibition.

Cofactors and coenzymes. Reversible, irreversible, competitive, and noncompetitive inhibitors. Allosteric enzymes. Feedback inhibition. Enzyme regulation Cofactors and coenzymes. Reversible, irreversible, competitive, and noncompetitive inhibitors. Allosteric enzymes. Feedback inhibition. Introduction The genome of a typical organism,

More information

Cell Signaling part 2

Cell Signaling part 2 15 Cell Signaling part 2 Functions of Cell Surface Receptors Other cell surface receptors are directly linked to intracellular enzymes. The largest family of these is the receptor protein tyrosine kinases,

More information

Chapter 23 Enzymes 1

Chapter 23 Enzymes 1 Chapter 23 Enzymes 1 Enzymes Ribbon diagram of cytochrome c oxidase, the enzyme that directly uses oxygen during respiration. 2 Enzyme Catalysis Enzyme: A biological catalyst. With the exception of some

More information

Vets 111/Biov 111 Cell Signalling-2. Secondary messengers the cyclic AMP intracellular signalling system

Vets 111/Biov 111 Cell Signalling-2. Secondary messengers the cyclic AMP intracellular signalling system Vets 111/Biov 111 Cell Signalling-2 Secondary messengers the cyclic AMP intracellular signalling system The classical secondary messenger model of intracellular signalling A cell surface receptor binds

More information

Concept 8.3: ATP powers cellular work by coupling exergonic reactions to endergonic reactions

Concept 8.3: ATP powers cellular work by coupling exergonic reactions to endergonic reactions Concept 8.3: ATP powers cellular work by coupling exergonic reactions to endergonic reactions A cell does three main kinds of work: Chemical Transport Mechanical To do work, cells manage energy resources

More information

2018 Biochemistry 110 California Institute of Technology Lecture 11: Enzyme Regulatory Strategies

2018 Biochemistry 110 California Institute of Technology Lecture 11: Enzyme Regulatory Strategies 2018 Biochemistry 110 California Institute of Technology Lecture 11: Enzyme Regulatory Strategies 1. Aspartate Transcarbamoylase (ATCase) 2. Zymogen and Digestive Enzyme Regulation 3. Blood Clotting and

More information

Sarah Jaar Marah Al-Darawsheh

Sarah Jaar Marah Al-Darawsheh 22 Sarah Jaar Marah Al-Darawsheh Faisal Mohammad Receptors can be membrane proteins (for water-soluble hormones/ligands) or intracellular (found in the cytosol or nucleus and bind to DNA, for lipid-soluble

More information

Receptor mediated Signal Transduction

Receptor mediated Signal Transduction Receptor mediated Signal Transduction G-protein-linked receptors adenylyl cyclase camp PKA Organization of receptor protein-tyrosine kinases From G.M. Cooper, The Cell. A molecular approach, 2004, third

More information

ANSC 689 PHYSIOLOGICAL CHEMISTRY OF LIVESTOCK SPECIDS. Enzyme Kinetics and Control Reactions

ANSC 689 PHYSIOLOGICAL CHEMISTRY OF LIVESTOCK SPECIDS. Enzyme Kinetics and Control Reactions Handout Enzyme Kinetics and Control Reactions ANSC 689 PHYSIOLOGICAL CHEMISTRY OF LIVESTOCK SPECIDS Enzyme Kinetics and Control Reactions I. Kinetics A. Reaction rates 1. First order (reaction rate is

More information

A cell s metabolism is all the organism s chemical reactions. Metabolism manages the material and energy resources of the cell.

A cell s metabolism is all the organism s chemical reactions. Metabolism manages the material and energy resources of the cell. Enzymes Metabolism Metabolism A cell s metabolism is all the organism s chemical reactions. Metabolism manages the material and energy resources of the cell. Energy is the capacity to do work. Metabolism

More information

AP Biology Summer Assignment Chapter 3 Quiz

AP Biology Summer Assignment Chapter 3 Quiz AP Biology Summer Assignment Chapter 3 Quiz 2016-17 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. All of the following are found in a DNA nucleotide

More information

PPP_glycogen_metabolism Part 2 الفريق الطبي األكاديمي. Done By: - Shady Soghayr

PPP_glycogen_metabolism Part 2 الفريق الطبي األكاديمي. Done By: - Shady Soghayr PPP_glycogen_metabolism Part 2 الفريق الطبي األكاديمي Done By: - Shady Soghayr لكية الطب البرشي البلقاء التطبيقية / املركز 6166 6102/ **How we get glucose-1-phosphate from glucose (source of glucose-1-

More information

Quiz #1. BIO200 January 11, point each

Quiz #1. BIO200 January 11, point each Quiz #1 January 11, 2013 1. The primary amine group of an amino acid has a pka of 10 and the carboxylic acid group of an amino acid has a pka of 2. The side chain of the amino acid alanine is a methyl

