Supporting Information. 58 Pages. 6 Figures 4 Tables

Similar documents
Using Software Tools to Improve the Detection of Impurities by LC/MS. Application Note. Christine Miller Agilent Technologies.

New Solvent Grade Targeted for Trace Analysis by UHPLC-MS

Mass-Based Purification of Natural Product Impurities Using an Agilent 1260 Infinity II Preparative LC/MSD System

application Natural Food Colorants Analysis of Natural Food Colorants by Electrospray and Atmospheric Pressure Chemical Ionization LC/MS

SUPPLEMENTARY MATERIAL

PHOTOCATALYTIC DECONTAMINATION OF CHLORANTRANILIPROLE RESIDUES IN WATER USING ZnO NANOPARTICLES. DR. A. RAMESH, Ph.D, D.Sc.,

Small Scale Preparative Isolation of Corticosteroid Degradation Products Using Mass-Based Fraction Collection Application

2D-LC as an Automated Desalting Tool for MSD Analysis

MS/MS as an LC Detector for the Screening of Drugs and Their Metabolites in Race Horse Urine

Identification of Steroids in Water by Ion Trap LC/MS/MS Application

Chapter 6 IDENTIFICATION AND CHARACTERIZATION OF FLAVONOIDS BY HPLC AND LC-MS/MS ANALYSIS

Time-of-Flight LC/MS Identification and Confirmation of a Kairomone in Daphnia magna Cultured Medium. Application. Authors. Abstract.

Application of LC/Electrospray Ion Trap Mass Spectrometry for Identification and Quantification of Pesticides in Complex Matrices

Mass Spectrometry. Actual Instrumentation

Polymer Additive Analysis by EI and APCI

Key Words: Brassica oleraceae, glucosinolate, liquid chromatography mass spectrometry, FNH-I-003

IC-MS Environmental Applications - Water Testing. Application Notebook

Fluorescent Carbon Dots as Off-On Nanosensor for Ascorbic Acid

Automated Purification and Analytical Reinjection of a Small Molecule Drug, Probenecid, on a Gilson LC/MS Dual Function System

Rapid, Simple Impurity Characterization with the Xevo TQ Mass Spectrometer

Detection, Confirmation, and Quantification of Chloramphenicol in Honey, Shrimp and Chicken Using the Agilent 6410 LC/MS Triple Quadrupole

SUPPLEMENTARY INFORMATION

Identification & Confirmation of Structurally Related Degradation Products of Simvastatin

Authors. Abstract. Introduction. Environmental

Electronic Supporting Information

Sulfate Radical-Mediated Degradation of Sulfadiazine by CuFeO 2 Rhombohedral Crystal-Catalyzed Peroxymonosulfate: Synergistic Effects and Mechanisms

Profiling Analysis of Polysulfide Silane Coupling Agent

A pillar[2]arene[3]hydroquinone which can self-assemble to a molecular zipper in the solid state

[ APPLICATION NOTE ] Profiling Mono and Disaccharides in Milk and Infant Formula Using the ACQUITY Arc System and ACQUITY QDa Detector

Mechanistic Insight into Oxidized N,N-Dimethylacetamide as a source of Formaldehyde Related Process Derivatives

Quantitative Analysis of Carbohydrates and Artificial Sweeteners in Food Samples Using GFC- MS with APCI Interface and Post-column Reagent Addition

An Investigative Study of Reactions Involving Glucosinolates and Isothiocyanates

Phospholipid characterization by a TQ-MS data based identification scheme

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2008

Accumulation and transformation of inorganic and organic arsenic in rice and role of

Identification and Quantification at ppb Levels of Common Cations and Amines by IC-MS

Methods in Mass Spectrometry. Dr. Noam Tal Laboratory of Mass Spectrometry School of Chemistry, Tel Aviv University

ph Switchable and Fluorescent Ratiometric Squarylium Indocyanine Dyes as Extremely Alkaline Sensors

CONTENT. i iv ix. SVKM s NMIMS, School of Pharmacy and Technology Management

Characterization of products formed by forced degradation of Etodoalc using LC/MS/MS

Eszopiclone (Lunesta ): An Analytical Profile

SEPARATION OF BRANCHED PFOS ISOMERS BY UPLC WITH MS/MS DETECTION

Determination of Amantadine Residues in Chicken by LCMS-8040

UPLC/MS Monitoring of Water-Soluble Vitamin Bs in Cell Culture Media in Minutes

Transparent ALD-grown Ta2O5 protective layer for highly stable ZnO photoelectrode in solar water splitting

Determination of Aflatoxins in Food by LC/MS/MS. Application. Authors. Abstract. Experimental. Introduction. Food Safety

Tentu Nageswara Rao et al. / Int. Res J Pharm. App Sci., 2012; 2(4): 35-40

LCMS-8030 Application Report. Steroids: Testosterone, Progesterone, Estradiol, Ethinylestradiol

Detection of oxygenated polycyclic aromatic hydrocarbons (oxy-pahs) in APCI mode with a single quadrupole mass spectrometer

Probing for Packaging Migrants in a Pharmaceutical Impurities Assay Using UHPLC with UV and Mass Detection INTRODUCTION

Comprehensive Two-Dimensional HPLC and Informative Data Processing for Pharmaceuticals and Lipids

Chapter 12: Mass Spectrometry: molecular weight of the sample

Uptake and Metabolism of Phthalate Esters by Edible Plants

LC/MS/MS Separation of Cholesterol and Related Sterols in Plasma on an Agilent InfinityLab Poroshell 120 EC C18 Column

Cannabinoid Profiling and Quantitation in Hemp Extracts using the Agilent 1290 Infinity II/6230B LC/TOF system

Qualitative and quantitative determination of cannabinoid profiles and potency in CBD hemp oil using LC/UV and Mass Selective Detection

Mercury Speciation Determinations in Asian Dietary Supplements

General Assembly 2014 Vienna Austria 27 April 02 May 2014

Supporting Information

Analyzing Phenyl Ureas and Carbamates with HPLC/API-MS. Presented by Chen-Kai Meng, Ph.D. Applications Chemist

Analyzing Trace-Level Impurities of a Pharmaceutical Intermediate Using an LCQ Fleet Ion Trap Mass Spectrometer and the Mass Frontier Software Package

International Journal of Applied Pharmaceutical Sciences and Research

Comparison of mass spectrometers performances

Supplementary Figure 1. DTPA does not interfere with the activity of catalase. Dependency of CAT activity on DTPA concentration at 25 C.

