Mitochondrial trna Met mutation is associated with clinical and biochemical characteristics in primary hypertension

Similar documents
CARDIOVASCULAR RISK FACTORS & TARGET ORGAN DAMAGE IN GREEK HYPERTENSIVES

Left Ventricular Diastolic Dysfunction in South Indian Essential Hypertensive Patient

Supplementary Online Content. Abed HS, Wittert GA, Leong DP, et al. Effect of weight reduction and

Prevalence of left ventricular hypertrophy in a hypertensive population

PRELIMINARY STUDIES OF LEFT VENTRICULAR WALL THICKNESS AND MASS OF NORMOTENSIVE AND HYPERTENSIVE SUBJECTS USING M-MODE ECHOCARDIOGRAPHY

Association between matrix metalloproteinase-9 rs polymorphism and development of coronary artery disease in a Chinese population

Left ventricular mass in offspring of hypertensive parents: does it predict the future?

NATIONAL INSTITUTE FOR HEALTH AND CARE EXCELLENCE General practice Indicators for the NICE menu

Cardiac Pathophysiology

connections among resting heart rate, ambulatory blood pressure and left ventricular hypertrophy

Coronary artery disease (CAD) risk factors

290 Biomed Environ Sci, 2016; 29(4):

Interventricular Septum Thickness Predicts Future Systolic Hypertension in Young Healthy Pilots

Cardiovascular Diseases in CKD

Apelin and Visfatin Plasma Levels in Healthy Individuals With High Normal Blood Pressure

Serum levels of galectin-1, galectin-3, and galectin-9 are associated with large artery atherosclerotic

DIFFERENTE RELAZIONE TRA VALORI PRESSORI E MASSA VENTRICOLARE SX NEI DUE SESSI IN PAZIENTI IPERTESI.

Value of echocardiography in chronic dyspnea

Echocardiographic definition of left ventricular hypertrophy in the hypertensive: which method of indexation of left ventricular mass?

Cardiomyopathy in Fabry s disease

Disclosure Information : No conflict of interest

Evaluation of Left Ventricular Function and Hypertrophy Gerard P. Aurigemma MD

Echocardiographic and Doppler Assessment of Cardiac Functions in Patients of Non-Insulin Dependent Diabetes Mellitus

There is no conflict of interests for the following presentation

Identification of patients with heart failure and PREserved systolic Function : an Epidemiologic Regional study

LONG-TERM EFFECTS OF SURGICAL MENAGEMENT OF PRIMARY ALDOSTERONISM ON THE CARDIOVASCULAR SISTEM

Adult Echocardiography Examination Content Outline

Mechanisms of False Positive Exercise Electrocardiography: Is False Positive Test Truly False?

Hypertension The normal radial artery blood pressures in adults are: Systolic arterial pressure: 100 to 140 mmhg. Diastolic arterial pressure: 60 to

Heart Failure. Cardiac Anatomy. Functions of the Heart. Cardiac Cycle/Hemodynamics. Determinants of Cardiac Output. Cardiac Output

Candesartan Antihypertensive Survival Evaluation in Japan (CASE-J) Trial of Cardiovascular Events in High-Risk Hypertensive Patients

ORIGINAL ARTICLE. LEFT VENTRICULAR MASS INDEX: A PREDICTOR OF MORBIDITY AND MORTALITY IN ESSENTIAL HYPERTENSION Pooja Shashidharan 1

Introduction. In Jeong Cho, MD, Wook Bum Pyun, MD and Gil Ja Shin, MD ABSTRACT

Plasma fibrinogen level, BMI and lipid profile in type 2 diabetes mellitus with hypertension

A study of left ventricular dysfunction and hypertrophy by various diagnostic modalities in normotensive type 2 diabetes mellitus patients

Supplementary Appendix

Analysis of risk factors of cardiac metabolic abnormality in patients with hypertension.

