Computed tomography angiography (CTA) of

Similar documents
IMAGING the AORTA. Mirvat Alasnag FACP, FSCAI, FSCCT, FASE June 1 st, 2011

Acute Aortic Syndromes

ACUTE AORTIC SYNDROMES

Computed tomography (CT) and magnetic resonance

Update on Acute Aortic Syndrome

Case 9799 Stanford type A aortic dissection: US and CT findings

Case Report 1. CTA head. (c) Tele3D Advantage, LLC

CT Imaging of Blunt and Penetrating Vascular Trauma DENNIS FOLEY MEDICAL COLLEGE WISCONSIN

2 nd International Meeting on Aortic Diseases Liege, Belgium September, 2010

Diseases of the Aorta

CT angiography techniques. Boot camp

Thoracic aortic trauma A.T.O.ABDOOL-CARRIM ACADEMIC HEAD VASCULAR SURGERY DEPARTMENT OF SURGERY UNIVERSITY OF WITWATERSRAND

CT of Acute Thoracic Aortic Syndromes Stuart S. Sagel, M.D.

Role of the Radiologist

Χρόνιος διαχωρισμός. υπερηχοκαρδιογραφική. αορτής. παρακολούθηση ή άλλη; Α. Παπασπυρόπουλος ΕΠΙΜΕΛΗΤΗΣ ΓΝ.ΝΙΚΑΙΑΣ ΠΕΜΠΤΗ

FOR CMS (MEDICARE) MEMBERS ONLY NATIONAL COVERAGE DETERMINATION (NCD) FOR COMPUTED TOMOGRAPHY:

Multimodality Imaging in Aortic Diseases:

Case 47 Clinical Presentation

Cardiac Computed Tomography

Multimodality Imaging of the Thoracic Aorta

Acute Aortic Syndromes

Animesh Rathore, MD 4/21/17. Penetrating atherosclerotic ulcers of aorta

Haemodynamically unstable patient with chest trauma

Abdominal and thoracic aneurysm repair

Experience of endovascular procedures on abdominal and thoracic aorta in CA region

Aortic CT: Intramural Hematoma. Leslie E. Quint, M.D.

SYMPOSIA. Coronary CTA. Indications, Patient Selection, and Clinical Implications

Performance of the conformable GORE TAG device in Type B aortic dissection from the GORE GREAT real world registry

Traumatic aortic injury: CT findings, mimics, and therapeutic options

General Cardiovascular Magnetic Resonance Imaging

Development of a Branched LSA Endograft & Ascending Aorta Endograft

Vascular CT Protocols

CUSTOM-MADE SCALLOPED THORACIC ENDOGRAFTS IN DIFFERENT HOSTILE AORTIC ANATOMIES

Essentials of Clinical MR, 2 nd edition. 99. MRA Principles and Carotid MRA

Ultrasound. Computed tomography. Case studies. Utility of IQon Spectral CT in. cardiac imaging

Case 37 Clinical Presentation

Correlation of Cardiac CTA to Conventional Cardiac Angiography in Diagnosing Coronary Artery Stenosis in a Community Based Center

, David Stultz, MD. Cardiac CT. David Stultz, MD Cardiology Fellow, PGY 6 March 28, 2006

Cardiac Imaging Tests

SUPPLEMENTAL MATERIAL

Surgical Procedures and Complications

Aortic Coarctation: Evaluation with Computed Tomography Angiography in Pediatric Patients

General Imaging. Imaging modalities. Incremental CT. Multislice CT Multislice CT [ MDCT ]

Length Measurements of the Aorta After Endovascular Abdominal Aortic Aneurysm Repair

Endovascular Management of Thoracic Aortic Pathology Stéphan Haulon, J Sobocinski, B Maurel, T Martin-Gonzalez, R Spear, A Hertault, R Azzaoui

MODERN METHODS FOR TREATING ABDOMINAL ANEURYSMS AND THORACIC AORTIC DISEASE

Follow-up of Aortic Dissection: How, How Often, Which Consequences Euro Echo 2011

b. To facilitate the management decision of a patient with an equivocal stress test.