Quadrupole and Ion Trap Mass Analysers and an introduction to Resolution

In-stream attenuation of neuro-active pharmaceuticals and their

Analysis of HMF by HPLC

Sci Pharm

Separation of Polyphenols by Comprehensive 2D-LC and Molecular Formula Determination by Coupling to Accurate Mass Measurement

Determination of Multi-Residue Tetracyclines and their Metabolites in Milk by High Performance Liquid Chromatography - Tandem Mass Spectrometry

Solving practical problems. Maria Kuhtinskaja

Supporting Information

LC/MS Method for Comprehensive Analysis of Plasma Lipids

Supporting information

Analysis of Peptides via Capillary HPLC and Fraction Collection Directly onto a MALDI Plate for Off-line Analysis by MALDI-TOF

STANDARD OPERATING PROTOCOL (SOP)

SUPPORTING INFORMATION TO: Oligonucleotide cyclization: The thiol-maleimide reaction revisited. Albert Sánchez, Enrique Pedroso, Anna Grandas*

1. Sample Introduction to MS Systems:

Singlet oxygen photosensitisation by the fluorescent probe Singlet Oxygen Sensor Green

Measuring Lipid Composition LC-MS/MS

Supporting Information

Supporting Information

Analytical Challenges in Veterinary Toxicology: Bromethalin

Enhanced LC-MS Sensitivity of Vitamin D Assay by Selection of Appropriate Mobile Phase

Available online Research Article

Rapid Analysis of Water-Soluble Vitamins in Infant Formula by Standard-Addition

Transferring a Method for Analysis of DNPH-Derivatized Aldehydes and Ketones from HPLC to UHPLC

CAMAG TLC-MS INTERFACE

Identification and Quantitation of Microcystins by Targeted Full-Scan LC-MS/MS

Analytical Method for 2, 4, 5-T (Targeted to Agricultural, Animal and Fishery Products)

Direct Analysis of Folic Acid in Digestive Juices by LC/TOF-MS Application

High-Performance Liquid Chromatography-Mass Spectrometry for the Determination of Flavonoids in G.biloba Leaves

Application Note. Agilent Application Solution Analysis of ascorbic acid, citric acid and benzoic acid in orange juice. Author. Abstract.

Fast Separation of Triacylglycerols in Oils using UltraPerformance Convergence Chromatography (UPC 2 )

Ion Source. Mass Analyzer. Detector. intensity. mass/charge

Development and Validation of a Stability Indicating HPLC Method for Determination of Erlotinib Hydrochloride in Bulk

High Resolution Glycopeptide Mapping of EPO Using an Agilent AdvanceBio Peptide Mapping Column

Steviol Glycosides from Stevia rebaudiana Bertoni

Impact of Reversed-Phase Chiral Chromatography on the LC-MS Analysis of Drugs in Biological Fluids

[ APPLICATION NOTE ] APPLICATION BENEFITS INTRODUCTION WATERS SOLUTIONS KEYWORDS

Transcription:

Light-Source-Dependent Effects of Main Water Constituents on Photodegradation of Phenicol Antibiotics: Mechanism and Kinetics Linke Ge, Jingwen Chen, * Xianliang Qiao, Jing Lin, Xiyun Cai Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), Department of Environmental Science and Technology, Dalian University of Technology, Linggong Road, Dalian 1164, P. R. China 58 Pages 6 Figures 4 Tables Detailed Analytical Procedures A Shimadzu TOC-V CPH analyzer was employed to determine total organic carbon (TOC) contents. Conductivity and ph were determined by a DDS-11A conductivity meter coupled with a DJS-1 electrode and a Leici model PHS-3C ph meter coupled with an E-1-C probe, respectively. UV vis absorption spectra of thiamphenicol and florfenicol were recorded using a Hitachi U-8 spectrophotometer (Figure 1). An Agilent 11 HPLC with Hypersil C18 reversed-phase column (5 mm 4.6 mm, 5 μm) and DAD was used to analyze the concentration of thiamphenicol and florfenicol. The mobile phase was 3:7 mixture of acetonitrile and water with a flow rate of 1. ml/min. For thiamphenicol and florfenicol, the injection volume was μl and 1 μl, and detection wavelength 5 nm and 3 nm, respectively. The method detection limits of the HPLC analysis were.4.1 mg/l and the recoveries were 96.8 11.% for the phenicols in all solutions. S1

Anions were analyzed by a Shimadzu Class-VP ion chromatography (IC) coupled with a Shimpack IC-GA3 guard column (1 mm 4.6 mm), a Shimpack IC-A3 anion analytical column (15 mm 4.6 mm), and a Shimadzu SCL-1A SP non-suppressed conductance detector, and using 8 mm p-hydroxybenzoic acid (ph 4.5) as a mobile phase. Cations were monitored by an Optima DV inductively coupled plasma-atomic emission spectrometry (ICP-AES). The phenicols dissolved in pure water at concentrations up to 4 mg/l were exposed to UV-Vis irradiation (λ > nm) and sampled. Photoproducts in the samples were separated and identified with an Agilent 11 Series LC/MSD trap system using a triple quadrupole mass analyzer and working in positive and negative mode. The chromatographic separation conditions were the same as the HPLC analyses except for the ratio of mobile phases. For thiamphenicol, the gradient (acetonitrile in water) program was: 1 min, 5 4% (linear); 1 15 min, 4 6%; 15 min, 6%. For florfenicol: 5 min, 5%; 5 min, 5 4%; 3 min, 4 8%. The electrospray ionization (ESI) source with a capillary potential of 35 V was applied. The fragmentor voltage was optimized to be 5 V, and the MS scan range was m/z 5 to 1 amu. The product molecular weights were assigned on the basis of their pseudomolecular ions. The structures were identified according to their MS n mass fragmentation pattern combined with their molecular weight and parent structures. Some intermediates were tentatively characterized as isomeric compounds that possess extremely close retention time and similar mass fragmentation spectra. Electron paramagnetic resonance (EPR) combining with spin trapping was employed to identify ROS ( 1 O, OH and O - ) generated in some photodegradation solutions.,,6,6-tetramethyl-4-piperidone (TEMP, 95%, Sigma Aldrich ) and 5,5-Dimethyl-1-pyrroline-N-oxide (DMPO, 97%, Sigma Aldrich) were used as the spin traps of 1 O and OH/O -, respectively. EPR spectra were recorded at room temperature on a Bruker EMX A- spectrometer equipped with a W mercury lamp as the irradiation light source (λ > nm). When needed, the irradiation light was filtered by pyrex-glass to get λ > 9 nm light. The EPR settings were modulation frequency 1 khz, modulation amplitude. G, microwave frequency 9.4 GHz and power 5.1 mw. Identification of H O generated in the irradiated solutions was performed with a photometric method reported by Bader et al. (1). S