LV geometric and functional changes in VHD: How to assess? Mi-Seung Shin M.D., Ph.D. Gachon University Gil Hospital

Right Ventricular Systolic Dysfunction is common in Hypertensive Heart Failure: A Prospective Study in Sub-Saharan Africa

Prehypertension and Left Ventricular Diastolic Dysfunction in Middle-Aged Koreans

Mareomi Hamada, Go Hiasa, Osamu Sasaki, Tomoaki Ohtsuka, Hidetoshi Shuntaro Ikeda, Makoto Suzuki, Yuji Hara, and Kunio Hiwada

Prevalence of diabetes and impaired fasting glucose in Uygur children of Xinjiang, China

Dr. A. Manjula, No. 7, Doctors Quarters, JLB Road, Next to Shree Guru Residency, Mysore, Karnataka, INDIA.

Relationship between cardiovascular risk factors and traditional Chinese constitution in subjects with high-normal blood pressure

Catheter-based mitral valve repair MitraClip System

Letter to the Editor. Association of TCF7L2 and GCG Gene Variants with Insulin Secretion, Insulin Resistance, and Obesity in New-onset Diabetes *

Biomed Environ Sci, 2014; 27(8):

Prevention of Atrial Fibrillation and Heart Failure in the Hypertensive Patient

The changes of serum BDNF, blood lipid and PCI in the elderly patients with coronary heart disease complicated with diabetes mellitus

Does the reduction in systolic blood pressure alone explain the regression of left ventricular hypertrophy?

Impact of Nicorandil on Renal Function in Patients With Acute Heart Failure and Pre-Existing Renal Dysfunction

End stage renal disease (ESRD) is the irreversible deterioration of renal function

Know Your Number Aggregate Report Single Analysis Compared to National Averages

Body Mass Index and Blood Pressure Influences on Left Ventricular Mass and Geometry in African Americans

Left Ventricular Dysfunction Without Brain Natriuretic Peptide Elevation:

Heart Failure in Women: Dr Goh Ping Ping Cardiologist Asian Heart & Vascular Centre

Prof. Samir Morcos Rafla Alexandria Univ. Cardiology Dept.

Mitochondrial DNA (T/C) Polymorphism, Variants and Heteroplasmy among Filipinos with Type 2 Diabetes Mellitus

HTA ET DIALYSE DR ALAIN GUERIN

Adaptive servo ventilation improves cardiac pre and after load in heart failure patients with Cheyne-Stokes respiration

Individual Study Table Referring to Item of the Submission: Volume: Page:

CVD Prevention, Who to Consider

JMSCR Vol 04 Issue 05 Page May 2016

Cardiac Output MCQ. Professor of Cardiovascular Physiology. Cairo University 2007

Disclosures. Diabetes and Cardiovascular Risk Management. Learning Objectives. Atherosclerotic Cardiovascular Disease

Heart 101. Objectives. Types of Heart Failure How common is HF? Sign/Symptoms, when to see a doctor? Diagnostic testing

Μαρία Μπόνου Διευθύντρια ΕΣΥ, ΓΝΑ Λαϊκό

Clinical Trial Synopsis TL-OPI-518, NCT#

SUPPLEMENTAL MATERIAL

SUPPLEMENTAL MATERIAL

Module 2. Global Cardiovascular Risk Assessment and Reduction in Women with Hypertension

Relationship Between Left Atrial Size and Stroke in Patients With Sinus Rhythm and Preserved Systolic Function

Comparison of 44-Hour and Fixed 24-Hour Ambulatory Blood Pressure Monitoring in Dialysis Patients

Low fractional diastolic pressure in the ascending aorta increased the risk of coronary heart disease

Gender specific pattern of left ventricular cardiac adaptation to hypertension and obesity in a tertiary health facility in Nigeria

Associations between matrix metalloproteinase gene polymorphisms and the development of cerebral infarction

Term-End Examination December, 2009 MCC-006 : CARDIOVASCULAR EPIDEMIOLOGY

PATIENTS AND METHODS:

Diabetes and the Heart

Characteristics and Future Cardiovascular Risk of Patients With Not-At- Goal Hypertension in General Practice in France: The AVANT AGE Study

Diagnosis is it really Heart Failure?