Case Report CT Diagnosis of a Thoracic Aort Aneurysm with Type B Aortic Dissection Clinically Misdiagnosed as Acute Pulmonary Embolism

EVAR and TEVAR: Extending Their Use for Rupture and Traumatic Injury. Conflict of Interest. Hypotensive shock 5/5/2014. none

Improvement of Image Quality with ß-Blocker Premedication on ECG-Gated 16-MDCT Coronary Angiography

Cardiac MRI in ACHD What We. ACHD Patients

Case Acute ascending thoracic aortic rupture due to penetrating atherosclerotic ulcer

Post-Op Aorta: Differentiating Normal Post-Op vs. Complications. Linda C. Chu, MD Assistant Professor of Radiology Johns Hopkins University

Index. radiologic.theclinics.com. Note: Page numbers of article titles are in boldface type.

Management of Acute Aortic Syndromes. M. Grabenwoger, MD Dept. of Cardiovascular Surgery Hospital Hietzing, Vienna, Austria

Santi Trimarchi, MD, PhD Vascular Surgeon Thoracic Aortic Research Center, Director IRCCS Policlinico San Donato University of Milan

Multislice CT. - fast scanning - submilimeter slices

Treatment of acute type B aortic dissection: Current status

Critical Evaluation of Chest Computed Tomography Scans for Blunt Descending Thoracic Aortic Injury

IMH/Penetrating Aortic Ulcers/ Saccular Aneurysms: How to manage and when to intervene

Vascular Intervention

9/8/2009 < 1 1,2 3,4 5,6 7,8 9,10 11,12 13,14 15,16 17,18 > 18. Tetralogy of Fallot. Complex Congenital Heart Disease.

Jean M Panneton, MD Professor of Surgery Program Director Vascular Surgery Chief EVMS. Arch Pathology: The Endovascular Era is here

Coronary artery bypass grafting has been a historically. Multislice CT Evaluation of Coronary Artery Bypass Graft Patients SYMPOSIA

Transluminal Stent-graft Placement endovascular surgery

Percutaneous Approaches to Aortic Disease in 2018

cardiac imaging planes planning basic cardiac & aortic views for MR

Low-dose prospective ECG-triggering dual-source CT angiography in infants and children with complex congenital heart disease: first experience

Peter I. Kalmar, 1 Peter Oberwalder, 2 Peter Schedlbauer, 1 Jürgen Steiner, 1 and Rupert H. Portugaller Introduction. 2.

Subclavian artery Stenting

MISSED FINDINGS IN EMERGENCY RADIOLOGY: CASE BASE SESSION 5 th Nordic Trauma Radiology Course Oslo, Norway

CT Chest. Verification of an opacity seen on the straight chest X ray

Acute dissections of the descending thoracic aorta (Debakey

Study of aortic ulcer by using MDCTA

New ASE Guidelines: What you must know

Large veins of the thorax Brachiocephalic veins

Abdominal Aortic Aneurysms. A Surgeons Perspective Dr. Derek D. Muehrcke

AIM 2014 CPT Radiology & Cardiac Codes Requiring Review

Intravascular Ultrasound in the Treatment of Complex Aortic Pathologies. Naixin Kang, M.D. Vascular Surgery Fellow April 26 th, 2018

Endovascular therapy for Ischemic versus Nonischemic complicated acute type B aortic dissection (catbad).

Transcatheter Aortic Valve Implantation as a Bailout Procedure for Acute Aortic Valve Regurgitation During Endovascular Arch Repair

Imaging of Thoracic Trauma: Tips and Traps. Arun C. Nachiappan, MD Associate Professor of Clinical Radiology University of Pennsylvania

Sectional Anatomy Quiz - III

AORTIC DISSECTIONS Current Management. TOMAS D. MARTIN, MD, LAT Professor, TCV Surgery Director UF Health Aortic Disease Center University of Florida

Neurological Complications of TEVAR. Frank J Criado, MD. Union Memorial-MedStar Health Baltimore, MD USA

THORACIC AORTIC DISSECTION

Subject: Endovascular Stent Grafts for Disorders of the Thoracic Aorta

CT approach to complications following endovascular stentgrafting of thoracic and abdominal aorta

I have the following financial relationships to disclose:

Recent developments in cardiac CT

How to achieve a successful proximal sealing in TEVAR? Pr L Canaud

BOGOMOLETS NATIONAL MEDICAL UNIVERSITY DEPARTMENT OF HUMAN ANATOMY. Guidelines. Module 2 Topic of the lesson Aorta. Thoracic aorta.