Table S1. Ions, TOC, conductivity and ph analysis of seawater and freshwater samples. Freshwater Seawater Na +.6 mg/l 1.13 1 3 mg/l K + 6.74 mg/l 5.38 1 mg/l Ca + 38.76 mg/l 3.16 1 mg/l Cations Mg + 15.74 mg/l 1.13 1 3 mg/l Anions Fe +.9 mg/l <. mg/l Zn +.79 mg/l.1 mg/l Cu +.1 mg/l <.1 mg/l Cl - 6.4 mg/l.43 1 4 mg/l PO 4 3- NO - /NO 3 - SO 4 - <.1 mg/l <.1 mg/l 8. mg/l 17.5 mg/l 38.8 mg/l <.1 mg/l Br - <.1 mg/l 59 mg/l HCO - - 3 /CO 3 <.1 mg/l <.1 mg/l TOC 15.3 mg C/L 3.5 mg C/L Conductivity 5.51 1 μs/cm 5.4 1 4 μs/cm ph 9.1 8.1 S3

Table S. Rate constants (k), half-lives (t 1/ ) and correlation coefficients (r ) for the photodegradation of the two phenicols under irradiation of Matrix three light sources. HA: humic acid; L-HA: local humic acid. Thiamphenicol Florfenicol k (min 1 ) ± SD r t 1/ (min) ± SD k (min 1 ) ± SD r t 1/ (min) ± SD UV vis irradiation (λ > nm) Pure water (4. ±.) 1.983.999 17 ±.8 (4.9 ±.) 1.997.999 14 ±.6 ph 4.9 (3.9 ±.3) 1.975.999 18 ± 1. (4.6 ±.4) 1.998.999 15 ± 1.1 ph 6. (3.9 ±.4) 1.976.999 17 ± 1. (4.8 ±.3) 1.997.999 14 ± 1.1 ph 7. (3.9 ±.3) 1.976.999 18 ± 1. (4.6 ±.4) 1.996.999 15 ± 1.3 ph 8. (4. ±.) 1.978.999 18 ±.9 (4.5 ±.1) 1.997.999 16 ±.4 ph 11. (4.1 ±.1) 1.981.999 17 ±.4 (4.9 ±.3) 1.998.999 14 ± 1..8 M Na SO 4 (4. ±.1) 1.997.999 17 ±. (4.9 ±.1) 1.998.999 14 ±.3.1 M Na SO 4 (4. ±.1) 1.998.999 17 ±. (4.9 ±.1) 1.998.999 14 ±.1 1 mm HOCH(CH 3 ) (4.1 ±.) 1.998.999 17 ±.7 (4.9 ±.) 1.998.999 14 ±.6 5 mm NaN 3 (1. ±.1) 1.997.999 58 ± 3.7 (1.4 ±.1) 1.998.999 5 ±.3.5 M NaCl + 5 mm NaN 3 (1. ±.1) 1.998.999 58 ±. (1.4 ±.1) 1.998.999 5 ± 1 Freshwater (.4 ±.) 1.991.999 9 ±.3 (. ±.4) 1.995.999 3 ± 7.4 Seawater (7.1 ±.7) 1.99.997 9.9 ± 1. (6.7 ±.7) 1.996.998 16 ± 1.1 S4

.1 M NaCl (4.9 ±.1) 1.995.999 14 ±.3 (5.3 ±.1) 1.999 13 ±.3.5 M NaCl (5.3 ±.1) 1.996.998 13 ±.3 (6.6 ±.) 1.999 1 ±.3.5 M NaCl (6.7 ±.) 1.998.999 1 ±.3 (7.7 ±.5) 1.996.997 9.1 ±.6 1 M NaCl (7.7 ±.) 1.996.998 9. ±. (8. ±.) 1.998.999 8.7 ±. mg C/L HA (3.8 ±.1) 1.991.998 18 ±.3 (3. ±.1) 1.999 3 ±.4 4 mg C/L HA (3.1 ±.1) 1.996.998 ±.9 (. ±.1) 1.998.999 31 ± 1.7 8 mg C/L HA (1.8 ±.1) 1.991.99 38 ±. (1.5 ±.1) 1.999 46 ± 4.3 15 mg C/L HA (1.3 ±.1) 1.98.986 5 ± 4. (1.1 ±.5) 1.995.999 65 ± 3. 43 mg C/L HA (6.8 ±.3) 1 3.96.965 1 ± 4. (5.3 ±.3) 1 3.996.997 131 ± 7. 4 mg C/L L-HA (.9 ±.1) 1.98.987 4 ±.7 (3.4 ±.1) 1.99.995 ±.5 5 mg/l NaNO 3 (3.8 ±.1) 1.996.998 18 ±. (4. ±.3) 1.998.999 16 ± 1 1 mg/l NaNO 3 (3.6 ±.1) 1.996.997 19 ±.1 (3.9 ±.) 1.997.999 18 ± 1 1 mg/l NaNO 3 (.9 ±.1) 1.99.996 4 ±. (3. ±.1) 1.996 3 ±. 1 mg/l NaHCO 3 (3.9 ±.1) 1.997.999 18 ±. (4.5 ±.5) 1.999 15 ± 1 5 mg/l NaHCO 3 (3.9 ±.1) 1.998.999 18 ±.1 (4.4 ±.4) 1.999 16 ± 1 1 mg/l NaHCO 3 (3.8 ±.1) 1.999 18 ±.1 (4.3 ±.4) 1.999 16 ± 1.5 M MgCl (4.4 ±.1) 1.997.999 16 ±.4 (5.6 ±.5) 1.997.999 1 ± 1.64 M MgCl (4.6 ±.3) 1.995.999 15 ±.4 (6. ±.4) 1.997.999 11 ±.7.5 M MgCl (5.4 ±.) 1.993.999 13 ±.4 (8.3 ±.6) 1.987.998 8 ±.6.1 M NaBr (4. ±.1) 1.999 16 ±. (5.1 ±.3) 1.999 14 ±.6.5 M NaBr (4.8 ±.3) 1.996.999 14 ±.8 (6.1 ±.4) 1.997.999 11 ±.8 S5