Index. cardiology.theclinics.com. Note: Page numbers of article titles are in boldface type.

The effects of long-term aerobic exercise on cardiac structure, stroke volume of the left ventricle, and cardiac output

The right heart: the Cinderella of heart failure

Echocardiographic assessment of left ventricular hypertrophy in patients of chronic kidney disease

Association between the CYP11B2 gene 344T>C polymorphism and coronary artery disease: a meta-analysis

SIKLUS JANTUNG. Rahmatina B. Herman

Distribution of Cardiac Geometric Patterns on Echocardiography in Essential Hypertension. Impact of Two Criteria of Stratification

THE EFFECT OF VITAMIN-C THERAPY ON HYPERGLYCEMIA, HYPERLIPIDEMIA AND NON HIGH DENSITY LIPOPROTEIN LEVEL IN TYPE 2 DIABETES

ECHOCARDIOGRAPHY. Patient Care. Goals and Objectives PF EF MF LF Aspirational

Slide notes: References:

Chamber Quantitation Guidelines: What is New?

Supplementary Note Details of the patient populations studied Strengths and weakness of the study

VA/DoD Clinical Practice Guideline for the Diagnosis and Management of Hypertension - Pocket Guide Update 2004 Revision July 2005

Guidelines on cardiovascular risk assessment and management

Form 8: Post Transplant Annual Followup

Long-term blood pressure monitoring and echocardiographic findings in patients with end-stage renal disease: reverse epidemiology explained?

(n=6279). Continuous variables are reported as mean with 95% confidence interval and T1 T2 T3. Number of subjects

Cardiovascular Diseases and Diabetes

Cardiac output and Venous Return. Faisal I. Mohammed, MD, PhD

Transcription:

1924 Mitochondrial trna Met mutation is associated with clinical and biochemical characteristics in primary hypertension CHANG-QING LU 1,2, JIN-YING ZHANG 1, AI-GUO XU 3, JUANG-JUANG ZHANG 3, DAN-DAN LI 3, XIN FU 3, JING GUO 3 and QIN-FU XU 3 1 Internal Medicine - Cardiovascular Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052; 2 The Second Clinical Medical College, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan 450052; 3 Critical Section, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China Received November 16, 2012; Accepted March 21, 2013 DOI: 10.3892/mmr.2013.1409 Abstract. Mitochondrial DNA mutations have been increasingly associated with various diseases. An association between the mitochondrial trna gene mutation, trna Met, and primary hypertension has been suggested. In the present study, the association between the trna Met mutation and the development of primary hypertension was investigated by assessing clinical and biological indicators in 800 patients with primary hypertension. General [gender, age, age of onset, body mass index (BMI) and family history] and clinical data (routine blood counts, blood biochemistry profiles and color Doppler echocardiography) were obtained. Venous blood samples were drawn from all the subjects for the separation of white blood cells (WBCs) and DNA extraction. Mitochondrial trna Met was amplified using PCR, purified and sequenced; samples identified to have a mutation were sequenced in triplicate for validation. Comparisons were made between 7 hypertensive patients with mutations (0.875%) and 10 age-, gender- and medication matched hypertensive patients without mutations (controls). A maternal history of hypertension was present in 57.1% of patients with trna Met mutations and only 20.0% of patients without mutations. Notably, trna Met mutations were associated with a significantly earlier age of hypertension onset, decreased red blood cell (RBC) counts and hemoglobin (Hb) levels and increased total cholesterol (TC), triacylglycerol (TG), high density lipoprotein cholesterol (HDL-C) and glucose levels (all P<0.05). Heart structure and function differences were also assessed between the two groups. In conclusion, mitochondrial trna Met mutations may induce changes in trna structure and function, which contributes to Correspondence to: Dr Zhang Jin-Ying, Internal Medicine Cardiovascular Department, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshedong Road, Zhengzhou, Henan 450052, P.R. China E-mail: zhang450052@126.com Key words: mitochondrial trna Met, gene mutation, primary hypertension the pathogenesis of primary hypertension by disturbing blood lipid metabolism, the steady state of blood cells and cardiac structure and function. Introduction Primary hypertension, the most common cardiovascular disease, is the leading cause of death due to cardiovascular diseases. Hypertension is associated with coronary artery disease, stroke and heart and renal failure, and exhibits a gradually increasing morbidity (1). Primary hypertension is caused by complex interactions among genetic, environmental and lifestyle factors; for example, blood pressure increases with aging, stress and high salt intake. Several genetic variants have been associated with the disease; however, the contribution of genetic factors to the development of hypertension has not yet been fully elucidated (2). Genetic variation in the mitochondrial genome has previously been associated with several diseases, including mitochondrial myopathies, stroke and Parkinson's disease, normal human adaptations, such as superathletes, and even response to cancer treatments (3-5). Mitochondria, the organelles responsible for cellular energy, contain a genome encoding ~1,000 genes. This genome mutates more rapidly compared with the nuclear genome. Since the first disease related mitochondrial gene mutation was reported in 1998, >200 mitochondrial variants have been associated with disease; the vast majority are located in trna genes (4). Mitochondrial trna mutations cause changes in trna aminoacylation characteristics, altering trna synthesis, structure, stability and interactions with components of the translation machinery. These changes may affect the translation of other RNAs into their corresponding protein products, thereby producing aberrant or non-functional proteins that cause disease states (5). Such changes have been reported to occur in various forms of heart disease, including primary hypertension (6-8). A study on 20 patients with primary hypertension identified 297 mitochondrial variations, including 15 mutations in trna genes, particularly trna Met (9). Furthermore, Fuentes et al (10) reported a significant correlation between hypertension in parents and their offspring, and suggested that mitochondrial

