B1 B Lymphocytes Play a Critical Role in Host Protection against Lymphatic Filarial Parasites

Similar documents
Early tissue migration of and host response to Brugia pahangi in gerbils

In vitro bactericidal assay Fig. S8 Gentamicin protection assay Phagocytosis assay

PARASITOLOGY CASE HISTORY #13 (BLOOD PARASITES) (Lynne S. Garcia)

SUPPLEMENTARY INFORMATION

Supplementary Figures

Yoshinori Mitsui 1* and Mitsumasa Miura 1. Received 4 June, 2010 Accepted 4 August, 2010 Published online 28 August, 2010

Immunology Lecture 4. Clinical Relevance of the Immune System

Amyloidosis Induced in Hamsters by a Filarid Parasite (Dipetalonema viteae)

A new Rag2/Il2rg SCID rat. Enabling cell line xenografts. Accelerating PDX establishment. Humanizing the immune system

Downloaded from:

STRONGYLOIDES RATTI INFECTIONS IN CONGENITALLY HYPOTHYMIC (NUDE) MICE

In vitro human regulatory T cell expansion

Interferon γ regulates idiopathic pneumonia syndrome, a. Th17 + CD4 + T-cell-mediated GvH disease

In vitro human regulatory T cell expansion

Drug discovery and development for the treatment and control of filariasis: repurposing emodepside

B-Cell Deficiency Suppresses Vaccine-Induced Protection against Murine Filariasis but Does Not Increase the Recovery Rate for Primary Infection

Supplementary Figure 1 Protease allergens induce IgE and IgG1 production. (a-c)

Primary Immunodeficiency

Supplementary Information

Comprehensive evaluation of human immune system reconstitution in NSG. and NSG -SGM3 mouse models toward the development of a novel ONCO-HU

IMMUNO-EPIDEMIOLOGY OF BANCROFTIAN FILARIASIS : A 14-YEAR FOLLOW-UP STUDY IN ODISHA, INDIA

Supplementary Figure 1. H-PGDS deficiency does not affect GI tract functions and anaphylactic reaction. (a) Representative pictures of H&E-stained

Rapid antigen-specific T cell enrichment (Rapid ARTE)

MagniSort Mouse CD4 Naive T cell Enrichment Kit Catalog Number: RUO: For Research Use Only. Not for use in diagnostic procedures.

Detailed step-by-step operating procedures for NK cell and CTL degranulation assays

COLONIZATION OF MANSONIA DIVES SCHINER IN A FIELD INSECTARY

Direct ex vivo characterization of human antigen-specific CD154 + CD4 + T cells Rapid antigen-reactive T cell enrichment (Rapid ARTE)

T Cell Activation. Patricia Fitzgerald-Bocarsly March 18, 2009

44th Myanmar Health Research Congress

Lecture 5: Dr. Jabar Etaby

CONTRACTING ORGANIZATION: Johns Hopkins University School of Medicine Baltimore, MD 21205

C21 - The Lymphatic and Immune System. How are lymphatic capillaries different than continuous capillaries? Does size matter here? Explain.

UNIT 6: PHYSIOLOGY Chapter 31: Immune System and Disease

Autoimmunity and Primary Immune Deficiency

Supporting Online Material for

Cytokine profiles of filarial granulomas in jirds infected with Brugia pahangi

Malaria. Population at Risk. Infectious Disease epidemiology BMTRY 713 (Lecture 23) Epidemiology of Malaria. April 6, Selassie AW (DPHS) 1

D CD8 T cell number (x10 6 )

Supporting Information

The Adaptive Immune Responses

ULTRASTRUCTURAL CHANGES IN THE INFECTIVE LARVAE OF NIPPOSTRONGYLUS BRASILIENSIS IN THE SKIN OF IMMUNE MICE

Supplementary Information:

SUPPLEMENTARY INFORMATION

Out of the IgM B cells that develop daily in the

Primary Adult Naïve CD4+ CD45RA+ Cells. Prepared by: David Randolph at University of Alabama, Birmingham

POSTGRADUATE INSTITUTE OF MEDICINE UNIVERSITY OF COLOMBO MD (MEDICAL PARASITOLOGY) EXAMINATION JANUARY, 2001 PAPER 1

Immunological Aspects of Parasitic Diseases in Immunocompromised Individuals. Taniawati Supali. Department of Parasitology

Supplementary Figure 1 Lymphocytes can be tracked for at least 4 weeks after

Parasitic Protozoa, Helminths, and Arthropod Vectors

PART A. True/False. Indicate in the space whether each of the following statements are true or false.

