Anaesthetic considerations for laparoscopic surgery in canines

Similar documents
Frederic J., Gerges MD. Ghassan E. Kanazi MD., Sama, I. Jabbour-Khoury MD. Review article from Journal of clinical anesthesia 2006.

Capnography for Pediatric Procedural Sedation Learning Module Last revised: February 18, 2014

INTRODUCTION The effect of CPAP works on lung mechanics to improve oxygenation (PaO 2

ADVANCED PATIENT MONITORING DURING ANAESTHESIA: PART ONE

ADVANCED PATIENT MONITORING DURING ANAESTHESIA: PART TWO

1. When a patient fails to ventilate or oxygenate adequately, the problem is caused by pathophysiological factors such as hyperventilation.

Capnography 101. James A Temple BA, NRP, CCP

Birds are hard to keep alive...

Critical Care Monitoring. Assessing the Adequacy of Tissue Oxygenation. Tissue Oxygenation - Step 1. Tissue Oxygenation

Capnography. Capnography. Oxygenation. Pulmonary Physiology 4/15/2018. non invasive monitor for ventilation. Edward C. Adlesic, DMD.

The Vigileo monitor by Edwards Lifesciences supports both the FloTrac Sensor for continuous cardiac output and the Edwards PreSep oximetry catheter

Mechanical Ventilation. Assessing the Adequacy of Tissue Oxygenation. Tissue Oxygenation - Step 1. Tissue Oxygenation

Capnography Connections Guide

Level 2 Anatomy and Physiology Bite size revision. Respiratory System. The order of the passage of oxygen into the body (inhalation/inspiration) is: -

Foundation in Critical Care Nursing. Airway / Respiratory / Workbook

Capnography- A Review and Renewed Perspective of its Uses and Limitations

Applied Physiology of One Lung Ventilation

How it Works. CO 2 is the smoke from the flames of metabolism 10/21/18. -Ray Fowler, MD. Metabolism creates ETC0 2 for excretion

ACUTE RESPIRATORY DISTRESS SYNDROME (ARDS) Rv

Essentials of Anaesthetic Monitoring in Veterinary Practice

Respiratory Physiology Part II. Bio 219 Napa Valley College Dr. Adam Ross

End Tidal CO2 Not All Its Cracked Up To Be The Limitations of PETCO2 In Sedation Analgesia

Lecture Notes. Chapter 2: Introduction to Respiratory Failure

Chronic Obstructive Pulmonary Disease

Competency Title: Continuous Positive Airway Pressure

Critical Care of the Post-Surgical Patient

The Challenging Pediatric Cardiac Patient. Edmund Jooste

June 2011 Bill Streett-Training Section Chief

Sepsis Wave II Webinar Series. Sepsis Reassessment

Capnography: The Most Vital Sign

Effect of anaesthetic use of nitrous oxide on carbon dioxide elimination in laparoscopic surgery

Arterial Blood Gases. Dr Mark Young Mater Health Services

NIV - BI-LEVEL POSITIVE AIRWAY PRESSURE (BIPAP)

HOW LOW CAN YOU GO? HYPOTENSION AND THE ANESTHETIZED PATIENT.

Hyperthyroid anaesthesia in felines

Respiratory Pathophysiology Cases Linda Costanzo Ph.D.

October Paediatric Respiratory Workbook APCP RESPIRATORY COMMITTEE

Shock is defined as a state of cellular and tissue hypoxia due to : reduced oxygen delivery and/or increased oxygen consumption or inadequate oxygen

INDEPENDENT LUNG VENTILATION

Pneumoperitoneum. Laparoscopic instrumentation Access into the abdomen

Oxygenation. Chapter 45. Re'eda Almashagba 1

Role of EtCO2 (End tidal CO2) Monitoring (Capnography) During Laparoscopic Surgery under General Anesthesia

Julie Zimmerman, MSN, RN, CCRN Clinical Nurse Specialist

ANAESTHESIA FOR BLEEDING TONSIL

Prepared by : Bayan Kaddourah RN,MHM. GICU Clinical Instructor

Proceedings of the Society for Theriogenology 2013 Annual Conference

Respiratory Failure in the Pediatric Patient

Anaesthesia for patients with endocrine diseases

Other methods for maintaining the airway (not definitive airway as still unprotected):

Pharmacology: Inhalation Anesthetics

43. Pros and Cons of Alternate Gases and Abdominal Wall Lifting Methods

a. Describe the physiological consequences of intermittent positive pressure ventilation and positive end-expiratory pressure.