Total Endovascular Repair Type A Dissection. Eric Herget Interventional Radiology

Assignable revenue codes: Explanation of services:

TEVAR FOR! THORACIC AORTIC TRAUMA"

Katarzyna J. Macura 1, Frank M. Corl, Elliot K. Fishman, David A. Bluemke

Recommendations for Follow-up After Vascular Surgery Arterial Procedures SVS Practice Guidelines

Primary to non-coronary IVUS

Transcription:

Multidetector CT in the Evaluation of Thoracic Aortic Disease The pre-eminent platform for the planning and surveillance of TEVAR patients. BY PETER S. FAIL, MD, FACC, FACP, AND VINOD NAIR, MD, FACC Computed tomography angiography (CTA) of the thoracic aorta has benefited greatly from the advent of multidetector computerized tomography (MDCT). Three-dimensional reconstruction of large datasets allows easy evaluation of pathological changes of the aorta. This improvement coincides with changes in treating thoracic aortic aneurysms (TAAs) because accurate preoperative assessment is critical to the early and late success in thoracic endovascular aortic repair (TEVAR). This article provides an overview of CTA of the thoracic aorta. The choice of imaging modality is diverse when thoracic aortic pathology is suspected. Choosing the right study to image the affected area requires an understanding of the anatomy and the limitations of the modality, as well as the clinical scenario of presentation. Common indications for thoracic aortic CTA are shown in Table 1. As carotid stenting has increased in popularity, the value of thoracic CTA has been shown. Arch evaluation with MDCT reduced the need for unusual maneuvers during stent placement in patients who underwent CTA of the thoracic aorta prior to carotid stenting. Recently, direct planimetric measurement of the aortic valve regurgitant orifice area in the diastole using 64-slice MDCT was shown to provide an accurate, noninvasive technique for detecting and quantifying aortic regurgitation. 1 MDCT has also been shown to provide aortic valve area in addition to ejection fraction and coronary artery anatomy. 2 ACQUISITION CT Thoracic Aorta Imaging Protocol Before beginning the contrast-enhanced scanning, a thick-section (10 mm), unenhanced scan of the chest and the abdomen is performed to visualize the landmarks and to establish the field of view. An additional benefit of the unenhanced scan is to define mural hematoma. Five-millimeter slices are used to eliminate volume averaging that occurs with thicker slices. Unenhanced scanning is also important to define calcification in the presence of a stent graft that may mimic endoleak after contrast administration. 3 Injection pro- TABLE 1. COMMON INDICATIONS FOR CTA OF THE THORACIC AORTA Posttraumatic vascular injury Diagnostic test for disease of the thoracic aorta, including aortic dissection, intramural hematoma, aneurysm, and atheromatous disease such as penetrating ulcers and aortitis Stent graft evaluation Postoperative or postinterventional vascular procedure for luminal patency versus restenosis, as well as complications such as pseudoaneurysms, leaks, and infection related to: Surgical bypass grafts Vascular stents and stent grafts As a diagnostic test for congenital abnormalities of the great vessels and thoracic vasculature, including aortic coarctation Vascular involvement from neoplasm Vasculitis Identification of the source for embolism or occlusion (when the suspected source is the thoracic aorta and/or proximal arch arteries) JANUARY 2008 I ENDOVASCULAR TODAY I 29