Evaluating Vaccine Candidates for Filariasis. Christopher Paul Morris

Parasites transmitted by vectors

Generation of ST2-GFP reporter mice and characterization of ILC1 cells following infection

Eosinophils are required. for the maintenance of plasma cells in the bone marrow

pro-b large pre-b small pre-b CCCP (µm) Rag1 -/- ;33.C9HCki

Immunologically Induced and Elicited Local

District NTD Training module 9 Learners Guide

MagniSort Human CD4 Memory T cell Enrichment Kit Catalog Number: RUO: For Research Use Only. Not for use in diagnostic procedures.

Efficient Isolation of Mouse Liver NKT Cells by Perfusion

Peripheral Cytokine Responses to Trichuris muris Reflect Those Occurring Locally at the Site of Infection

Preface and Acknowledgments Preface and Acknowledgments to the Third Edition Preface to the Second Edition Preface to the First Edition

Development of B and T lymphocytes

Memory NK cells during mousepox infection. Min Fang, Ph.D, Professor Institute of Microbiology, Chinese Academy of Science

Current CEIRS Program

Cytokines modulate the functional activities of individual cells and tissues both under normal and pathologic conditions Interleukins,

Health care workers and infectious diseases

During Murine Cytomegalovirus Infection

Examples of questions for Cellular Immunology/Cellular Biology and Immunology

Introduction Parasitology. Parasitology Department Medical Faculty of Universitas Sumatera Utara

SUPPLEMENTARY INFORMATION. CXCR4 inhibitors could benefit to HER2 but not to Triple-Negative. breast cancer patients

The Development of Lymphocytes: B Cell Development in the Bone Marrow & Peripheral Lymphoid Tissue Deborah A. Lebman, Ph.D.

Supplementary Materials for

Acquired Immunity 2. - Vaccines & Immunological Memory - Wataru Ise. WPI Immunology Frontier Research Center (IFReC) Osaka University.

STUDY OF THE MORPHOLOGICAL CHARACTERISTICS OF SCHISTOSOMA MANSONI IN MICE, SQUIRRELS, AND HAMSTERS

Chapter 26. Newborn Screening

Canberra, Australia). CD11c-DTR-OVA-GFP (B6.CD11c-OVA), B6.luc + and. Cancer Research Center, Germany). B6 or BALB/c.FoxP3-DTR-GFP mice were

Physiology Unit 3. ADAPTIVE IMMUNITY The Specific Immune Response

Ph.D. Thesis: Protective immune response in P.falciparum malaria 2011 CHAPTER I: Introduction. S.D. Lourembam 16

TITLE: Development of Antigen Presenting Cells for adoptive immunotherapy in prostate cancer

Atiporn Saeung 1, Gi-Sik Min 2, Sorawat Thongsahuan 3, Kritsana Taai 1, Siripan Songsawatkiat 1 and Wej Choochote 1

Supporting Information

Ex vivo Human Antigen-specific T Cell Proliferation and Degranulation Willemijn Hobo 1, Wieger Norde 1 and Harry Dolstra 2*

Effector T Cells and

INTRABULBAR INOCULATION OF JAPANESE ENCEPHALITIS VIRUS TO MICE

Application Information Bulletin: Human NK Cells Phenotypic characterizing of human Natural Killer (NK) cell populations in peripheral blood

Supplementary Information

Supplementary Figure 1. Antibiotic partially rescues mice from sepsis. (ab) BALB/c mice under CLP were treated with antibiotic or PBS.

Goals. Goals. From Bench to Cageside: Immunology of Humanizing Mice

From Bench to Cageside: Immunology of Humanizing Mice. Zachary T Freeman

The site of action of the ichthyosis locus (ic) in the mouse, as determined by dermal-epidermal recombinations

Cover Page. The handle holds various files of this Leiden University dissertation.

T H 1, T H 2 and T H 17 polarization of naïve CD4 + mouse T cells

Cell isolation. Spleen and lymph nodes (axillary, inguinal) were removed from mice

MagniSort Mouse CD4 T cell Enrichment Kit Catalog Number: RUO: For Research Use Only. Not for use in diagnostic procedures.