LU et al: trna Met MUTATION IN HYPERTENSION 1925 tdna mutations may be associated with increased blood pressure. According to the Framingham Heart Study (11), 35.2% of families with hypertension had an inherited mitochondrial variant and the effects of these variants were similar for systolic and diastolic blood pressure. Although these studies implicate mitochondrial tdna mutations in the pathogenesis of primary hypertension, the specific effects of mitochondrial tdna mutations on the clinical characteristics of patients with primary hypertension remain unknown. In the present study, clinical data from patients with primary hypertension were obtained and sequencing was used to screen for mitochondrial trna Met mutations. The clinical features of patients with mutations were analyzed to elucidate the clinical association between mitochondrial trna Met changes and primary hypertension. Materials and methods Study subjects. Patients with primary hypertension (n=800) diagnosed as outpatients or admitted to our hospital (The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China) between January 2010 and December 2011 were enrolled in this study. The study population consisted of 586 males and 214 females aged 20 82 years (mean age, 60.5±12.1 years). Hypertension diagnosis was based on the 1999 WHO/ISH guidelines (12) as follows: i) Patients with a clear primary hypertension history and anti hypertensive drug administration; and ii) patients with no anti hypertensive drug administration and systolic blood pressure 140 mmhg and/or diastolic blood pressure 90 mmhg. Individuals with secondary hypertension, diabetes, hematopoietic disease, myocardial infarction, heart failure, hypertrophic cardiomyopathy, expanding cardiomyopathy, valvular and congenital heart disease, persistent atrial fibrillation, complete atrioventricular block and arrhythmia, nervous system anomaly, chronic obstructive pulmonary disease, renal and hepatic insufficiency, hyperthyroidism or hypothyroidism, malignant tumors or autoimmune diseases were excluded. Primary hypertensive patients with trna Met mutations were selected as test cases (test group) and matched patients without trna Met mutations were used as control cases (control group). Controls were matched with the test cases as follows: i) same gender and an age difference of <5 years; ii) same location, but no genetic relationship; iii) administration of the same type of antihypertensive medication, with a treatment duration difference of 1 year and a blood pressure control level difference of 10/5 mmhg. This study was approved by the Ethics Committee of the First Affiliated Hospital of Zhengzhou University, and written informed consent was obtained from the patient/the patient's family. Determination of physiological indices. Questionnaires were completed by the study subjects to provide detailed information on the following: i) general information encompassing name, gender, date of birth, heart rate, height, weight and body mass index (BMI = weight/height 2, kg/m 2 ); ii) previous disease history and family history of primary hypertension; and iii) auxiliary examinations including fasting blood glucose, blood lipids, total cholesterol (TC), triacylglycerol (TG), high- and low density lipoprotein cholesterol (HDL-C and LDL-C, respectively), renal function (blood urea nitrogen, BUN; and creatinine, Cr), blood electrolytes (K +, Na + and Mg 2+ ), routine blood (red/white blood cells, RBCs/WBCs; hemoglobin, Hb; and platelets, PLTs) and heart ultrasound (interventricular septal end diastolic thickness, IVSD; left ventricular posterior wall depth, LPWD; left ventricular end diastolic dimension, LVIDD; left ventricular end systolic dimension, LVIDS; left atrial end systolic dimension). Left ventricular mass index (LVMI) was calculated as LVMI = left ventricular weight (LVM)/body surface area (BSA). LVM was calculated as: LVM = 0.8 x [1.04 x (IVSD+LVIDD+ LPWD) 3 - LVIDD 3 ] + 0.6 (13. BSA was calculated as BSA = 0.006 x height (cm) + 0.013 x weight (kg) - 0.15 (14). Finally, cardiac output (CO) and cardiac index (CI) were calculated as CO = stroke volume (SV) x heart rate and CI = CO/BSA, respectively. Detection of mitochondrial trna Met mutations. Venous blood samples were drawn from all the subjects for the separation of WBCs and DNA extraction. Mitochondrial DNA was extracted according to the manufacturer's instructions. Mitochondrial DNA-specific primers were designed and synthesized using the following sequences: upstream, 5'-TGGCTCCTTTAACCTCTCCA-3' and downstream, 5'-AAGGATTATGGATGCGGTTG-3'. The extracted DNA samples were amplified using PCR in a 25-µl reaction volume containing 10 µl 2X PCR Master mix and 0.3 µl of each of the 20 µm upstream and downstream primers, which was brought to the required volume with DNA and water. Thermal cycling conditions were as follows: 35 cycles of 94 C for 30 sec, 60 C for 30 sec, 72 C for 45 sec and 72 C for 10 min. PCR products were separated by 2% agarose gel electrophoresis, followed by purification and sequencing using an ABI PRISM TM 377XL DNA Sequencer (Takara Biotechnology, Dalian, China). DNA sequences were compared by BLAST (The National Center for Biotechnology Information, NCBI; http://blast.ncbi.nlm.nih. gov/blast.cgi). PCR products identified as carrying mutations were sequenced in triplicate to exclude experimental errors. Statistical analysis. SPSS17.0 was used for statistical analysis. Measurement data are expressed as the mean ± standard deviation (SD). A two-sample t test was used to compare differences between measurement data and the χ 2 test was used to compare the family genetic history of the two groups of subjects. Tests were two-sided, with an α level of 0.05 and P<0.05 was considered to indicate a statistically significant difference. Results trna Met mutation and study population characteristics. Following mitochondrial DNA sequencing in 800 patients with primary hypertension, 7 patients with trna Met mutations were identified; 4 males and 3 females aged 45-62 years (mean age, 52.9±5.9 years). Of the 793 patients without trna Met mutations, 10 age-, gender- and medication-matched individuals were selected as controls. This group comprised 6 males and 4 females aged 44-60 years (mean age, 52.5±5.5 years). Following comparisons of the general information between these two groups, a statistically significant difference in the age of hypertension onset was identified; patients with