More information

Mechanisms of Enzymes

Mechanisms of Enzymes Mechanisms of Enzymes Presented by Dr. Mohammad Saadeh The requirements for the Pharmaceutical Biochemistry I Philadelphia University Faculty of pharmacy How enzymes work * Chemical reactions have an energy

More information

Ahmad Ulnar. Faisal Nimri ... Dr.Faisal

Ahmad Ulnar. Faisal Nimri ... Dr.Faisal 24 Ahmad Ulnar Faisal Nimri... Dr.Faisal Fatty Acid Synthesis - Occurs mainly in the Liver (to store excess carbohydrates as triacylglycerols(fat)) and in lactating mammary glands (for the production of

More information

Exam 3 Fall 2015 Dr. Stone 8:00. V max = k cat x E t. ΔG = -RT lnk eq K m + [S]

Exam 3 Fall 2015 Dr. Stone 8:00. V max = k cat x E t. ΔG = -RT lnk eq K m + [S] Exam 3 Fall 2015 Dr. Stone 8:00 Name There are 106 possible points (6 bonus points) on this exam. There are 8 pages. v o = V max x [S] k cat = kt e - ΔG /RT V max = k cat x E t ΔG = -RT lnk eq K m + [S]

More information

Exam 2 Review Problems DO NOT BRING TO EXAM

Exam 2 Review Problems DO NOT BRING TO EXAM This packet contains problems from old exams, your book, supplemental materials, and even stuff from a TA from many years past. Use this as practice only. This is not, by any means, a definitive indication

More information

Lecture 9: Cell Communication I

Lecture 9: Cell Communication I 02.05.10 Lecture 9: Cell Communication I Multicellular organisms need to coordinate cellular functions in different tissues Cell-to-cell communication is also used by single celled organisms to signal

More information

6/15/2015. Biological Molecules. Outline. Organic Compounds. Organic Compounds - definition Functional Groups Biological Molecules. What is organic?

6/15/2015. Biological Molecules. Outline. Organic Compounds. Organic Compounds - definition Functional Groups Biological Molecules. What is organic? Biological Molecules Biology 105 Lecture 3 Reading: Chapter 2 (pages 29 39) Outline Organic Compounds - definition Functional Groups Biological Molecules Carbohydrates Lipids Amino Acids and Proteins Nucleotides

More information

it s a specific enzyme, the mechanism is that the intermediate which is the thioester ( aldehyde, substrate ) is covalently bound to the enzyme.

it s a specific enzyme, the mechanism is that the intermediate which is the thioester ( aldehyde, substrate ) is covalently bound to the enzyme. Oxidation of glyceraldehyde 3 phosphate : glyceraldehyde 3 phosphate on carbon1 it s an aldehyde group, which is oxidized and converted to carboxylic group ( aldehyde - becomes carboxylic acid ) this is

More information

Chapter 11. Cell Communication. Signal Transduction Pathways

Chapter 11. Cell Communication. Signal Transduction Pathways Chapter 11 Cell Communication Signal Transduction Pathways Signal-Transduction Pathway Signal on a cell s surface is converted into a specific cellular response Local signaling (short distance) - Paracrine

More information

Chapter 15. Enzyme Regulation. Activity? Part 1 Factors that influence enzymatic activity

Chapter 15. Enzyme Regulation. Activity? Part 1 Factors that influence enzymatic activity Chapter 15 Enzyme Regulation http://lms.ls.ntou.edu.tw/course/106ls tw/course/106 hanjia@mail.ntou.edu.tw Reginald H. Garrett Charles M. Grisham Essential Questions Before this class, ask your self the

More information

number Done by Corrected by Doctor Nayef Karadsheh

number Done by Corrected by Doctor Nayef Karadsheh number 15 Done by BaraaAyed Corrected by Mamoon Alqtamin Doctor Nayef Karadsheh 1 P a g e Regulation of glycogen synthesis and degradation Regulation of glycogen synthesis and degradation involves two

More information

number Done by Corrected by Doctor Nayef Karadsheh

number Done by Corrected by Doctor Nayef Karadsheh number 13 Done by Asma Karameh Corrected by Saad hayek Doctor Nayef Karadsheh Gluconeogenesis This lecture covers gluconeogenesis with aspects of: 1) Introduction to glucose distribution through tissues.

More information

Propagation of the Signal

Propagation of the Signal OpenStax-CNX module: m44452 1 Propagation of the Signal OpenStax College This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 By the end of this section,

More information

Highlights Pentose Phosphate Pathway

Highlights Pentose Phosphate Pathway Highlights Pentose Phosphate Pathway 1. The pentose phosphate pathway (PPP) is an interchange of metabolic pathways. 2. It is important to cells as a) an important source of NADPH, b) an important source

More information

3) How many different amino acids are proteogenic in eukaryotic cells? A) 12 B) 20 C) 25 D) 30 E) None of the above

3) How many different amino acids are proteogenic in eukaryotic cells? A) 12 B) 20 C) 25 D) 30 E) None of the above Suggesting questions for Biochemistry 1 and 2 and clinical biochemistry 1) Henderson Hasselbalch Equation shows: A) The relationship between ph and the concentration of an acid and its conjugate base B)

More information

GPCR. 2. Briefly describe the steps in PKA activation by a GPCR signal. You are encouraged to include a sketch.