VEGFR2-Mediated Vascular Dilation as a Mechanism of VEGF-Induced Anemia and Bone Marrow Cell Mobilization

Introduction and overview of the immune System:

TITLE: Treatment of Dengue Virus Infection with Repurposed Pharmaceuticals that Inhibit Autophagy

T Cell Differentiation

Question 1. Kupffer cells, microglial cells and osteoclasts are all examples of what type of immune system cell?

PREPARED FOR: U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland

Transcription:

Published Online: 21 February, 2000 Supp Info: http://doi.org/10.1084/jem.191.4.731 Downloaded from jem.rupress.org on January 24, 2019 Brief Definitive Report B1 B Lymphocytes Play a Critical Role in Host Protection against Lymphatic Filarial Parasites By Natalia Paciorkowski,* Patricia Porte,* Leonard D. Shultz, and T.V. Rajan* From the *University of Connecticut Health Center, Farmington, Connecticut 06030-3105; and The Jackson Laboratory, Bar Harbor, Maine 04609 Abstract Host defense against multicellular, extracellular pathogens such as nematode parasites is believed to be mediated largely, if not exclusively, by T lymphocytes. During our investigations into the course of Brugia malayi and Brugia pahangi infections in immunodeficient mouse models, we found that mice lacking B lymphocytes were permissive for Brugian infections, whereas immunocompetent mice were uniformly resistant. Mice bearing the Btk xid mutation were as permissive as those lacking all B cells, suggesting that the B1 subset may be responsible for host protection. Reconstitution of immunodeficient recombination activating gene (Rag)-1 / mice with B1 B cells conferred resistance, even in the absence of conventional B2 lymphocytes and most T cells. These results suggest that B1 B cells are necessary to mediate host resistance to Brugian infection. Our data are consistent with a model wherein early resistance to B. malayi is mediated by humoral immune response, with a significant attrition of the incoming infectious larval load. Sterile clearance of the remaining parasite burden appears to require cellmediated immunity. These data raise the possibility that the identification of molecule(s) recognized by humoral immune mechanisms might help generate prophylactic vaccines. Key words: B cells lymphatic filariasis Brugia malayi Brugia pahangi host protection Introduction Filarial parasites cause lymphatic filariasis, a disease that is estimated to currently affect 120 million people worldwide (1). The parasites are transmitted to mammals by mosquitoes as infective third stage larvae (L3), which subsequently develop into L4 and adult worms in the mammalian hosts. Adult male and female parasites reside in the lymphatics and produce numerous microfilariae that find their way into the systemic circulation, from where they can be picked up by a feeding mosquito. Development in the arthropod vector is obligatory for these organisms. Over the last 20 years, considerable progress has been made in understanding the host parasite relationship during filarial infection using existing animal models, such as Mongolian jird (2), cat (3), or mouse (4), as well as through cross-sectional correlative studies of the affected population from the filariasis endemic areas (5). Despite the significant advances in elucidating the role of the immune system during the infection and the presence of two efficient chemotherapeutic agents, lymphatic filariasis continues to be a Address correspondence to T.V. Rajan, Department of Pathology, University of Connecticut Health Center, Farmington, CT 06030-3105. Phone: 860-679-2196; Fax: 860-679-2936; E-mail: rajan@neuron.uchc.edu major public health problem and the mechanism(s) of protective immunity remain unresolved. In this report, we report our analysis of the role of B lymphocytes in host protection against Brugia infection in mice. Materials and Methods Mice. C57BL/6J (hereafter B6), C57BL/6J Rag-1 null (hereafter Rag-1 null ), C57BL/6J-Hfh11 nu (hereafter NUDE), CBA/ CaHN-Btk xid /J (hereafter CBA/N), and CBA/CaJ mice were obtained from the colony of L.D. Shultz at The Jackson Laboratory. C57BL/6J-Prkdc scid (hereafter SCID) and C57BL/6J-Igh6 null (hereafter MT) mice were obtained from National Institutes for Aging, Bethesda, MD. All mice were housed in microisolator cages to reduce the incidence of intercurrent infections. To control for the confounding variables of age and sex, all mice used in the study were males between 4 and 8 wk of age. Brugia Infection. Brugia malayi and Brugia pahangi third stage (L3) larvae were obtained from the University of Georgia (Athens, GA) through a contract with the National Institutes of Health (U.S. Japan Collaborative Program in Filariasis) or from TRS, Inc. (Athens, GA). The L3 larvae were injected intraperitoneally at a dose of 50 L3/mouse. The intraperitoneal route of infection was chosen because it enables us to accurately quantify 731 J. Exp. Med. The Rockefeller University Press 0022-1007/2000/02/731/05 $5.00 Volume 191, Number 4, February 21, 2000 731 735 http://www.jem.org