.1 mm NaI (1. ±.1) 1.995.996 57 ± 5 (1.1 ±.1) 1.996.997 6 ±.8.5 mm NaI (9. ±.7) 1 3.984.997 78 ± 7 (9.5 ±. 3) 1 3.994.995 73 ± 5 1 μm Fe(III) (3.9 ±.1) 1.998 18 ±.4 (4.7 ±.1) 1.999 15 ±. 5 μm Fe(III) (3.5 ±.1) 1.998.999 ±.5 (4.3 ±.1) 1.999 16 ±.1 Solar irradiation (λ > 9 nm) Pure water a Freshwater (6. ±.6) 1 5.978.95 (1.1 ±.1) 1 4 (1. ±.) 1 4.96.94 (5.9 ± 1) 1 3 Seawater Simulated sunlight irradiation (λ > 9 nm) Pure water Freshwater (3.5 ±.) 1 5.998.999 (. ±.1) 1 4 (4.4 ±.1) 1 5.983.995 (1.6 ±.1) 1 4 Seawater 4 mg C/L HA (.3 ±.1) 1 5.984.991 (3. ±.1) 1 4 (.6 ±.3) 1 5.986.991 (.7 ±.3) 1 4 15 mg C/L HA (.8 ±.1) 1 5.98.996 (.5 ±.1) 1 4 (3.5 ±.) 1 5.976.995 (. ±.1) 1 4.5 M NaCl 4 mg C/L L-HA (8. ± 1.4) 1 5.958.991 (8.6 ± 1.6) 1 3 (6.8 ±.3) 1 5.97.973 (1. ±.1) 1 4 a No obvious degradation occurred, less than % within 84 hours for solar irradiation or 15 hours for simulated sunlight irradiation. S6

Table S3. Mean photodegradation rate constants (k, min 1 ) for phenicols under UV vis irradiation (λ > nm) with addition of Cl - and/or NaN 3 Reactions k Thiamphenicol Florfenicol Photolysis in pure water Photolysis for sole addition of 5 mm NaN 3 in pure water 1 O -induced photolysis in pure water Photolysis in.5 M Cl - aqueous solution Photolysis for joint addition of.5 M Cl - + 5 mm NaN 3 1 O -induced photolysis in.5 M Cl - solution k PW.4.49 k PW + NaN 3.1.14 k 1 O (PW).8.35 k - PW + Cl.67.77 k - PW + Cl + NaN 3.1.14 k1 O (PW + Cl ).55.63 S7

Table S4. Retention time (t R ) and molecular weight (Mw) of selected photodegradation products for thiamphenicol and florfenicol, and their pseudomolecular peak ions detected in ESI (+) and ESI (-) MS, and fragment ions detected in MS and MS 3. (Mw is calculated with chlorine isotope 35 Cl. The precursors ions used in MS and MS 3 are highlighted in bold. n.d: not determined.) No. t R (min) Thiamphenicol 9.84 355 I 1.15 77 II 5.53 31 III 6.63 31 IV 7.17 31 V 7.4 31 VI 8.4 31 Mw ESI (+) MS ESI (+) MS ESI (+) MS 3 ESI (-) MS ESI (-) MS ESI (-) MS 3 394 [M+K + ] +, 378 [M+Na + ] + 378 > 36, 34 n.d 354 [M-H + ] - 354 > 9 9 > 54 316 [M+K + ] +, 3 [M+Na + ] +, 34 [M+K + ] +, 358 [M+K + +H O] + 358 > 34 3 [M+H + ] +, 34 [M+K + ] +, 34 [M+Na + ] +, 34 [M+K + ] +, 34 [M+Na + ] +, 3 [M+H + ] +, 34 [M+K + ] +, 34 [M+Na + ] +, 36 [M+K + ] +, 344 [M+Na + ] +, 3 > 31, 163 n.d 76 [M-H + ] - 76 > 1, 34 > 3, 177 19 3 [M-H + ] - 3 > 7, 9, 145, 116 34 > 31, 8 n.d 3 [M-H + ] - 9, 7, 5, 3 > 7, 145 3 > 7, 34 > 33, 8 n.d 3 [M-H + ] - 9, 145, 116 3 > 7, 34 > 3, 8 n.d 3 [M-H + ] - 9, 145, 116 3 > 84, 36 > 3, 161 n.d 3 [M-H + ] - 7,9, 145 n.d 7 > 9, 145, 79 7 > 9, 145, 79 7 > 9, 145, 79 7 > 9, 145, 79 7 > 9, 145 S8