A B Figure 1. The difference of rotating the plane of the image into a true vascular axial plane for accurate determination of the TAA diameter. Axial plane (A) and MPR (B). A B Figure 2. Note the distinct borders on the gated image (left), as opposed to the double borders on the nongated image. These occur due to cardiac motion and can be decreased by beta-blockade and gating the study. Gated axial view of ascending thoracic aorta (A), nongated axial view of ascending thoracic aorta (B). tocols and rates can vary slightly, but we typically use an injection rate of 4 ml/s and 125 ml of contrast (gated thoracic CTA evaluation). The acquisition of the image is usually started in the base of the neck extending to the point just below the diaphragm. This is performed because the disease processes affecting the aorta (commonly aortic dissection and aneurysm) frequently involve the supra-aortic great vessels and also to evaluate congenital malformations affecting these vessels. If the clinical symptoms warrant doing so, additional scanning to include the runoff vessels is performed. If needed, delayed scans are performed (usually in 2 minutes) to visualize late filling of the false lumen, endoleaks, or contrast extravasations from rupture. 4 Patients being evaluated for TEVAR are usually scanned to the femoral head. Postprocessing Three-dimensional volume-rendering techniques permit real-time, interactive evaluation in any plane and Figure 3. MIP (coronal plane) showing contrast in the left subclavian vein.the contrast column in the left subclavian vein results in attenuation artifact, making interpretation of the proximal left common carotid artery difficult (arrow).when proximal arch vessels need to be visualized, contrast administration by the left antecubital vein is desirable. projection. This enhances the understanding of vessel dilatation, mural thrombus, branch vessel anatomy, and further allows visualization of vascular structures and adjacent viscera and airways. 5 A ductal diverticulum and the presence of aortic dissection can also be frequently identified with this view. The following postprocessing image reconstruction techniques are commonly available: Multiplanar reconstruction (MPR). Two-dimensional sections with a thickness of 1 voxel across different planes. This mode is very useful in evaluating thoracic aortic disease. Maximum intensity projection (MIP). The highest attenuation voxel is projected in a ray through the scan volume. We find that along with the volume-rendered 30 I ENDOVASCULAR TODAY I JANUARY 2008

Figure 4. A bovine arch. The left common carotid artery arises from the base of the innominate trunk. view, curved planar reformations and review of the axial data are most useful in assessing the thoracic aorta. Axial images are important in the review of source data to identify the presence of artifacts and to see the origins of the coronaries and the bypass grafts. INTERPRETATION OF TAAS BY CTA The three-dimensional volumetric datasets allow the clinician to rotate the aorta into a number of views to best visualize the aortic pathology. As seen in Figure 1, the axial slice of a TAA may overestimate the degree of dilatation of a TAA, whereas the rotation of the image into a true vascular axial plane gives a better representation of the true diameter. Rotating the images in the MPR views can typically achieve this. Gating by ECG has been proposed by some investigators to be a mandatory addition for ascending aorta CT angiograms. 6 In our lab, we routinely use ECG gating for thoracic aortic studies, as well as beta blockade to decrease the heart rate. In our experience, this results in a more accurate study by limiting the amount of motion artifact. There is no doubt that gating the CTA will increase the radiation dosage depending on several different factors, including the length of the scan, but this can be modified by modulating the CT dose as it is done in coronary CTA. The exact phase of the cardiac cycle may be less important in thoracic CTA as compared to the coronaries when measuring the diameter; however, one should be aware that the end-systole phase and the end-diastole phase may give slightly different volumes and lengths. This difference becomes Figure 5. Three-dimensional volume-rendered view of the aortic arch.the right subclavian artery (dotted arrow) arises distal to the left subclavian artery and courses posterior to the trachea and esophagus to cross the midline (see also Figure 6). Figure 6. Axial view of the great vessels. The origin of the right subclavian artery in relation to other arterial branches and midline structures in dysphagia lusoria. Note the posterior origin of the right subclavian artery and calcification of the origins of the left subclavian and left common carotid artery. RS = right subclavian artery, LS = left subclavian artery, LCCA = left common carotid artery, T = trachea. very important for the evaluation of TEVAR in which volumetric changes may predict potential complications after implantation. 7 Most common artifacts seen during the MDCT of the thoracic aorta are due to cardiac motion (Figure 2). Motion artifacts from aortic wall motion have been shown to simulate the appearance of a dissection flap, particularly in the aortic root 32 I ENDOVASCULAR TODAY I JANUARY 2008