worm burdens, as the worms remain within the peritoneal cavity and seldom migrate elsewhere. In addition, the larvae proceed through their developmental stages with the same kinetics after intraperitoneal injection as with the more natural subcutaneous route of infection (6). Mice were necropsied at varying times after infection, and the peritoneal cavities were washed with RPMI 1640 (GIBCO BRL) to recover viable L4 or adult worms. In addition, the mice with their peritoneal cavities open were soaked in Trisbuffered saline to allow the remaining worms to crawl out. Worm counts were performed under a dissecting microscope. Worm burdens were expressed as a percentage of the original infective dose (50 L3). Immune Reconstitution of Mice. For peritoneal exudate cell (PEC) transfers, the protocol was used as described by Forster and Rajewsky (7). In brief, peritoneal lavage was performed on naive age-matched male donors with 10 ml of ice-cold RPMI 1640 supplemented with 10% FBS. Peritoneal lavage was filtered through 100- m mesh nylon fabric (Tetko, Inc.), the cells were pooled, and 3 10 6 cells were injected into recipients intraperitoneally. Flow Cytometry. PECs were collected from animals individually, counted, and adjusted to 10 7 cells/ml in staining buffer (PBS, 0.2% BSA, 0.1% NaN 3 ). 10 6 cells (100 l) were incubated with 10 100 l of appropriately diluted antibody. Antibodies used were: CD3-FITC, CD19-biotin, CD5-PE, Mac-1 biotin, CD4- PE, and CD8-PE from PharMingen, and IgM-FITC from Kirkegaard & Perry Laboratories. After staining, cells were washed twice with staining buffer and fixed in 0.5% buffered formalin. Cells were run on a FACScalibur (Becton Dickinson) using CELLQuest software (Becton Dickinson). Additional analyses were performed using WinMDI (Joseph Trotter, The Scripps Research Institute, Palo Alto, CA). Results and Discussion The Absence of B Lymphocytes Renders Mice Permissive to Brugia Infection. The importance of T cells in host protection against filarial infection is well documented in both the human parasite B. malayi (6) and the closely related parasite of cats, B. pahangi (8, 9). In contrast, the role of B cells in host protection against filariasis remains controversial. Several investigators have documented the inability to transfer protective immunity with serum (10). In addition, previously published data demonstrate normal clearance of filarial infection in B cell deficient C57BL/6J MT mice (11). However, the latter study was performed on mice of the segregating (C57BL/6J 129/Ola) background. Our work over the last few years has demonstrated that the background of the mouse strain has profound effects on host parasite interactions (12). Indeed, certain backgrounds are poorly permissive to infection even in the absence of adaptive immunity (12). In light of these findings, we reevaluated the role of T versus B lymphocytes in filarial infection using immunodeficient mice on the B6, CBA, and BALB/c backgrounds, which are all permissive for Brugian infections. Our studies revealed that mice homozygous for the induced Igh6 null mutation, which causes a profound deficiency of B lymphocytes, are permissive to a level comparable to B6 SCID Figure 1. Comparison of B. pahangi infection in C57BL/6J Igh6 null, Hfh11 nu, and / mice. Cohorts of age-matched B6 /, Hfh11 nu, and Igh6 null male mice received intraperitoneal injection of 50 B. pahangi L3. Batches of five mice of each group were necropsied at 1, 2, and 3 wk (w) after infection. Worm burdens were quantitated and expressed as a percentage of the infective dose (50). The bars represent average worm recoveries from five mice SD. White bars, B6 / ; gray bars, B6 Hfh11 nu ; hatched bars, B6 Igh6 null mice. mice, which lack both B and T lymphocyte subsets (13). We repeated this experiment with the closely related filarial nematode, B. pahangi. The results are shown in Fig. 1. Mice that lack B cells fail to control B. pahangi infection, just as they are unable to contain B. malayi infection. In contrast, B cell competent but T cell deficient B6 NUDE animals demonstrate reduced worm burdens as early as 1 wk after infection. However, it is important to stress that the reduced worm burdens in these mice persist indefinitely, and the mice become patent and productive of microfilariae. Thus, B cell competent T cell deficient mice reduce worm burdens early in infection through a T cell independent mechanism, but do not accomplish sterile immunity seen in fully immunocompetent / mice. The Loss of B1 B Cell Function Correlates with Increased Filarial Worm Burdens in Mice. To determine whether B1 B lymphocytes are responsible for the permissiveness of B-less mice to Brugian infection, we compared the growth of B. malayi in sex- and age-matched cohorts of wild-type and 732 B Lymphocytes in Lymphatic Filariasis