VII 3.43 153 VIII 14.56 311 Florfenicol.4 357 I 4.61 79 II 1.13 33 III 14.93 33 3 [M+H + ] + 19 [M+K + ] +, 176 > 116, 83 83 > 65 15 [M-H + ] - n.d n.d 176 [M+Na + ] + 35 [M+K + ] +, 334 [M+Na + ] + n.d n.d 31 [M-H + ] - 31>46 n.d 375 [M+NH 4 + ] +, 396 [M+K + ] +, 376 [M+H O+H + ] +, 38 [M+Na + ] +, 358 [M+H + ] + 375 > 34, 358; 396 > 378, 379 3 [M+Na + ] +, 3 > 8; 6 [M-H O+H + ] + 6 > 4 339 [M+H O+NH + 4 ] +, 36 [M+H O+K + ] +, 34 [M+H + ] + 34 [M+H + ] +, 34 [M+K + ] +, 36 [M+Na + ] +, 86 [M+ H + -H O] +, 339 > 3, 34, 86; 36 > 34 86 > 66, 187 34 > 3, 41, 6 4 > 6, 163, 131, 115 34 > 86; 34 > 3 187 > 159, 131 356 [M-H + ] - 356 > 336 78 [M-H + ] -, 6 [M-H O-H + ] -, 314 [M+Cl - ] - 78 > 58, 3 > 8, 3 [M-H + ] - 64, 38,, 118, 98 3 [M-H + ] -, 338 [M+Cl - ] -, 4 4 > 186, 118, 98 336 > 19, 185, 119 58 > 3, 186 64 > 36, 18, 8 186 > 158 S9

66 [M+ H + -H O-HF] + Supporting Information IV 1.93 189 1 [M+Na + ] + n.d n.d V 6.6 155 156 [M+H + ] +, 194 [M+K + ] +, n.d n.d 178 [M+Na + ] + 188 [M-H + ] -, n.d n.d 4 [M+Cl - ] - 154 [M-H + ] -, n.d n.d 19 [M+Cl - ] - 31 > 94, VI 7.4 313 96 [M-H O+H + ] + n.d n.d 31 [M-H + ] - 9 n.d S1

ln(c/c ) -1 - -3-4 -5 UV vis irradiation + Thiamphenicol 4 mg C/L L-HA 43 mg C/L HA 15 mg C/L HA 8 mg C/L HA 4 mg C/L HA mg C/L HA Pure water.1 M NaCl.5 M NaCl.5 M NaCl 1. M NaCl 4 6 8 1 1 14 Time (min) ln(c/c ) -1 - -3-4 -5-6 UV vis irradiation + Florfenicol 4 mg C/L L-HA 43 mg C/L HA 15 mg C/L HA 8 mg C/L HA 4 mg C/L HA mg C/L HA Pure water.1 M NaCl.5 M NaCl.5 M NaCl 1. M NaCl 4 6 8 1 1 14 Time (min) ln(c/c ) -. -.4 Simulated sunlight + Thiamphenicol 4 mg C/L L-HA 15 mg C/L HA 4 mg C/L HA Pure water.5 M NaCl ln(c/c ) -.1 -.3 Simulated sunlight + Florfenicol 4 mg C/L L-HA 15 mg C/L HA 4 mg C/L HA Pure water.5 M NaCl -.6 -.5 -.8 3 6 9 1 15 18 1 4 Time (h) -.7 3 6 9 1 15 18 1 4 Time (h) Figure S1. Effects of Cl -, Sigma humic acid (HA) and local humic acid (L-HA) on photodegradation kinetics of thiamphenicol and florfenicol under irradiation of UV vis (λ > nm) and simulated sunlight (λ > 9 nm). S11

Abs 4 3 15 mg C/L HA from Sigma Aldrich 4 mg CL HA from Sigma Aldrich 4 mg C/L L-HA from freshwater of Dalian, China 1 3 4 5 6 7 λ (nm) Figure S. UV vis spectra in water for humic acid (HA, Fluka No. 5368, Sigma Aldrich) and extracted local humic acid (L-HA) from the freshwater of a reservoir in Dalian, China. The freshwater was used in our study. S1

(a) Florfenicol in pure water upon irradiation (λ > nm) (b) Thiamphenicol in pure water upon irradiation (λ > nm) (c) Florfenicol and TEMP in pure water under dark (d) Thiamphenicol and TEMP in pure water under dark (e) Florfenicol and TEMP in pure water upon irradiation (λ > nm) (f) Thiamphenicol and TEMP in pure water upon irradiation (λ > nm) (g) Florfenicol, NaN 3 and TEMP in pure water upon irradiation (λ > nm) (h) Thiamphenicol, NaN 3 and TEMP in pure water upon irradiation (λ > nm) (i) Florfenicol, NaCl and TEMP in pure water upon irradiation (λ > nm) (j) Thiamphenicol, NaCl and TEMP in pure water upon irradiation (λ > nm) S13

(k) Florfenicol and DMPO in pure water upon irradiation (λ > nm) (l) Thiamphenicol and DMPO in pure water upon irradiation (λ > nm) (m) Fresh water containing TEMP under dark (n) Fresh water containing TEMP upon irradiation (λ > 9 nm) (o) Fresh water containing NaN 3 and TEMP upon irradiation (λ > 9 nm) (p) Fresh water containing DMPO upon irradiation (λ > 9 nm) (q) HA and TEMP in pure water under dark (r) HA and TEMP in pure water upon irradiation (λ > 9 nm) S14

(s) HA, NaN 3 and TEMP in pure water upon irradiation (λ > 9 nm) (t) L-HA and TEMP in pure water upon irradiation (λ > 9 nm) (u) HA and DMPO in pure water upon irradiation (λ > 9 nm) (v) L-HA and DMPO in pure water upon irradiation (λ > 9 nm) 33 33 334 336 338 34 Magnetic Field (G) 33 33 334 336 338 34 Magnetic Field (G) Figure S3. EPR Spectra for the samples a v. when needed, the initial concentrations were 1 mg/l for thiamphenicol and florfenicol, 15 mg C/L for HA, 4 mg C/L for L-HA,.5 M for NaCl, 5 mm for TEMP and DMPO, and 5 mm for NaN 3, respectively. Irradiation time was 5 min. S15

mau 15 15 1 75 5 5-5 Thiamphenicol Thiamphenicol in pure water under UV vis irradiation VII II III IV V VI I VIII.5 5 7.5 1 1.5 15 17.5 min mau 8 6 4 II III IV V Thiamphenicol Thiamphenicol in fresh water under simulated sunlight.5 5 7.5 1 1.5 15 17.5 min mau 8 6 4 II IV V III Thiamphenicol Thiamphenicol in HA solution under simulated sunlight.5 5 7.5 1 1.5 15 17.5 min S16