1926 Table I. Comparison of general characteristics between hypertensive patients with and without trna Met mutations. Family history of hypertension, n (%) -------------------------------------------------------------------------------------------------------------- Variable n Onset age (years) BMI (kg/m 2 ) Maternal Paternal Denied any family history Mutation 7 40.3±2.5 26.6±0.92 4 (57.1) 0 3 (42.9) No mutation 10 46.3±3.5 26.3±1.15 2 (20.0) 1 (10.0) 7 (70.0) t test/χ 2 3.891 0.622 2.825 P value 0.001 0.543 0.244 Measurement data are expressed as the mean ± standard deviation. BMI, body mass index. Table II. Blood chemistry profiles in hypertensive patients with and without trna Met mutations. TC TG HDL-C LDL-C Glucose BUN Cr K + Na + Mg 2+ Variable n (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) Mutation 7 2.96±0.29 5.38±0.29 1.22±0.12 2.86±0.26 4.88±0.42 5.21±0.59 77.5±15.7 4.47±0.43 138.5±14.1 0.87±0.06 No mutation 10 1.28±0.17 4.76±0.21 1.02±0.11 3.08±0.30 5.41±0.29 5.10±0.36 75.5±10.8 4.53±0.36 140.8±7.5 0.93±0.10 t test 15.050 5.193 3.608 1.572 3.117 0.497 0.314 0.295 0.423 1.472 P value 0.001 0.001 0.003 0.137 0.007 0.627 0.758 0.772 0.678 0.162 Measurement data are expressed as the mean ± standard deviation. TC, total cholesterol; TG, triacylglycerol; HDL-C, high-density lipoprotein cholesterol; LDL-C, low density lipoprotein cholesterol; BUN, blood urea nitrogen; Cr, creatinine. Table III. Routine blood counts in hypertensive patients with and without trna Met mutations. Variable n WBC count (x10 9 /l) RBC count (x10 12 /l) Hb level (g/l) PLT count (x10 9 /l) Mutation 7 5.39±0.16 5.04±0.12 133.0±5.0 227.9±17.6 No mutation 10 5.32±0.57 4.83±0.16 145.1±8.3 217.8±13.3 t test 0.340 2.853 3.444 1.347 P value 0.738 0.012 0.004 0.198 Measurement data are expressed as the mean ± standard deviation. WBC, white blood cell; RBC, red blood cell; Hb, hemoglobin; PLT, platelet. Table IV. Cardiac ultrasonography measurements in hypertensive patients with and without trna Met mutations. LVMI IVSD LPWD LVIDD LVIDS LA SV EF CO CI Variable n (g/m 2 ) (mm) (mm) (mm) (mm) (mm) (ml) (%) (l/min) (l/min/m 2 ) Mutation 7 106.5±9.3 11.2±0.4 10.1±0.3 48.3±0.9 35.8±1.4 33.2±2.3 66.5±2.0 59.1±2.6 5.19±0.51 2.92±0.40 No mutation 10 94.0±7.9 11.4±0.4 10.2±0.4 43.8±1.2 28.8±1.5 35.4±2.2 59.9±3.8 71.4±2.5 4.62±0.37 2.63±0.25 t test 2.993 1.308 0.529 8.280 9.773 1.973 4.142 9.744 2.722 1.876 P value 0.009 0.210 0.604 0.001 0.001 0.067 0.001 0.001 0.016 0.080 Measurement data are expressed as the mean ± standard deviation. LVMI, left ventricular mass index; IVSD, interventricular septal end diastolic thickness; LPWD, left ventricular posterior wall depth; LVIDD, left ventricular end diastolic dimension; LVIDS, left ventricular end systolic dimension; LA, left atrium; SV, stroke volume; EF, ejection fraction; CO, cardiac output; CI, cardiac index. trna Met mutations had a younger mean age of onset (P<0.05). Additionally, significant differences were observed in BMI and family hypertension history (P<0.05; Table I). Blood chemistry differs with trna Met mutations. To determine whether trna Met mutations contribute to alterations in various biochemical indicators that have been associated with hyper-

