Functional outcomes following surgical repair of wrist extensor tendons

Similar documents
10/15/2014. Wrist. Clarification of Terms. Clarification of Terms cont

Elbow Muscle Power Deficits

Clinical examination of the wrist, thumb and hand

Humerus. Ulna. Radius. Carpals

HAND SURGERY- GUIDELINES for POST-OP TREATMENT and REFERRAL to HAND THERAPY

Tendon Transfers Around Wrist in Cases of Obstetric Brachial Plexus Injury

EVALUATION AND MEASUREMENTS. I. Devreux

Main Menu. Wrist and Hand Joints click here. The Power is in Your Hands

Treatment of the Child with Cerebral Palsy Post Surgical Rehabilitation

Classification of Established Volkmann s Ischemic Contracture and the Program for Its Treatment

Kinesiology of The Wrist and Hand. Cuneyt Mirzanli Istanbul Gelisim University

Management of upper limb in cerebral palsy. Dr Sameer Desai Pediatric Orthopedic Surgeon KEM, Ruby Hall, Sahyadri Hospital, Unique Childrens Hospital

ARM Brachium Musculature

A Clinicians Guide To The Active Movement Scale (AMS) An Evaluative Tool For Infants With Obstetrical Brachial Plexus Palsy

Phase 1 Maximum Protection 0-4 Weeks

Management of Hand Palsies in Isolated C7 to T1 or C8, T1 Root Avulsions

Nerves of Upper limb. Dr. Brijendra Singh Professor & Head Department of Anatomy AIIMS Rishikesh

Nerve Injury. 1) Upper Lesions of the Brachial Plexus called Erb- Duchene Palsy or syndrome.

Peripheral Nerve Injuries of the Upper Limb.

Intrinsic muscles palsies of the hand Management of Thumb Opposition with BURKHALTER s Procedure

Human Anatomy Biology 351

Forearm and Wrist Regions Neumann Chapter 7

Lecture 9: Forearm bones and muscles

Biceps Brachii. Muscles of the Arm and Hand 4/4/2017 MR. S. KELLY

Goniometry. Wrist Flexion: Pt seated with forearm resting on table (use olecranon process & midline of ulna as reference for stationary arm)

Department of Rehabilitation Medicine, Gyeongsang National University Hospital, 1

Measurement of welder's movement for welding skill analysis

CRITICALLY APPRAISED PAPER (CAP)

PHYSIOTHERAPY PROTOCOLS FOR THE MANAGEMENT OF DIFFERENT TYPES OF BRACHIAL PLEXUS INJURIES

MCQWeek2. All arise from the common flexor origin. The posterior aspect of the medial epicondyle is the common flexor origin.

Levels of the anatomical cuts of the upper extremity RADIUS AND ULNA right

The Muscular System. Chapter 10 Part C. PowerPoint Lecture Slides prepared by Karen Dunbar Kareiva Ivy Tech Community College

WEEKEND 2 Elbow. Elbow Range of Motion Assessment

Common Elbow Problems

PTA Applied Kinesiology 2

OpenSim Tutorial #2 Simulation and Analysis of a Tendon Transfer Surgery

Tendon transfers for ulnar nerve palsy

Manual Muscle Testing. Yasser Moh. Aneis, PhD, MSc., PT. Lecturer of Physical Therapy Basic Sciences Department

MULTIMEDIA ARTICLES. Mary C. Burns & Brian Derby & Michael W. Neumeister

1-Apley scratch test.

region of the upper limb between the shoulder and the elbow Superiorly communicates with the axilla.

The hand is full with sweat glands, activated at times of stress. In Slide #2 there was a mistake where the doctor mentioned lateral septum twice.