mau 15 15 1 75 5 5-5 Florfenicol in pure water under UV vis irradiation Florfenicol II III I VI V IV 5 1 15 5 min mau 8 6 4 II III Florfenicol Florfenicol in fresh water under simulated sunlight 5 1 15 5 min mau 8 6 4 II III Florfenicol Florfenicol in HA solution under simulated sunlight 5 1 15 5 min Figure S4. HPLC chromatograms of the phenicols and their photoproducts under irradiation of UV vis (λ > nm) and simulated sunlight (λ > 9 nm). The initial concentrations (C ) of the phenicols were 4 mg/l for UV vis irradiation and 1 mg/l for simulated solar irradiation, respectively. C of HA was 15 mg C/L. S17

x1 7 Thiamphenicol TP-1.D: TIC +All MS 3 ESI (+) MS Thiamphenicol 1 VII II III IV V VI I x1 7. Thiamphenicol ESI (-) MS Thiamphenicol TP-1.D: TIC -All MS 1.5 1..5. I VIII II III IV V VI VII 4 6 8 1 1 14 16 18 Time [min] S18

x1 7 5 Florfenicol ESI (+) MS Florfenicol FF-1.D: TIC +All MS 4 3 1 x1 7.5 Florfenicol ESI (-) MS V IV II I III Florfenicol VI FF-1.D: TIC -All MS. 1.5 I 1. VI.5. II III V IV 5 1 15 5 Time [min] Figure S5. Total ion chromatogram (TIC) obtained in ESI (+) and ESI (-) MS for UV vis (λ > nm) photodegradation solutions of thiamphenicol and florfenicol in pure water. S19

Thiamphenicol x1 6 4 Thiamphenicol 394. +MS, 1.min #783 ESI (+) MS 3 1 378. 8.9 1 3 4 5 6 7 8 9 m/z x1 4 Thiamphenicol 359.9 +MS(379.), 1.1min #785.8 ESI (+) MS (378).6 357.9.4 34.1.. 3 4 5 6 7 589.9 743.3 m/z S

x16 -MS, 1.min #787 Thiamphenicol 354.1 6 ESI (-) MS 4 5 3 35 4 45 m/z x1 6 Thiamphenicol 89.9 -MS(354.8), 1.min #788 1.5 ESI (-) MS (354) 1..75.5.5. 7. 4. 7.1 184.9 5 1 15 5 3 35 4 45 5 m/z S1

6 Thiamphenicol ESI (-) MS 3 (354 > 9) 53.9 -MS3(354.8->9.), 1.min #789 4 Product I x1 6. 5 1 15 5 3 35 4 45 5 m/z Product I ESI (+) MS +MS, 1.3min #963 316. 1.5 1..5. 3.3 6. 13.1 156. 176.9 31. 385.3 49.9 5 1 15 5 3 35 4 45 5 m/z S

Product I 16.9 +MS(31.), 1.4min #965 ESI (+) MS (3) 15 1 3.7 5 176.9 199.9 5 1 15 5 3 m/z x16 -MS, 1.3min #11 75.9 Product I 3 ESI (-) MS 1 15 15 175 5 5 75 3 35 35 m/z S3

x1 5. Product I 11.8 -MS(76.4), 1.4min #1 ESI (-) MS (76) 1.5 1. 191.9.5 Product II. x1 6 86.4 16. 5 1 15 5 3 35 4 m/z Product II 34. 59. +MS, 5.7min #48. ESI (+) MS 357.9 1.5 1..5. 1 3 4 5 6 7 8 9 m/z S4

x1 6 +MS(358.3), 5.7min #484 Product II 339.9 1.5 1. ESI (+) MS (358).75.5.5. 15 5 3 35 4 45 5 361.9 m/z 8 Product II ESI (+) MS 3 (358 > 34) 176.7 +MS3(358.3->34.1), 5.8min #486 6 4 31. 3. 5 1 15 5 3 35 4 m/z S5

x1 6 Product II 99.9 -MS, 5.7min #41 1.5 ESI (-) MS 1..5. 363.9 449.9 499.9 1 3 4 5 6 m/z 61. x1 5 Product II 6.9 -MS(3.1), 5.7min #413 3 ESI (-) MS (3) 1 98. 116. 145. 9. 51.8 69.9 5 1 15 5 3 35 4 m/z S6

x1 5 1. Product II 8.8 -MS3(3.1->7.), 5.7min #414 ESI (-) MS 3 (3 > 7).8.6.4 145.1 Product III.. x1 6. 79.4 18.9 117. 5 75 1 15 15 175 5 5 75 m/z Product III +MS, 6.8min #558 34. ESI (+) MS 1.5 1..5. 34.3 4.4 64.4 8.4 361.9 3.3 377.9 5 3 35 4 m/z S7

6 5 Product III ESI (+) MS (34) +MS(34.3), 6.8min #559 4 3 8. 3.9 16.9 1 9.9 59.8 71.9 36.1 5 1 15 5 3 m/z x1 5 4 Product III ESI (-) MS 3.1 -MS, 6.8min #57 3 1.3 346. 383.9 98. 17.1 415.8 467.5 519. 551.6 599. 87.1 1 3 4 5 6 7 8 m/z S8

x1 5 Product III 6.9 -MS(3.), 6.8min #58 1.5 ESI (-) MS (3) 1..75.5.5 98.3 116. 145. 9.1 69.8 51.9. 5 1 15 5 3 35 4 m/z x1 4 5 Product III ESI (-) MS 3 (3 > 7) 8.9 -MS3(3.->7.), 6.8min #59 4 3 145. 1 18.9 79.3 117.1 5 1 15 5 3 m/z S9

Product IV x1 6 1.5 Product IV 34. +MS, 7.4min #597 1.5 ESI (+) MS 1..75.5 34.1.5. 414.9 157. 7. 361.9 4.3 5 1 15 5 3 35 4 45 5 55 m/z 5 4 Product IV ESI (+) MS (34) +MS(34.3), 7.4min #598 3 79.8 3.9 1 113. 176.8 58.8 97.8 5 1 15 5 3 m/z S3

x1 5 6 Product IV 3. -MS, 7.4min #556 5 ESI (-) MS 4 3 1 5.1 336.9 375.1 41.9 479.4 561.5 641.3 1 3 4 5 6 7 8 m/z x1 5 1.5 Product IV 6.8 -MS(3.3), 7.4min #557 1.5 ESI (-) MS (3) 1..75.5.5. 98.3 116. 145.1 9.1 51.9 69.8 5 1 15 5 3 35 4 45 m/z S31

x1 4 4 Product IV ESI (-) MS (3 > 7) 8.8 -MS3(3.3->6.9), 7.4min #558 3 145. 1 79.3 18.9 194.1 Product V x1 6 1. 5 1 15 5 3 m/z Product V ESI (+) MS 34. +MS, 7.6min #68.8.6.4.. 34. 34.1 84.1 156.1 5 1 15 5 3 35 4 45 5 55 m/z S3