GPCR. 2. Briefly describe the steps in PKA activation by a GPCR signal. You are encouraged to include a sketch. Biochemical Signaling Many of the most critical biochemical signaling pathways originate with an extracellular signal being recognized by a GPCR or a RTK. In this activity, we will explore these two signaling

More information

G-Protein Signaling. Introduction to intracellular signaling. Dr. SARRAY Sameh, Ph.D

G-Protein Signaling. Introduction to intracellular signaling. Dr. SARRAY Sameh, Ph.D G-Protein Signaling Introduction to intracellular signaling Dr. SARRAY Sameh, Ph.D Cell signaling Cells communicate via extracellular signaling molecules (Hormones, growth factors and neurotransmitters

More information

6.5 Enzymes. Enzyme Active Site and Substrate Specificity

6.5 Enzymes. Enzyme Active Site and Substrate Specificity 180 Chapter 6 Metabolism 6.5 Enzymes By the end of this section, you will be able to: Describe the role of enzymes in metabolic pathways Explain how enzymes function as molecular catalysts Discuss enzyme

More information

The MOLECULES of LIFE

The MOLECULES of LIFE The MOLECULES of LIFE Physical and Chemical Principles Solutions Manual Prepared by James Fraser and Samuel Leachman Chapter 16 Principles of Enzyme Catalysis Problems True/False and Multiple Choice 1.

More information

Proteins are sometimes only produced in one cell type or cell compartment (brain has 15,000 expressed proteins, gut has 2,000).

Proteins are sometimes only produced in one cell type or cell compartment (brain has 15,000 expressed proteins, gut has 2,000). Lecture 2: Principles of Protein Structure: Amino Acids Why study proteins? Proteins underpin every aspect of biological activity and therefore are targets for drug design and medicinal therapy, and in

More information

Cell Biology Lecture 9 Notes Basic Principles of cell signaling and GPCR system

Cell Biology Lecture 9 Notes Basic Principles of cell signaling and GPCR system Cell Biology Lecture 9 Notes Basic Principles of cell signaling and GPCR system Basic Elements of cell signaling: Signal or signaling molecule (ligand, first messenger) o Small molecules (epinephrine,

More information

UNIVERSITY OF GUELPH CHEM 4540 ENZYMOLOGY Winter 2005 Quiz #2: March 24, 2005, 11:30 12:50 Instructor: Prof R. Merrill ANSWERS

UNIVERSITY OF GUELPH CHEM 4540 ENZYMOLOGY Winter 2005 Quiz #2: March 24, 2005, 11:30 12:50 Instructor: Prof R. Merrill ANSWERS UNIVERSITY F GUELPH CHEM 4540 ENZYMLGY Winter 2005 Quiz #2: March 24, 2005, 11:30 12:50 Instructor: Prof R. Merrill ANSWERS Instructions: Time allowed = 80 minutes. Total marks = 30. This quiz represents

More information

Cellular Signaling Pathways. Signaling Overview

Cellular Signaling Pathways. Signaling Overview Cellular Signaling Pathways Signaling Overview Signaling steps Synthesis and release of signaling molecules (ligands) by the signaling cell. Transport of the signal to the target cell Detection of the

More information

ENZYMES: CLASSIFICATION, STRUCTURE

ENZYMES: CLASSIFICATION, STRUCTURE ENZYMES: CLASSIFICATION, STRUCTURE Enzymes - catalysts of biological reactions Accelerate reactions by a millions fold Common features for enzymes and inorganic catalysts: 1. Catalyze only thermodynamically

More information

Moh Tarek. Razi Kittaneh. Jaqen H ghar

Moh Tarek. Razi Kittaneh. Jaqen H ghar 14 Moh Tarek Razi Kittaneh Jaqen H ghar Naif Karadsheh Gluconeogenesis is making glucose from non-carbohydrates precursors. Although Gluconeogenesis looks like Glycolysis in many steps, it is not the simple

More information

2402 : Anatomy/Physiology

2402 : Anatomy/Physiology Dr. Chris Doumen Lecture 2 2402 : Anatomy/Physiology The Endocrine System G proteins and Adenylate Cyclase /camp TextBook Readings Pages 405 and 599 through 603. Make use of the figures in your textbook

More information

Regulation. 1. Short term control 8-1

Regulation. 1. Short term control 8-1 Regulation Several aspects of regulation have been alluded to or described in detail as we have progressed through the various sections of the course. These include: (a) compartmentation: This was not

More information

The elements of G protein-coupled receptor systems

The elements of G protein-coupled receptor systems The elements of G protein-coupled receptor systems Prostaglandines Sphingosine 1-phosphate a receptor that contains 7 membrane-spanning domains a coupled trimeric G protein which functions as a switch

More information