The Elbow and Radioulnar Joints Kinesiology. Dr Cüneyt Mirzanli Istanbul Gelisim University

Key Points for Success:

MUSCLES OF THE ELBOW REGION

Ligaments of Elbow hinge: sagittal plane so need lateral and medial ligaments

8/25/2014. Radiocarpal Joint. Midcarpal Joint. Osteology of the Wrist

SHOULDER PAIN. A Real Pain in the Neck. Michael Wolk, MD Northeastern Rehabilitation Associates October 31, 2017

GENERAL EXERCISES THUMB, WRIST, HAND BMW MANUFACTURING CO. PZ-AM-G-US I July 2017

Therapy Manual DO NOT PRINT

STRUCTURAL BASIS OF MEDICAL PRACTICE EXAMINATION 5 October 6, 2006

The Elbow and the cubital fossa. Prof Oluwadiya Kehinde

Tendon Transfers. Variability muscle 2x stronger than another Greatest force at resting length. Drag:

MLT Muscle(s) Patient Position Therapist position Stabilization Limb Position Picture Put biceps on slack by bending elbow.

A Dynalllic Splint for U se After Total Wrist Arthroplasty

Maximal isokinetic and isometric muscle strength of major muscle groups related to age, body weight, height, and sex in 178 healthy subjects

Restoration of Reaching and Grasping Functions in Hemiplegic Patients with Severe Arm Paralysis

Lab Activity 11: Group II

10/10/2014. Structure and Function of the Hand. The Hand. Osteology of the Hand

divided by the bones ( redius and ulna ) and interosseous membrane into :

Introduction to Ultrasound Examination of the Hand and upper

forearm posterior compartment

1/13/2013. Anatomy Guy Dissection Sheet Extensor Forearm and Hand. Eastern Virginia Medical School

Anatomic Landmarks for the Radial Tunnel

Power grip is an isometric and static condition defined

Adult Brachial Plexus Injuries: Introduction and the Role of Surgery

Muscles of the hand Prof. Abdulameer Al-Nuaimi

The Forearm 2. Extensor & lateral Compartments of the Forearm

Ton A. R. Schreuders, 1 Marij E. Roebroeck, 1 Jean-Bart Jaquet, 2 Steven E. R. Hovius 2 and Henk J. Stam 1 INTRODUCTION

Conservative management of palmer mid-carpal instability

Functional Anatomy of the Elbow

Angular Measurements with BIOPAC Goniometers & Torsiometers

Inspection. Physical Examination of the Elbow. Anterior Elbow 2/14/2017. Inspection. Carrying angle. Lateral dimple. Physical Exam of the Elbow

TASC Manual and Scoresheet Printing Suggestions

Tennis Elbow Assessment & Treatment Workshop

Instructions for administering the Rotterdam Intrinsic Hand Myometer (RIHM) test July 2008

Kay et al: The effect of passive mobilisation following fractures involving the distal radius: a randomised study

8 Recovering From HAND FRACTURE SURGERY

Module 7 - The Muscular System Muscles of the Arm and Trunk

Inhibition Associated with somatic dysfunctions, no matter which components are impaired Implies consideration of all components in treatment planning

Structure and Function of the Hand

Development and application of a hand force measurement system

Reversing PIP Joint Contractures:

A Comparative Study on Tendon Transfer Surgery in Patients with Radial Nerve Palsy

Extensor Tendon Repair Zones II, III, IV

Integra. Modular Radial Head System SURGICAL TECHNIQUE

Hand Replantation. Presented by: Vicki Hofmann. BSc.OT (UCT) Case Study Written by: Wendy Young

CRITICALLY APPRAISED PAPER (CAP)

Forces women with arthritis use to access or operate containers free-handed and when using wrist orthoses

INTRODUCTION SUBJECTS AND METHODS

Wrist & Hand Assessment and General View

Interesting Case Series. Extensor Carpi Radialis Longus and Brevis Rupture in a Boxer

Chapter 20: Muscular Fitness and Assessment

Tendon transfer for triple nerve paralysis of the hand in leprosy

Common Tendon Disorders of the Upper Extremity. Mark Tait MD

Drop hand treated with modified jones transfer

15 17 November 2018, Dubai, UAE. Event Overview

NATIONAL ASSESSMENT MANUAL. For assessment of hand function after nerve repair

Transcription:

British Journal of Plastic Surgery (2003), 56, 120 124 q 2003 The British Association of Plastic Surgeons. Published by Elsevier Science Ltd. All rights reserved. doi:10.1016/s0007-1226(03)00040-7 Functional outcomes following surgical repair of wrist extensor tendons I.C. Josty, A.H.F. MacQuillan and M.S.C. Murison Welsh Centre for Burns and Plastic Surgery, Morriston Hospital, Swansea SA6 6NL, UK SUMMARY. The long term results following the repair of open injuries to extensors carpi radialis longus and brevis and extensor carpi ulnaris have not previously been reported. A retrospective case note review was performed and patients were called back for assessment following surgical repair. Grip strength and pinch strength were reduced by 9.9% ðp ¼ 0:017Þ and 11.5% ðp ¼ 0:049Þ: Wrist movement was also reduced. This demonstrates that the division of these tendons should not be regarded as trivial as they may have long-term adverse effects on wrist function. Information gained from this study may be beneficial in patient education at the time of injury and may provide useful information when preparing medico legal reports. q 2003 The British Association of Plastic Surgeons. Published by Elsevier Science Ltd. All rights reserved. Keywords: wrist, extensor, tendon, grip strength, pinch strength, functional outcome. Introduction Much has been written about repair techniques 1 and functional outcomes in extensor tendon surgery of the digits. 2 4 It is recognised that extensor tendon injuries have often been underestimated, sometimes with an adverse effect on functional outcome. No study to date has looked at the functional outcome following repair of traumatically divided wrist extensor tendons extensor carpi radialis longus (ECRL), extensor carpi radialis brevis (ECRB) and extensor carpi ulnaris (ECU). The purpose of this study was to identify epidemiological factors, the surgical repair techniques, splintage and hand therapy, time off work and functional outcomes following injuries to ECRL, ECRB and ECU. With this information it is hoped that we may be able to inform patients more comprehensively about their likely outcome when presenting with such injuries. Information so gained may be used in future audit. Materials and methods Subjects were identified from a computer database of all patients who had undergone extensor tendon repair over a 4-year period in our unit. Patient inclusion criteria were those with division of ECRL, and/or ECRB and/or ECU requiring surgical repair, unilateral injury, and patient co-operation with the study. Exclusion criteria were associated open joint or bony injury, flexor tendon injury, digital extensor tendon injury, bilateral injury, This work was presented at the Winter Meeting of the British Association of Plastic Surgeons, 2001. previous hand injury and degenerative or inflammatory hand conditions, presence of painful neuroma, and patient unwillingness to participate. All patients had already been discharged from follow up at the time of the study and reached a plateau in their rehabilitation. Twenty subjects (mean age 32, range 17 59) eligible for inclusion were identified from 1551 patients who had undergone upper limb extensor tendon repairs in the unit. Epidemiological data and surgical information were obtained by case note review. Functional outcome was assessed by inviting patients to attend a special review clinic. Patients who were willing to participate but who did not attend this clinic were visited and assessed in their own homes. The mean assessment time following repair was 41 months (range 19 64). Functional testing Function was assessed by grip and pinch strength measurement and by wrist goniometry. Grip and pinch strengths were performed using single, factory calibrated, Jamar dynamometer and pinch measuring devices. The third handle setting was used as previous studies have demonstrated that maximal grip strength is attained at this setting. 5,6 Both the dynamometer and pinch device were reset to zero prior to each reading and were read to the nearest increment of the two scale divisions. The American Society of Hand Therapists 7 recommendation for testing was followed. Subjects were seated comfortably on a chair without armrests. The shoulder was adducted and neutrally rotated, the elbow 120