4 Product V ESI (+) MS (34) +MS(34.), 7.6min #69 3 79.9 3.1 1 68.5 93.9 176.8 41. 58.1 35.9 14 16 18 4 6 8 3 3 m/z x1 5 6 Product V 3. -MS, 7.6min #574 5 ESI (-) MS 4 3 1 6.1 199. 335.8 381.8 41.9 474.1 51.1 58.9 611.9639. 68.3 1 3 4 5 6 m/z S33

x1 5 Product V 6.8 -MS(3.3), 7.6min #575 1.5 ESI (-) MS (3) 1..75.5.5 98. 116. 145. 9.1 51.8 69.9. 5 1 15 5 3 35 4 m/z x1 4 4 Product V ESI (-) MS 3 (3 > 7) 8.8 -MS3(3.3->7.), 7.6min #576 3 145.1 1 79.4 18.9 5 75 1 15 15 175 5 5 75 m/z S34

Product VI x1 6 Product VI 36. +MS, 8.min #661. ESI (+) MS 1.5 1..5. 176.9 4.1 7. 9. 3. 175 5 5 75 3 35 35 375 4 344.1 m/z 3 Product VI ESI (+) MS (36) 99.9 +MS(36.6), 8.3min #66 1 16.9 345.1 316.6 31.9 144.9 5 1 15 5 3 m/z S35

x15 -MS, 8.min #67 Product VI 3. 8 6 ESI (-) MS 4 366. 411. 514. 1 3 4 5 6 m/z x1 5 Product VI 6.9 -MS(3.8), 8.min #68 1. ESI (-) MS (3).8.6.4.. 83.8 18.1 145.1 9. 181. 5 1 15 5 3 35 4 m/z S36

x1 4 4 Product VI ESI (-) MS 3 (3 > 7) 8.8 -MS3(3.8->7.1), 8.3min #69 3 145.1 Product VII 1 x1 5 5 79.3 18.9 5 1 15 5 3 m/z Product VII 176.1 +MS, 3.6min #311 4 ESI (+) MS 83.4 19. 3 1 116. 136.1 99.3 156.1. 33.9 6.7 95. 17. 1.9 47. 6 8 1 1 14 16 18 4 m/z S37

x1 5 +MS(176.6), 3.6min #31 Product VII 83.4 1.5 ESI (+) MS (176) 116.1 1..5. 6 8 1 1 14 16 m/z 5 Product VII ESI (+) MS 3 (176 > 83) 64.7 +MS3(176.6->83.4), 3.6min #313 4 3 1 5 55 6 65 7 75 8 85 9 95 m/z S38

x1 4 Product VII -MS, 3.5min #51 1.5 ESI (-) MS 9.3 1. 89.3 15..5. 188. 113.1 13.1 165. 66.7 74.5 99. 138. 171.1 179.1 86.4 11.1 6 8 1 1 14 16 18 m/z Product VIII x1 5. Product VIII ESI (+) MS 317. 35. 385.1 +MS, 14.7min #1191 1.5 1. 13.1 74.9 335.3.5 8.9 156. 7. 31. 369.3 399.1 41. 478.6. 5 1 15 5 3 35 4 45 m/z S39

x1 6 Product VIII 31.1 -MS, 14.7min #1163 1. ESI (-) MS.8 31.8.6.4.. 33.1 35.6 15 175 5 5 75 3 35 35 m/z x1 5 Product VIII 46. -MS(31.), 14.7min #1164. ESI (-) MS (31) 1.5 1..5 6.4. 134. 196.3 5 1 15 5 3 35 m/z S4

Florfenicol Intens. x1 6 8 Florfenicol 375.3 +MS,.6min #1813 ESI (+) MS 6 4 395.9 34.5 1 3 4 5 6 7 8 9 m/z Intens. x1 7 1.5 Florfenicol ESI (+) MS (375) 34.1 +MS(376.1),.6min #1814 1..75 357.9.5.5. 43.1 375.9 5 3 35 4 m/z S41

Intens. x1 4 5 Florfenicol ESI (+) MS (396) +MS(396.8),.6min #1815 379. 4 3 377.9 1 67.8 96.9 33.1 336.8 359. 8 3 3 34 36 38 m/z Intens. x1 5 Florfenicol 4.9 +MS3(376.1->34.6),.6min #1816 4 ESI (+) MS 3 (375 > 34) 3 1 6. 319.9 5 1 15 5 3 35 4 m/z S4

Intens. x1 7 Florfenicol 356. -MS,.6min #164.8 ESI (-) MS.6.4.. 336.9 393.9 47. 1 3 4 5 6 m/z Intens. x1 6 4 Florfenicol 336. -MS(356.9),.6min #165 ESI (-) MS (356) 3 1 19. 4 6 8 3 3 34 36 38 m/z S43

Intens. x1 4 1.5 1.5 Florfenicol ESI (-) MS 3 (356 > 336) 151.8 184.9 18.8 -MS3(356.9->336.5),.6min #167 1..75 119..5.5. 5 1 15 5 3 m/z 5.9 Product I Intens. x1 6 Product I 6.1 +MS, 4.8min #7 3 ESI (+) MS 1 31.9 4.3 356.3 135. 399.1 5 1 15 5 3 35 4 45 5 m/z S44

Intens. x1 6 Product I 41.9 +MS(6.8), 4.8min #8 1.5 ESI (+) MS (6) 1..5. 115.3 163.1 131. 5 1 15 5 3 m/z Intens. x1 5 Product I 81.9 +MS(3.7), 4.8min #9. ESI (+) MS (3) 1.5 1..5. 5 1 15 5 3 35 4 45 5 55 m/z S45