Figure 2. Course of B. malayi infection in CBA/N and CBA/CaJ mice. Cohorts of age-matched CBA/N and CBA/CaJ male mice received intraperitoneal injection of 50 B. malayi L3. Batches of five mice of each group were necropsied at 2, 4, and 6 wk after infection. Worm burdens were quantitated and expressed as a percentage of the infective dose (50). The bars represent average worm recoveries from five mice SD. White bars, CBA/N; gray bars, CBA/J mice. *Significantly different worm burdens compared with matched controls (P 0.05). Figure 3. Comparison of B. pahangi infection in CBA/N mice vs. PEC-reconstituted littermates. PECs were collected from uninfected CBA/CaJ adult male mice by peritoneal lavage, pooled, and 3 10 6 cells were injected intraperitoneally per recipient into CBA/N male mice (n 10). 6 d later, reconstituted mice and nonreconstituted age-matched CBA/N controls (n 9) received 50 B. pahangi L3 intraperitoneally. Both groups were necropsied at 2 wk after infection, and worm burdens were determined as described above. PEC-CBA/N, CBA/N mice reconstituted with PEC from CBA/CaJ mice. PEC-CBA/N mice had statistically significantly lower worm burdens than controls, P 0.002. Btk xid mice. The Btk xid mutation results in an X-linked immunodeficiency (xid), due to a defective Bruton s tyrosine kinase (Btk). Human patients with this genetic defect exhibit a severe agammaglobulinemia, but the murine homologue has a milder deficit. Mice bearing the Btk xid mutation lack peritoneal B1 B lymphocytes, but show only a 30 50% reduction in other B lymphocyte populations (14). Our experiments with mice bearing the Btk xid mutation, conducted on six different occasions, using both B. malayi and B. pahangi and different mouse backgrounds matched Figure 4. (A) Relative amounts of peritoneal T and B lymphocytes in CBA/N mice vs. PEC-reconstituted littermates 2 wk after B. pahangi infection. PECs were collected from both cohorts of mice by peritoneal lavage, stained with anti mouse CD19-biotin (for B lymphocytes) and anti mouse CD3- FITC (for T lymphocytes) antibodies, and analyzed by flow cytometry. Lymphocytes recovered from each individual mouse were analyzed separately. Bars represent the average percentages of T or B cells in total PEC populations SD. (B) Comparison of peritoneal B lymphocytes in PEC-reconstituted vs. nonmanipulated CBA/N mice. Peritoneal lymphocytes were collected from B. pahangi infected mice at 2 wk after infection and stained with IgM- FITC, CD5-PE, and CD19-biotin. B lymphocytes were gated as CD19 cells and further divided on the basis of surface IgM and CD5 expression. In both panels, CD19 gated peritoneal lymphocytes are analyzed for expression of CD5 (y-axis) and IgM (x-axis). Left, representative CBA/N mice reconstituted with PECs from uninfected CBA/CaJ mouse; right, representative unmanipulated CBA/N mouse. Note that the unmanipulated mouse has no CD5 cells; the mouse with PECs from CBA/CaJ has abundant CD5 cells. 733 Paciorkowski et al. Brief Definitive Report