Functional outcomes following surgical repair of wrist extensor tendons 121 Table 1 Aetiology of tendon division Mechanism of injury Number of subjects Glass Domestic ^ alcohol 13 Knife accidental 3 Knife assault 1 Glass industrial 1 Sheet steel industrial 1 Ceramic tile 1 flexed at 908 with the forearm and wrist in neutral position. The same arm position was used for testing both grip and pinch strengths. The pinch device was held between the proximal interphalangeal joint of the index finger and the thumb tip. Before testing, the reason for the study was explained, the method of testing demonstrated and subjects were allowed to practice once with their uninjured hand. Specific verbal instructions were given in the same tone of voice, I want you to hold the handle/button and grip/pinch as hard as you can. An opportunity to ask questions was provided. In order to eliminate the effect of hand muscle fatigue, the testing was performed on one hand after another, always starting with the uninjured hand. Two grip/pinch measurements were recorded for each hand and, if the difference was more than 10%, a third reading was taken. Grip strength measurement was followed by pinch strength and the highest value used. Wrist goniometry was performed using a hand-held goniometer. The same seating, shoulder and elbow positioning were used but measurements were taken with the forearm fully pronated. Flexion, extension, radial and ulnar deviation were measured according to the recommendations of the American Society of Hand Therapists. 8 The axis of rotation was taken along the line of the third metacarpal. manual workers. These percentage differences and the uninjured grip/pinch strengths were used to calculate the predicted pre-injury grip and pinch strengths in the subjects. Therefore, each subject acted as their own control. All subjects were right handed. Pre-injury range of wrist movement was assumed to equal the range in the uninjured side. The data was analysed using Microsoft Excel and Analyse-It! Software. Normality was assessed using a normal probability plot and the Shapiro Wilks statistic. A two-tailed paired t-test was used to determine differences between pre and post-injury parameters for normally distributed data, and a Wilcoxon rank test used for non-normally distributed data. A p value, 0.05 was taken as being statistically significant. Results Epidemiology 1551 patients divided extensor tendons in their hand or forearm and of these 68 required repair of the wrist extensor tendons. 31/68 patients were willing to be reassessed and 11 of these were excluded because of concomitant injury. Of the 37 that were not assessed, one had died and the remainder were either untraceable, had moved from the region or were unwilling to participate in the study. 20 subjects (19 males, 1 female) were suitable for inclusion in this study. 5 patients were seen in the review clinic and 15 in their own homes. 5 were non-manual, 9 were light manual and 6 were heavy manual workers. Most of the injuries occurred in a domestic environment and were due to glass Table 1. 12 patients injured their right hand and 8 injured their left hand. 7 divided ECRL alone, 6 divided ECU alone and 7 divided both ECRL and ECRB. Numerical and statistical methods Predicted pre-injury grip and pinch strengths were calculated using knowledge of the patients hand dominance, injury laterality and occupation at the time of injury. A previous study 9 showed that there is a grip strength difference of 9.1% and a pinch strength difference of 7.6% between dominant and non-dominant hands in right handed non-manual workers. Similarly, it was shown that grip strength differed by 3.4% and pinch strength differed by 8.9% in light manual workers; no statistically significant differences were found in heavy Table 2 Pre and post-injury grip and pinch strength differences Grip Pinch Mean predicted pre-injury strength (kg) (range) 47.4 (22 72) 8.7 (7 12.5) Mean post injury strength (kg) (range) 42.7 (21 76) 7.7 (4 14.5) Mean percentage strength difference 29.9% 211.5% p value (paired t-test) p ¼ 0:017 p ¼ 0:049 Surgical technique All patients underwent repair under general anaesthetic or brachial plexus block. Tendons were repaired using a 3/0 or 4/0 polydioxanone modified Kessler core suture and in 8 cases this was supplemented with a 6/0 prolene epitendonous suture. The wrist was splinted in neutral post-operatively for 3 weeks (13 patients). In the other patients the duration of splintage was shortened or prolonged by a week depending on patient compliance or clinic attendance. Physiotherapy was arranged following splint removal. There were no recorded tendon ruptures following repair, and none detectable clinically at the time of follow up. The average time off work was 10.5 weeks (range 0 26 weeks). Functional results grip and pinch strength Grip strength in the injured hand was significantly reduced by a factor of 9.9% compared to the predicted pre-injury grip strength (Table 2).