Intens. x1 5 Product I 115. +MS3(6.8->4.1), 4.9min #1.8 ESI (+) MS 3 (6 > 4).6 163..4 131... 145.1 5.9 188.9 5 75 1 15 15 175 5 5 75 m/z Intens. x1 6 Product I 78.3 -MS, 4.8min #197 ESI (-) MS 3 1 6.6 4 6 8 3 3 34 m/z 316. S46

Intens. x1 6 Product I 58. -MS(78.8), 4.8min #198 1.5 ESI (-) MS (78) 1..5. 5 1 15 5 3 35 4 45 5 m/z Intens. Product I 85.3.8 -MS3(78.8->58.5), 4.9min #193 8 ESI (-) MS 3 (78 > 58) 6 185.8 4-1 1 3 4 5 6 7 m/z S47

Product II x1 6 Product II 339.1 +MS, 1.3min #119 3 ESI (+) MS 36. 86. 34. 1 3.1 4.1 1 3 4 5 6 m/z x1 6 +MS(339.4), 1.3min #111 Product II 34.1 1.5 1. ESI (+) MS (339).75 31.9.5 86.3.5. 5 1 15 5 3 35 4 45 5 m/z S48

x1 6 Product II 341.9 +MS(36.3), 1.3min #1111.8 ESI (+) MS (36).6.4.. 1 3 4 5 6 7 m/z x1 5 6 Product II 85.9 +MS3(339.4->34.4), 1.4min #111 5 ESI (+) MS 3 (339 > 34) 4 3 1 187. 5 1 15 5 3 35 4 45 5 55 m/z 37.6 S49

4 Product II 341. +MS3(36.3->34.1), 1.4min #1113 ESI (+) MS 3 (36 > 34) 3 31.7 1 139.9 1 3 4 5 6 m/z x1 5 8 Product II 3. -MS, 1.3min #877 ESI (-) MS 6 4 118.1 79.3 98.3. 8.4 366. 45. 383. 457.8 51. 1 3 4 5 6 m/z 64.9 S5

x1 4 8 Product II ESI (-) MS (3) 118.1. 63.9 -MS(3.), 1.4min #878 6 4 98. 81.8 145. 183. 5 1 15 5 3 m/z 37.9 x1 4 Product II 35.9 -MS3(3.->64.), 1.4min #879 1.5 ESI (-) MS 3 (3 > 64) 1..75.5.5. 7.9 17.9 79.3 193.1 5 1 15 5 3 35 m/z S51

Product III x1 6 Product III 86.1 +MS, 15.min #134 1.5 ESI (+) MS 6.3 1. 34.1.5 66.4 341.9. 8.5 36. 118.4 135.5 188.4 44.4 385. 46. 5 1 15 5 3 35 4 m/z x1 6 1. Product III ESI (+) MS (86) 186.9 +MS(86.3), 15.1min #1341.8.6.4.. 3. 131. 5 75 1 15 15 175 5 5 75 3 m/z S5

x1 5 1.5 Product III ESI (+) MS 3 (86 > 187) 131.1 +MS3(86.3->187.), 15.1min #1343 1..5 159. 116.1. 6 8 1 1 14 16 18 m/z x1 5 Product III 4. -MS, 15.1min #119 4 3 ESI (-) MS 3. 1 118. 98.3.5 79.4 8.1 368. 338. 4. 64.1 389.9 45.9 449. 5 1 15 5 3 35 4 45 m/z S53

x1 4 Product III 185.9 -MS(4.), 15.1min #113 4 ESI (-) MS (4) 118.1 3.9 3 98. 1 71.5 16. 176.1 6 8 1 1 14 16 18 4 m/z x1 4 Product III 157.9 -MS3(4.->186.), 15.min #1131 1.5 ESI (-) MS (4 > 186) 1..5 18.. 143.1 6 8 1 1 14 16 18 4 m/z S54

Product IV x1 4 4 Product IV ESI (+) MS 15.3 161.1 +MS, 11.3min #11 3 14.1 1. 19.1 197.1 1 176. 191.1 6.8 1.3 17.5 1. 7.8 57.9 79.5 91.3 6 8 1 1 14 16 18 m/z x1 5 1. Product IV 188. -MS, 11.1min #78.8 ESI (-) MS.6.4.. 16. 15.1 18.1 18.1 3.9 4.9 53.9 84. 98.3. 3. 5 75 1 15 15 175 5 5 75 3 m/z S55

Product V x1 5 3 Product V ESI (+) MS 119. 135. +MS, 6.5min #571 1 15.1 178.1 6.8 194.1 85.4 15.4 17.1 163. 6 8 1 1 14 16 18 m/z x1 5 1.5 Product V ESI (-) MS 154. -MS, 6.4min #445 1..5. 79.4 3. 9.3 3.9 199.9 67.9 59.7 11.1 4.7 44. 336. 355.9 415.9 5 1 15 5 3 35 4 m/z S56

Product VI x1 5 Product VI +MS, 7.min #381 4 ESI (+) MS 98.1 3 96.1 78.1 83.4 1 4.4 63.1 81. 67.3 7.175.3 35.3 39.4 39. 47.1 51. 55.3 88.8 93.1 4 5 6 7 8 9 3 m/z x1 6 1.5 Product VI ESI (-) MS 314.4 -MS, 7.min #6 1. 31.1 313.1.5. 93. 367.4 338.1 348.6 18 4 6 8 3 3 34 36 m/z S57

x1 6 1. Product VI 93.7 -MS(314.6), 7.min #6.8 ESI (-) MS (31).6 9..4.. 5 1 15 5 3 35 4 45 5 m/z Figure S6. Mass spectra obtained in ESI (+) and ESI (-) MS n for UV vis (λ > nm) photodegradation solutions of thiamphenicol and florfenicol in pure water. Literature Cited (1) Bader, H.; Sturzenegger, V.; Hoigne, J. Photometric method for the determination of low concentrations of hydrogen peroxide by the peroxidase catalyzed oxidation of N,N-diethyl-p-phenylenediamine (DPD). Water Res. 1988, (9), 119 1115. S58