Figure 7. Axial view of the esophagus constricted between the right subclavian artery and trachea dysphagia lusoria. and the ascending thoracic aorta, leading to an erroneous diagnosis of ascending aortic dissection. 8-10 Artifacts due to surgical clips and venous contamination and attenuation from adjacent venous structures (Figure 3) are also observed. NORMAL ANATOMY The ascending aorta includes the aortic root, as well as the ascending portion of the thoracic aorta. The normal diameter of the aortic root is <4 cm. The ascending aorta usually measures <3.5 cm at the level of the pulmonary artery. The ascending aorta terminates at the level of the innominate trunk. The right and left main coronary arteries arise from their respective sinuses from the aortic root. The aortic arch extends from the innominate trunk to the aortic isthmus. The normal diameter of the aortic arch is 3 cm. The descending thoracic aorta starts at the isthmus and extends to the diaphragmatic crura. A normal descending thoracic aorta measures 2.5 mm in diameter. In approximately 70% 11 of the population, there are three vessels arising from the aortic arch. From right to left, they are the innominate trunk, the left common carotid artery, and the subclavian artery. The most common variant is the left common carotid artery sharing an origin with the innominate trunk, which is seen in 13% of the general population. This pattern, along with the left common carotid artery arising from the innominate trunk, has been erroneously named the bovine arch (Figure 4). 12 Both of these patterns are seen more frequently in African Americans. A true bovine arch is seen Figure 8. MIP view. Note the dilated aortic root in a patient with Marfan s syndrome with evidence of a DeBakey type 1 (Stanford classification A) aortic dissection. in cattle, where a single trunk arises from the thoracic aorta to give rise to the right and left subclavian arteries and a bicarotid trunk. The bicarotid trunk then divides into the left and right carotid arteries. 13 An aberrant right subclavian artery is the most common vascular ring anomaly in the aortic arch, with a reported incidence of 0.5% to 2% (Figure 5). 14 Although the majority of these patients are asymptomatic, approximately 10% of these patients experience dysphagia due to extrinsic compression on the posterior aspect of the thoracic esophagus a condition called dysphagia lusoria (Figures 5 through 7). An anomalous origin of the left vertebral artery arising from the aortic arch is relatively JANUARY 2008 I ENDOVASCULAR TODAY I 33