122 British Journal of Plastic Surgery Table 3 Range of movement comparison between uninjured and injured sides Flexion Extension Radial deviation 22.4 (10 35) 19.4 (10 30) Ulnar deviation 34.7 (20 45) 29 (10 50) Mean uninjured maximum (range) 55.9 (55 77) 63 (50 70) Mean injured 49.1 58.4 maximum (range) (10 70) (30 70) Percentage difference 212% 27.3% 213.4% 216.4% p value p ¼ 0:058 p ¼ 0:027 p ¼ 0:11 p ¼ 0:02 Paired Wilcoxon Paired Paired t-test test t-test t-test Pinch strength in the injured hand was significantly reduced by a factor of 11.5% compared to the predicted pre - injury pinch strength (Table 2). The sample populations of the predicted pre-injury and post-injury strength measurements are shown graphically as box and whisker plots in Figures 1 and 2. The boxplot graph shows a box with the upper border being the 75th centile and the lower the 25th centile. The box contains the median. The upper and lower limits represent the 95th and 5th centiles, respectively, and the crosses represent individual cases outside these limits. Functional results range of movement All subjects had a full range of digital excursion and pronation/supination in both the uninjured and the injured forearms. Analysis of the different components of wrist movement showed statistically significant reduction in ulnar deviation and extension but not in flexion and radial deviation (Table 3). Assessment of combined flexion/extension range and combined radial/ulnar deviation was performed. Analysis showed a mean loss of 11.4 degrees in the flexion/ extension plane ðp ¼ 0:022Þ and a mean loss of 8.7 degrees in the radial/ulnar plane ðp ¼ 0:0008Þ: This is shown in Figure 3. Figure 1 Box plot of grip strength populations. who underwent repair of the sensory branches of the radial nerve had symptoms of a painful neuroma. These subjects were included, as we had no evidence to suggest that division of these structures affects grip/pinch strength measurement or wrist movement. Patients with hand injuries may be less than compliant with therapy and follow up and it may be argued that patients who are willing to participate in the study may not be a truly representative sample. However, our study group comprised those who were willing to attend for review and those who were chased for follow-up, thus helping to reduce this possible bias. The majority of the injuries were sustained in the domestic setting Discussion Extensor tendon injuries form a significant proportion of the workload in most hand surgery units. However, wrist extensor injuries are rare in comparison to all extensor injuries of the hand and forearm (68/ 1551 ¼ 4.4%). Most of these injuries are sustained whilst punching glass which we know does not discriminate between one tendon and another. Consequently, isolated wrist extensor tendon injuries are even more rare, as demonstrated by the relatively small sample size. We specifically wanted to look at the effect of division and repair of the wrist extensor tendons which is why the patients with digital tendon injuries were excluded. Some of our study group had also injured and underwent repair of brachioradialis ðn ¼ 2Þ and the sensory branches of the radial nerve ðn ¼ 6Þ: None of the patients Figure 2 Boxplot of pinch strength populations.