Bi-Level Therapy: Boosting Comfort & Compliance in Apnea Patients

CAPNOGRAPHY. 1.1 To set forth the policy and procedure for performing continuous end-tidal waveform capnography.

Don t let your patients turn blue! Isn t it about time you used etco 2?

² C Y E N G R E M E ssignac Cardiac Arrest Resuscitation Device uob

Anesthesia for the Colic Patient

3. Which of the following would be inconsistent with respiratory alkalosis? A. ph = 7.57 B. PaCO = 30 mm Hg C. ph = 7.63 D.

Anaesthesia and induction in neonatal companion animals

The cardiovascular and respiratory system

Acid Base Imbalance. 1. Prior to obtaining the ABG s an Allen s test should be performed. Explain the rationale for this.

Maternal Collapse Guideline

Cardiorespiratory Interactions:

NOTE: CONTENT CONTAINED IN THIS DOCUMENT IS TAKEN FROM ROSEN S EMERGENCY MEDICINE 9th Ed.

Introduction and Overview of Acute Respiratory Failure

Respiratory Failure. Causes of Acute Respiratory Failure (ARF): a- Intrapulmonary:

ITLS Pediatric Provider Course Basic Pre-Test

Management of refractory ARDS. Saurabh maji

ADVANCED ASSESSMENT Respiratory System

Reducing Adverse Drug Events Related to Opioids: An Interview with Thomas W. Frederickson MD, FACP, SFHM, MBA

Small animal thoracic surgery: approaches and techniques

OXYGENATION AND ACID- BASE EVALUATION. Chapter 1

MURDOCH RESEARCH REPOSITORY

Appendix E Choose the sign or symptom that best indicates severe respiratory distress.

Causes and Consequences of Respiratory Centre Depression and Hypoventilation

Tissue Hypoxia and Oxygen Therapy

Respiratory Physiology

NITROUS OXIDE-CURARE ANESTHESIA UNSUPPLEMENTED WITH CENTRAL DEPRESSANTS

Information Often Given to the Nurse at the Time of Admission to the Postanesthesia Care Unit

POSTGRADUATE INSTITUTE OF MEDICINE UNIVERSITY OF COLOMBO

Post Resuscitation Care

Chapter 38: Pulmonary Circulation, Pulmonary Edema, Pleural Fluid UNIT VII. Slides by Robert L. Hester, PhD

3/30/12. Luke J. Gasowski BS, BSRT, NREMT-P, FP-C, CCP-C, RRT-NPS

25. Fluid Management and Renal Function During a Laparoscopic Case Done Under CO 2 Pneumoperitoneum

Cor pulmonale. Dr hamid reza javadi

Hemodynamic Monitoring

Learning Objectives. 1. Indications versus contra-indications 2. CPAP versus NiVS 3. Clinical evidence

Introduction to Emergency Medical Care 1

Laparoscopic surgery in the high risk patient

Bronchoscopy: approaches to evaluation and sampling

Dr. AM MAALIM KPA 2018

November 2012 Critical Care Case of the Month: I Just Can t Do It Captain! I Can t Get the Sats Up!

3. Which statement is false about anatomical dead space?

MD (Anaesthesiology) Title (Plan of Thesis) (Session )

Health Tech Symposium Fall, Dan Sommers P.E. EMT-P

Anesthetic Challenges in Morbid Obesity

PRE-HOSPITAL EMERGENCY CARE COURSE.

Respiration & Circulation

Advanced Cardiac Life Support (ACLS) Science Update 2015

HOSPITAL PROCEDURE Collaborative Practice Committee

Transcription:

Vet Times The website for the veterinary profession https://www.vettimes.co.uk Anaesthetic considerations for laparoscopic surgery in canines Author : Chris Miller Categories : Canine, Companion animal, Vets Date : February 15, 2016 Laparoscopy in dogs is becoming an increasingly common technique for procedures such as ovariectomies and biopsies. It allows minimally invasive surgery with enhanced and magnified visualisation of the surgical field (Figure 1). Figure 1. A laparoscopic view of the abdomen. K: kidney, S: suspensory ligament, O: ovary, U: uterus. It is also associated with faster recovery, a reduced risk of postoperative wound complications and significantly less pain than open surgery 1,2,3. This article discusses the approach and management of dogs undergoing laparoscopic surgery from an anaesthesia point of view. To provide suitable visualisation and manipulation of organs the abdomen must first be inflated. Insufflation of the abdomen can either be performed using a blind or open approach. The trochar or Veress needle is inserted and gas insufflated to a pressure of 10mmHg to 12mmHg. The most common gas used is carbon dioxide (CO 2 ) because it is safe to be used with electrocautery and has a low risk of embolism. Once the abdomen is inflated, more ports can be inserted to allow passage for the laparoscope 1 / 6

and instruments (Figures 2 and 3). The main difference between laparoscopy and laparotomy for abdominal surgery is a raised intraabdominal pressure (IAP). Figure 2. A two-port approach to the abdomen. Figure 3. A three-port approach to the abdomen. 2 / 6

Respiratory system Raising IAP using CO 2 impacts on the respiratory system mechanically and chemically. The increased pressure will push the diaphragm cranially, producing a splinting of the diaphragm and reducing the functional residual capacity of the lungs. As a consequence, at normal airway pressures more alveoli will be in a collapsed state, reducing the surface area for gaseous exchange and resulting in less uptake of oxygen from the lungs and reducing the partial pressure of oxygen in the blood. Areas of atelectasis will still be perfused, leading to a venous admixture further reducing arterial oxygenation. This will impact on the oxygen delivery to the rest of the body and can cause hypoxia and tissue damage. When CO 2 is insufflated into the abdomen some of it is absorbed into the systemic circulation, increasing the partial pressure of CO 2 in the blood. The normal physiological response to hypercapnia is to increase the respiratory rate to expire excess CO 2. This response in a conscious, healthy animal would be sufficient to manage the increased CO 2 concentration in the blood; however, in an anaesthetised animal the response is decreased. Cardiovascular system Raising IAP will also have an impact on the cardiovascular system, compressing the caudal vena cava and reducing the venous return to the heart and cardiac output. This reduction in cardiac output may decrease peripheral tissue perfusion, resulting in hypoxia. The body will respond by increasing the heart rate and systemic vascular resistance to maintain tissue perfusion. However, an anaesthetised animal will have a reduced capacity to mount an appropriate response. A raised IAP can also reduce perfusion of the organs by compressing abdominal vessels. It has been shown the IAP required for suitable surgical visualisation and working space can maintain normal physiological response cardiac output despite a decrease in venous return. The most critical period in regard to cardiopulmonary change is at insufflation and desufflation. The sudden difference in IAP has the greatest impact. Interestingly, after long periods of raised IAP, the most dramatic changes are seen at desufflation. A sudden fall in IAP results in increased cardiac output and greater pulmonary perfusion. However, a greater ventilation/perfusion mismatch causes a decrease in the partial pressure of oxygen in arterial blood (PaO 2 ). 3 / 6

Anaesthetic management To address the complications of raised IAP you need to detect these changes. Pulse oximetry is vital to assess oxygenation of the blood and provides important information regarding compensatory changes in heart rate as a result of differences in venous return and cardiac output. Capnography gives an insight into the effects of a raised IAP. Monitoring respiratory rate, pattern and end tidal carbon dioxide (ETCO 2 ) will offer a lot of information regarding compromises to ventilation. A raised ETCO 2 would indicate either reduced alveolar ventilation or increased absorption of CO 2 from the inflated abdomen. Normotension should be ensured with a mean arterial pressure >60mHg and systolic >90mmHg. Tachycardia with a low blood pressure would suggest a large reduction in venous return, which is likely to occur in a hypovolaemic patient. Steps to take would include administering boluses of 10ml/kg Hartmann s solution or the surgeon working at a lower IAP. Arterial blood gas analysis will give a definitive answer of the degree of hypercapnia and acidosis. To ensure normocapnia, intermittent positive pressure ventilation should be provided, manually or by using an automatic ventilator. If ventilating manually it is important to understand there will be decreased compliance of the lungs (compliance is the ease with which the lungs can be expanded). Monitoring the extent of chest excursions is vital, albeit a relatively crude method, to prevent generating excessive airway pressures. The use of a ventilator allows much finer control. Tidal volumes and respiratory rates can be controlled to maintain ventilation. Studies have shown to maintain normal partial pressure of carbon dioxide in arterial blood (PaCO 2 ), minute ventilation needs to be increased and ETCO 2 should be maintained at 35mmHg to 45mmHg. Oxygenation saturation is not dramatically affected by a raised IAP and should not be a major concern if the animal is maintained on 100% oxygen and anaesthetic gas. Peripheral capillary oxygen saturation should be maintained above 93%. Artificial ventilation No studies to date have investigated the effects of raised IAP in spontaneously breathing dogs. Several studies have demonstrated cardiovascular and pulmonary changes during laparoscopic procedures using CO 2 as the insufflation gas, but all animals in these studies had been artificially ventilated. These changes tend to be mild and within normal physiological parameters when IAPs less than 15mmHg are used. 4 / 6