LU et al: trna Met MUTATION IN HYPERTENSION 1927 tension, we measured and compared numerous indices between hypertensive patients with and without mutations. Notably, TC, TG, HDL-C and blood glucose levels were significantly higher in patients with trna Met mutations compared with the control patients (P<0.05; Table II). However, no significant differences were observed in LDL-C, BUN, Cr, K +, Na + and Mg 2+ levels between the two groups. Additionally, comparison of routine blood counts indicated significantly lower RBC counts and Hb levels in patients with mutations in trna Met compared with the control patients (P<0.05; Table III). No statistical differences were observed in WBC or PLT counts between the two groups. Heart structure and function differ in hypertensive patients according to mutational status. Ultrasonography of the hearts of hypertensive patients with and without trna Met mutations was performed to identify potential differences in heart muscle structure or function. Patients with mutations had significantly higher measures for a number of heart features, particularly LVMI, LVIDD, LVIDS, SV and CO. However, the left ventricular ejection fraction (EF) was significantly lower in patients with mutations compared with the control patients (P<0.05; Table IV). No statistically significant differences were observed in IVSD, LPWD, left atrium (LA) or CI between the two groups of patients. Discussion Mitochondrial DNA mutations have been associated with a variety of cardiovascular diseases, including hypertension (15). However, to the best of our knowledge, the present study is the first to link mitochondrial mutations, specifically in trna Met, with particular features of the disease, including age of onset and biochemical and heart characteristics. Mutations in trna Met were identified to be associated with an earlier age of hypertension onset. Notably, no significant change was observed in the BMI between hypertensive patients with and without mutations, indicating that the early onset phenomenon was not associated with BMI. Mitochondria are maternally inherited; therefore, potential mutations in the mitochondrial DNA are inherited from the mother. A previous study identified a trna Met mutation that is associated with maternally inherited hypertension (16). Consistent with this finding, we found that a maternal history of hypertension was more common in patients with trna Met mutations compared with the control patients; a paternal history of hypertension was absent in patients without trna Met mutations. Alterations in a number of biochemical indicators, including blood glucose, lipids, Cr and BUN, have been associated with or may be risk factors for primary hypertension (17-19). We compared measurements of numerous blood chemistry factors between hypertensive patients with and without trna Met mutations. Increases were observed in TC, TG, HDL-C and blood glucose in patients with mutations, indicating that the trna Met mutation may be associated with these changes. Previous studies have suggested that trna Met mutations affect the overall rate of cellular respiration (20) and changes in cellular respiration may affect the metabolism of cholesterol and other molecules in the blood (21). Hypertension has also been associated with changes in RBCs (22). RBCs carry oxygen via Hb, aid the elimination of free radicals and maintain electrolyte balance. Lower RBC counts and Hb levels were found in hypertensive patients with trna Met mutations compared with the control patients without mutations. Fewer RBCs and a lower Hb concentration lead to reduced blood oxygen content, which may promote the pathogenesis of primary hypertension. Changes in heart structure and function were also identified in hypertensive patients with the trna Met mutation. LVMI, LVIDD, LVIDS, SV and CO were all higher in patients with mutations compared with the control patients, while left ventricular EF was lower. These results suggest that changes in mitochondrial trna Met structure may cause functional abnormalities that affect the structure and function of the heart. In conclusion, the mitochondrial trna Met mutation was identified to be associated with primary hypertension; structural/functional alterations in trna may alter blood lipid metabolism, the steady state of blood cells and the structure and function of the heart. References 1. Xue L, Chen H, Meng YZ, et al: Mutations in mitochondrial DNA associated with hypertension. Yi Chuan 33: 911-918, 2011 (In Chinese). 