Functional outcomes following surgical repair of wrist extensor tendons 123 Figure 3 Boxplot comparing flexion/extension and radial/ulnar deviation between uninjured and injured sides. and were removed from the possible bias of any ongoing medicolegal claim; only one subject was involved in a claim at the time of the study. We calculated the predicted pre-injury grip/pinch strengths and compared these to the post-injury results. On the basis of their study, Armstrong and Oldham 10 conclude that it is virtually impossible to estimate accurately from the opposite hand what the strength of an injured hand would have been before the injury. However, no allowance was made for their subjects occupations or sporting activities in the analysis of their data. In addition, they used a cylindrical dynamometer and recognise that differences between studies may be due in part to differences in equipment and testing positions. However, analysis of our data using the uninjured side as a direct comparison without correction for occupation still showed statistically significant reductions in grip strength measurements following injury. Wrist movement was assessed using a simple goniometer, as it is cheap, portable, and easy to use. Although the accuracy and reliability of electrogoniometry has been established 11 this technique was not used in our study as we wanted to use a low-cost technique which could be easily reproduced in the patient s home and in the clinic/medical reporting setting. One disadvantage of our method was that we were unable to document the range of circumduction in our subjects. The data demonstrates significant reductions in grip and pinch strength and in wrist movement following repair of extensor wrist motors. A linear relationship exists between tendon excursion and wrist motion. 12 We propose that the injury, surgical repair and adhesion formation decreased the effective tendon excursion, resulting in reduced movement and grip/pinch strength. Patients noticed reduced grip strength in the injured wrist as it affected daily activities. However, the statistical reduction in wrist movement was outside the functional range and was not clinically significant to the patients. We believe that this is the first review of outcomes following such injuries. Closed avulsion injuries of ECRL and ECRB and their subsequent outcome have been previously reported; 13 some cases regained full function and strength and others lost some grip strength and passive range of movement. Although these are uncommon injuries it is important to know their likely functional outcome. This information may be useful for patient education following injury and repair, and as a bench mark in audit and medicolegal reports. References 1. Rockwell WB, Butler PN, Byrne BA. Extensor tendon: anatomy, injury, and reconstruction. Plast Reconstr Surg 2000;106: 1592 603. 2. Newport ML, Blair WF, Steyers CM. Long-term results of extensor tendon repair. J Hand Surg 1990;15A:961 6. 3. Sylaidas P, Youatt M, Logan A. Early active mobilisation for extensor tendon injuries. J Hand Surg 1997;22B:594 6. 4. Purcell T, Eadie PA, Murugan S, O Donnell M, Lawless M. Static splinting of extensor tendon repairs. J Hand Surg 2000;25B: 180 2. 5. Harkenonen R, Piirtoma M, Alaranta H. Grip strength and hand position of the dynamometer in 204 Finnish adults. J Hand Surg 1993;18B:129 32. 6. Stokes HM. The seriously uninjured hand weakness of grip. J Occ Med 1983;25:683 4. 7. Mathiowetz V, Weber K, Volland G, Kashman N. Reliability and validity of grip and pinch strength evaluations. J Hand Surg 1984;9A:222 6. 8. Adams LS, Greene LW, Topoozian E, American Association of Hand Therapists Clinical Assessment Recommendations, vol. 7. New York: Churchill Livingstone; 1999. p. 55 63. 9. Josty IC, Tyler MPH, Shewell PC, Roberts AHN. Grip and pinch strength variations in different types of workers. J Hand Surg 1997;22B:266 9. 10. Armstrong CA, Oldham JA. A comparison of dominant and nondominant hand strengths. J Hand Surg 1999;24B:421 5. 11. Rawes ML, Richardson JB, Dias JJ. A new technique for the assessment of wrist movement using a biaxial flexible electrogoniometer. J Hand Surg 1996;21B:600 3. 12. Horii E, An KN, Linscheid RL. Excursion of prime wrist tendons. J Hand Surg 1993;18A:83 90.

124 British Journal of Plastic Surgery 13. Boles SD, Durbin RA. Simultaneous ipsilateral avulsion of the extensor carpi radialis longus and brevis tendon insertions: case report and review of the literature. J Hand Surg 1999;24A:845 9. The Authors I. C. Josty, BSc, FRCS (Plast), Specialist Registrar, Welsh Centre for Burns and Plastic Surgery, Morriston Hospital, Swansea SA6 6NL, UK A. H. F. MacQuillan MRCS, RAFT research fellow, Mount Vernon Hospital, Northwood, Middlesex, UK M. S. C. Murison, FRCS (Plast), Consultant Hand and Plastic Surgeon, Welsh Centre for Burns and Plastic Surgery, Morriston Hospital, Swansea SA6 6NL, UK Correspondence to I. C. Josty Paper received 3 December 2002. Accepted 12 March 2003, after revision.