In one study, minute ventilation was fixed and PaCO 2 did increase as high as 55mmHg 4. However, the abdomen was insufflated for three hours and PaCO 2 levels did decrease to normal limits 30 minutes after desufflation when minute ventilation was not changed. This suggests, even with fixed minute ventilation, compensation can be made for the changes in PaCO 2. Another study altered the minute ventilation to maintain ETCO 2. Again, the abdomen was insufflated for three hours and it was necessary to increase minute ventilation to maintain ETCO 2 between 40mmHg to 42mmHg 5. However, this increase was within normal physiological limits and not required for the procedure s whole duration. If ETCO 2 measurements can be made and the abdomen is insufflated at pressures around 10mmHg, a healthy animal should be able to spontaneously breathe and compensate for the increased PaCO 2. Slow insufflation and desufflation are very important in preventing rapid changes in abdominal pressure. Maintaining the animal on 100% inspired oxygen for as long as possible after desufflation will help to minimise the decrease in PaO 2 at this stage. Considerations for ovariectomy Moderate pain can be associated with insufflation of the abdomen, but there is less postoperative pain using a laparoscopic technique. An acepromazine/methadone premedication will provide suitable anxiolysis, sedation and analgesia for the duration of the surgery and into the postoperative period. For a healthy dog, appropriate doses would be 0.02mg/kg acepromazine and 0.3mg/kg methadone IM 30 to 40 minutes before induction. Lidocaine can be infiltrated into the skin and muscles overlying the portal sites at least five minutes before the ports are inserted into the abdomen. Lidocaine patches can be applied over the sites postoperatively. An NSAID will contribute to perioperative analgesia. Considerations for liver biopsy Coagulation times should be assessed before surgery. Acepromazine should be avoided as it may prolong clotting times and increase the risk of haemorrhage. An alpha-2 agonist, in combination with an opioid, would be an ideal premed. The author considers using dexmedetomidine as opposed to medetomidine as there is less to be metabolised by the liver. In severe cases of liver disease it may be necessary to omit the alpha-2 agonist and rely on 5 / 6

Powered by TCPDF (www.tcpdf.org) an opioid alone. Appropriate doses depend on the dog, but could be 0.005mg/kg to 0.010mg/kg dexmedetomidine and 0.3mg/kg methadone IM or IV 15 to 20 minutes before induction. All induction agents are metabolised by the liver, but propofol may be the best choice as it is also metabolised by extrahepatic tissues. Local anaesthetics can be used as described before. NSAIDs should be avoided and postoperative analgesia should be continued with opioids. There may be a prolonged duration of action of the opioids due to decreased metabolism. Acknowledgements The author would like to thank Matt Gurney and John Williams for reviewing this article and providing the images. References 1. Devitt CM et al (2005). Duration, complications, stress and pain of open ovariohysterectomy versus a simple method of laparoscopic-assisted ovariohysterectomy in dogs, J Am Vet Med Assoc 227(6): 921-927. 2. Culp WT et al (2009). The effect of laparoscopic versus open ovariectomy on postsurgical activity in small dogs, Vet Surg 38(7): 811-817. 3. Hancock RB et al (2005). Comparison of postoperative pain after ovariohysterectomy by harmonic scalpel-assisted laparoscopy compared with median celiotomy and ligation in dog, Vet Surg 34(3): 273-282. 4. Williams MD et al (1993). Laparoscopic insufflations of the abdomen depresses cardiopulmonary function, Surg Endosc 7(1): 12-16. 5. Duke T et al (1996). Cardiopulmonary effects of using carbon dioxide for laparoscopic surgery in dogs, Vet Surg 25(1): 77-82. 6 / 6