2. Lifton RP, Gharavi AG and Geller DS: Molecular mechanisms of human hypertension. Cell 104: 545-556, 2001. 3. Wallace DC: Mitochondrial DNA mutations in disease and aging. Environ Mol Mutagen 51: 440-450, 2010. 4. Dominiczak AF, Negrin DC, Clark JS, et al: Genes and hypertension: from gene mapping in experimental models to vascular gene transfer strategies. Hypertension 35: 164-172, 2000. 5. Belostotsky R, Frishberg Y and Entelis N: Human mitochondrial trna quality control in health and disease: a channelling mechanism? RNA Biol 9: 33-39, 2012. 6. Gharavi AG, Phillips RA, Finegood DT and Lipkowitz MS: Glycogen synthase polymorphism, insulin resistance and hypertension. Blood Press 5: 86-90, 1996. 7. Yang W, Huang J, Ge D, et al: Lipoprotein lipase gene is in linkage with blood pressure phenotypes in Chinese pedigrees. Hum Genet 115: 8-12, 2004. 8. Motone M, Katsuya T, Ishikawa K, et al: Association between hepatocyte growth factor gene polymorphism and essential hypertension. Hypertens Res 27: 247-251, 2004. 9. Schwartz F, Duka A, Sun F, et al: Mitochondrial genome mutations in hypertensive individuals. Am J Hypertens 17: 629-635, 2004. 10. Fuentes RM, Notkola IL, Shemeikka S, et al: Familial aggregation of blood pressure: a population-based family study in eastern Finland. J Hum Hypertens 14: 441-445, 2000. 11. Yang Q, Kim SK, Sun F, et al: Maternal influence on blood pressure suggests involvement of mitochondrial DNA in the pathogenesis of hypertension: the Framingham Heart Study. J Hypertens 25: 2067-2073, 2007. 12. Kjeldsen SE, Erdine S, Farsang C, Sleight P and Mancia G: 1999 WHO/ISH Hypertension Guidelines - highlights & ESH Update. 13. Devereux RB, Alonso DR, Lutas EM, et al: Echocardiographic assessment of left ventricular hypertrophy: comparison to necropsy findings. Am J Cardiol 57: 450-458, 1986. 14. Hammond IW, Devereux RB, Alderman MH and Laragh JH: Relation of blood pressure and body build to left ventricular mass in normotensive and hypertensive employed adults. J Am Coll Cardiol 12: 996-1004, 1988. 15. Limongelli G, Masarone D, D Alessandro R and Elliott PM: Mitochondrial diseases and the heart: an overview of molecular basis, diagnosis, treatment and clinical course. Future Cardiol 8: 71-88, 2012. 16. Lu Z, Chen H, Meng Y, et al: The trna Met 4435A>G mutation in the mitochondrial haplogroup G2a1 is responsible for maternally inherited hypertension in a Chinese pedigree. Eur J Hum Genet 19: 1181-1186, 2011.

1928 17. Jarrett RJ, Keen H, McCartney M, et al: Glucose tolerance and blood pressure in two population samples: their relation to diabetes mellitus and hypertension. Int J Epidemiol 7: 15-24, 1978. 18. Bønaa KH and Thelle DS: Association between blood pressure and serum lipids in a population. The Tromsø study. Circulation 83: 1305-1314, 1991. 19. Fliser D and Ritz E: Relationship between hypertension and renal function and its therapeutic implications in the elderly. Gerontology 44: 123-131, 1998. 20. Li R, Liu Y, Li Z, et al: Failures in mitochondrial trna Met and trna Gln metabolism caused by the novel 4401A>G mutation are involved in essential hypertension in a Han Chinese Family. Hypertension 54: 329-337, 2009. 21. Modi HR, Katyare SS and Patel MA: Ageing-induced alterations in lipid/phospholipid profiles of rat brain and liver mitochondria: implications for mitochondrial energy-linked functions. J Membr Biol 221: 51-60, 2008. 22. Hacioglu G, Yalcin O, Bor-Kucukatay M, et al: Red blood cell rheological properties in various rat hypertension models. Clin Hemorheol Microcirc 26: 27-32, 2002.