common, with a reported prevalence of 2.4% to 5.8%. 15 An anomalous origin of the right vertebral artery is rare. Anomalous origins of vertebral arteries are usually asymptomatic. CTA is an established technique in assessment of the TAA and aortic dissection because it rapidly and precisely evaluates the thoracic aorta to determine the location and extent of the aneurysm and the relationship of the aneurysm to major branch vessels and surrounding structures. CTA can classify the dissection according to DeBakey or Stanford classification. Easy accessibility and speed of the test, especially in an unstable patient, makes MDCT the ideal test in this situation. CTA is valuable in identifying the intimal flap (Figure 8); visualizing branch vessel involvement, pericardial fluid (due to intrapericardial rupture), and periaortic hematoma (aortic rupture); identifying the extent of dissection; and evaluating the size of the hematoma, the patency of the false lumen, and the degree of the true lumen compression. Intramural hematoma is a clinical entity distinct from aortic dissection and is characterized by a high attenuation area within the aortic wall on a noncontrast CT without a visible intimal flap. Conventional angiography usually does not reveal the presence of an intramural hematoma. 16 MDCT of the thoracic aorta is the study of choice to evaluate the thoracic aorta in planning for endograft repair of the TAA. Usually, fine 3-mm slices are performed from the neck to the femoral heads. MDCT aids in evaluating the great vessels to determine the proximal landing zone, establish the patency of the vertebral vessels (stent graft covering the subclavian artery), and determine the common femoral artery access. Traumatic rupture of the proximal great vessels most commonly occurs after blunt chest trauma in highspeed motor vehicle accidents. 17 Aortography has been the traditional investigational method for these patients. With the advent of MDCT, the entire chest can be scanned during a single bolus; this has led to the widespread use of this modality in patients with blunt chest trauma. 18 Multiple studies have documented 100% negative predictive value for MDCT. 19-21 Compared to angiography, contrast-enhanced spiral CT has not only been shown to be less invasive, less time consuming, and less expensive, but also reveals other injuries requiring rapid intervention. 22 CONCLUSION CTA is instrumental in diagnosing the pathology of the thoracic aorta and can readily identify dissections, aneurysms, intramural hematoma, and ulcers. CTA of the aortic arch may decrease complications and help with planning of carotid interventions. CTA is the preeminent platform for the planning and surveillance of TEVAR patients. Peter S. Fail, MD, FACC, FACP, is Director of the Cardiac Catheterization Laboratories and Interventional Research at the Cardiovascular Institute of the South in Houma, Louisiana. He has disclosed that he holds no financial interest in any product or manufacturer mentioned herein. Dr. Fail may be reached at peter.fail@cardio.com. Vinod Nair, MD, FACC, is with the Cardiovascular Institute of the South in Houma, Louisiana. He has disclosed that he holds no financial interest in any product or manufacturer mentioned herein. Dr. Nair may be reached at vinod.nair@cardio.com. 1. Jassal DS, Shapiro MD, Neilan TG, et al. 64-slice multidetector computed tomography (MDCT) for detection of aortic regurgitation and quantification of severity. Invest Radiol. 2007;42:507-512. 2. Laissy JP, Messika-Zeitoun DM, Serfaty JM, et al. Comprehensive evaluation of preoperative patients with aortic valve stenosis: usefulness of cardiac multidetector computed tomography. Heart. 2007;93:1121-1125. 3. Schoepf UJ, Aldrich JE, eds. Multidetector-row CT of the Thorax. New York, New York: Springer; 2004. 4. Abbara S, Kalva S, Cury RC, et al. Thoracic aortic disease. J Cardiovasc Comput Tomogr. 2007;1:40-54. 5. Lawler LP, Fishman EK. Multidetector row CT of thoracic disease with emphasis on 3D volume rendering and CT angiography. Radiographics. 2001;21:1257-1273. 6. Fischmann AM, Lookstein RA. Dynamic ECG-gated CTA of the thoracic aorta. Endovasc Today. 2007;10(suppl):7-10. 7. Feezor RJ, Huber TS, Martin TD, et al. Perioperative differences between endovascular repair of thoracic and abdominal aortic diseases. J Vasc Surg. 2007;45:86-89. 8. Burns MA, Molina PL, Gutierrez FR, et al. Motion artifact simulating aortic dissection on CT. Am J Roentgenol. 1991;157:465-467. 9. Qanadli SD, El Hajjam M, Mesurolle B, et al. Motion artifacts of the aorta simulating aortic dissection on spiral CT. J Comput Assist Tomogr. 1999;23:1-6. 10. Duvernoy O, Coulden R, Ytterberg C. Aortic motion: a potential pitfall in CT imaging of dissection in the ascending aorta. J Comput Assist Tomogr. 1995;19:569-572. 11. Lippert H, Pabst R. Aortic arch. In: Arterial Variations in Man: Classification and Frequency. Munich, Germany: JF Bergmann-Verlag; 1985:3-10. 12. Layton KF, Kallmes DF, Cloft HJ, et al. Bovine aortic arch variant in humans: clarification of a common misnomer. Am J Neuroradiol. 2006;27:1541-1542. 13. Habel RE, Budras KD. Thoracic cavity. In: Bovine Anatomy: An Illustrated Text. Hanover, Germany: Schlütersche GmbH & Co; 2003:62. 14. Epstein DA, Debord JR. Abnormalities associated with aberrant right subclavian arteries: a case report. Vasc Endovasc Surg. 2002;36:297-303. 15. Albayram S, Gailloud P, Wasserman BA. Bilateral arch origin of the vertebral arteries. Am J Neuroradiol. 2002;23:455-458. 16. Choi SH, Choi SJ, Kim JH, et al. Useful CT findings for predicting the progression of aortic intramural hematoma to overt aortic dissection. J Comput Assist Tomogr. 2001;25:295-299. 17. Fabian TC, Davis KA, Gavant ML, et al. Prospective study of blunt aortic injury: helical CT is diagnostic and antihypertensive therapy reduces rupture. Ann Surg. 1998;227:666-677. 18. Ellis JD, Mayo JR. Computed tomography evaluation of traumatic rupture of the thoracic aorta: an outcome study. Can J Assoc Radiol. 2007;58:22-26. 19. Mirvis SE, Shanmuganathan K, Miller BH, et al. Traumatic aortic injury: diagnosis with contrast-enhanced thoracic CT five-year experience at a major trauma center. Radiology. 1996;200:413-422. 20. Scaglione M, Pinto A, Pinto F, et al. Role of contrast-enhanced helical CT in the evaluation of acute thoracic aortic injuries after blunt chest trauma. Eur Radiol. 2001;11:2444-2448. 21. Mirvis SE, Shanmuganathan K, Buell J, et al. Use of spiral computed tomography for the assessment of blunt trauma patients with potential aortic injury. J Trauma. 1998;45:922-930. 22. Parker MS, Matheson TL, Rao AV, et al. Making the transition: the role of helical CT in the evaluation of potentially acute thoracic aortic injuries. Am J Roentgenol. 2001;176:1267-1272. 34 I ENDOVASCULAR TODAY I JANUARY 2008