Figure 5. Comparison of B. pahangi infection in PEC-reconstituted Rag-1 null mice vs. nonmanipulated littermates. PECs were collected from adult B6 / males as described above and injected into age-matched B6 Rag-1 null recipients intraperitoneally. 3 wk later, cohorts of reconstituted mice and nonreconstituted B6 Rag-1 null controls were injected intraperitoneally with 50 B. pahangi L3. Batches of five mice from each group were necropsied at 2 and 4 wk after infection, and quantitative worm recovery was performed. Each bar represents average worm burdens from five animals SD. White bars, naive B6 Rag-1 null mice; hatched bars, PEC-reconstituted B6 Rag-1 null mice. At both time points, comparisons of the two groups reveal that the worm burdens are statistically significantly different (*P 0.05). for the Btk xid and Btk / genotypes reveal a striking pattern of divergence between these two strains. Whereas immunocompetent mice of all three backgrounds eliminated worms by the third week of infection, mice with the Btk xid phenotype bear significant worm burdens as late as 6 wk after infection (Fig. 2). B1 Cell Reconstitution Protects Btk xid Mice against Brugia Infection. Since Btk xid mice have deficits in B1 B lymphocytes, B2 B lymphocytes, and mast cells, we sought to further document that the lack of B1 lymphocytes is responsible for the permissiveness of Btk xid mice (14). Therefore, we reconstituted CBA/N mice with PECs from sexmatched uninfected CBA/CaJ mice. PECs are known to be enriched for B1 B cells, and the protocol for their isolation and transfer is well established (7). 6 d after reconstitution, reconstituted CBA/N mice (n 10) and nonreconstituted controls (n 9) received 50 B. pahangi L3 intraperitoneally. Both cohorts of mice were necropsied 2 wk after infection, and worm burdens were determined. The results, shown in Fig. 3, demonstrate a 50% reduction in worm burdens in PEC-reconstituted CBA/N mice compared with controls. At the time of necropsy, PECs from both reconstituted and nonmanipulated animals were recovered and stained for the presence of B1 or B2 lymphocytes, as well as T cells. FACS analyses were performed on each mouse individually; however, since the animals within a cohort showed remarkable homogeneity, data are shown in Fig. 4 B from only one animal. Whereas there was little difference in the percentages of T cells between PEC-reconstituted and nonreconstituted CBA/N mice, the former show a significant increase in B lymphocyte percentage (Fig. 4 A). In addition, a population of CD5 cells, missing in the control group, is seen in the CD19 IgM lymphocyte subset of PEC-reconstituted CBA/N mice. Thus, it would appear that host resistance to Brugia infection requires B1 B lymphocytes. Reconstitution of B6 Rag-1 null Mice with PECs from Naive B6 Donors Confers Resistance to Brugia Infection. We next wanted to determine whether B1 B lymphocytes are sufficient for host protection. To address this question, we reconstituted B6 Rag-1 null male mice with peritoneal lymphocytes from naive immunocompetent B6 male donors. Each recipient animal received 3 10 6 peritoneal lymphocytes. 3 wk later, cohorts of reconstituted and wild-type B6 Rag- 1 null mice were injected intraperitoneally with 50 B. pahangi. Batches of five mice from each group were necropsied at 2 and 4 wk after infection. Fig. 5 demonstrates that at both time points reconstituted mice had significantly lower worm burdens than nonreconstituted controls. Analysis of peritoneal lymphocytes revealed that although reconstituted mice harbored a few CD3 cells, the majority of lymphocytes in the peritoneal cavity were B cells (CD19 ). Moreover, all of the B lymphocytes manifested the B1 phenotype (IgM hi, Mac-1, CD5 / ). How might B1 lymphocytes provide host protection against this large, multicellular, extracellular organism that is surrounded by a thick, impervious cuticle? They might act as early antigen-presenting cells to initiate T cell responses. In addition, B1 lymphocytes are known to produce IL-10 (15), which might polarize the immune response towards Th2 dominance, believed to be important in host defense against nematode parasitism. Finally, B1 lymphocytes may combat filarial parasites via antibody production. Although all three are possible and not mutually exclusive, we favor the last. B1 cells are known to produce antibodies to a variety of nonpeptide antigens, many of which seem to be conserved among pathogenic organisms. Phosphorylcholine (PC), a small amphipathic molecule that is present abundantly on excretory/secretory (E/S) molecules of filarial parasites, is one such immunogen. We propose that the presence of PC on E/S products is not accidental and that it is required for either communication between worms themselves or for host parasite interaction that is necessary for successful development of the larvae. One such interaction may involve host NK cells. We have recently shown that some product and/or function of NK cells is critically required for B. malayi to mature in the mammalian host (12). E/S products of Brugia origin may act directly or indirectly on NK cells, causing them to produce a morphogen required for parasite development. Host anti-pc antibodies can successfully sequester these E/S products and prevent the obligate host parasite interaction. The possibility of eliminating the infection by blocking the parasite function of filarial nematodes opens up new opportunities towards vaccine development that have not yet been explored in infectious disease research. Although a 50% protection might seem trivial, it is important to point out that in the natural state, target individuals are chal- 734 B Lymphocytes in Lymphatic Filariasis

lenged with 1 3 L3 per day, rather than 50 as in our experimental model. B1 B cell immunity might be more quantitatively effective under those circumstances. We would like to thank the U.S. Japan Filariasis Program for the B. malayi L3 larvae; Dr. James Kenny, the National Institutes for Aging, Baltimore, MD, for some of the mice used in this study; and members of the Rajan laboratory for critical reading of the manuscript and helpful comments. This work was made possible by National Institutes of Health grants AI39705 and AI42362 to T.V. Rajan and grants AI30389 and CA34196 to L.D. Shultz. Submitted: 10 August 1999 Revised: 12 October 1999 Accepted: 16 November 1999 References 1. Ottesen, E.A., B.O. Duke, M. Karam, and K. Behbehani. 1997. Strategies and tools for the control/elimination of lymphatic filariasis. Bull. World Health Organ. 75:491 503. 2. Ash, L., and J. Riley. 1970. Development of subperiodic Brugia malayi in the jird, Meriones unguiculatus, with notes on infections in other rodents. J. Parasitol. 56:969 973. 3. Denham, D.A., and C. Fletcher. 1987. The cat infected with Brugia pahangi as a model of human filariasis. Ciba Found. Symp. 127:225 235. 4. Lawrence, R.A. 1996. Lymphatic filariasis: what mice can tell us. Parasitol. Today. 12:267 271. 5. Nanduri, J., and J.W. Kazura. 1989. Clinical and laboratory aspects of filariasis. Clin. Microbiol. Rev. 2:39 50. 6. Nelson, F.K., D.L. Greiner, L.D. Shultz, and T.V. Rajan. 1991. The immunodeficient scid mouse as a model for human lymphatic filariasis. J. Exp. Med. 173:659 663. 7. Forster, I., and K. Rajewsky. 1987. Expansion and functional activity of Ly-1 B cells upon transfer of peritoneal cells into allotype-congenic, newborn mice. Eur. J. Immunol. 17:521 528. 8. Vincent, A.L., W.A. Sodeman, and A. Winters. 1980. Development of Brugia pahangi in normal and nude mice. J. Parasitol. 66:448. 9. Suswillo, R.R., D.G. Owen, and D.A. Denham. 1980. Infections of Brugia pahangi in conventional and nude (athymic) mice. Acta Trop. 37:327 335. 10. Vickery, A.C., A.L. Vincent, and W.A. Sodeman. 1983. Effect of immune reconstitution on resistance to Brugia pahangi in congenitally athymic nude mice. J. Parasitol. 69:478 485. 11. Rajan, T.V., L.D Shultz, J. Yates, and D.L. Greiner. 1995. B lymphocytes are not required for murine resistance to the human filarial parasite, Brugia malayi. J. Parasitol. 81:490 493. 12. Babu, S., P. Porte, T.R. Klei, L.D Shultz, and T.V. Rajan. 1998. Host NK cells are required for the growth of the human filarial parasite Brugia malayi in mice. J. Immunol. 161: 1428 1432. 13. Babu, S., L.D. Shultz, T.R. Klei, and T.V. Rajan. 1999. Immunity in experimental murine filariasis: roles of T and B cells revisited. Infect. Immun. 67:3166 3167. 14. Satterthwaite, A.B., Z. Li, and O.N. Witte. 1998. Btk function in B cell development and response. Semin. Immunol. 10: 309 316. 15. O Garra, A., R. Chang, N. Go, R. Hastings, G. Haughton, and M. Howard. 1992. Ly-1 B (B-1) cells are the main source of B cell-derived interleukin 10. Eur. J. Immunol. 22: 711 717. 735 Paciorkowski et al. Brief Definitive Report