Worsening Hypoxemia in the Face of Increasing PEEP: A Case of Large Pulmonary Embolism in the Setting of Intracardiac Shunt

Similar documents
Pulmonary Pearls. Medical Pearls. Case 1: Case 1 (cont.): Case 1: What is the Most Likely Diagnosis? Case 1 (cont.):

Pulmonary Embolism. Thoracic radiologist Helena Lauri

Patient Management Code Blue in the CT Suite

Lecture Notes. Chapter 2: Introduction to Respiratory Failure

An 85-year-old woman with respiratory failure and positional hypoxemia

GERIATRICS CASE PRESENTATION

Thrombolysis in PE. Outline. Disclosure. Overview on Pulmonary Embolism. Hot Topics in Emergency Medicine 2012 Midyear Clinical Meeting

Cardiovascular Images

Episodic Desaturation

Dr. Rami M. Adil Al-Hayali Assistant Professor in Medicine

November 2012 Critical Care Case of the Month: I Just Can t Do It Captain! I Can t Get the Sats Up!

Cor pulmonale. Dr hamid reza javadi

APRV Ventilation Mode

Sample Case Study. The patient was a 77-year-old female who arrived to the emergency room on

Echocardiography Conference

RESPIRATORY FAILURE. Michael Kelly, MD Division of Pediatric Critical Care Dept. of Pediatrics

You Won t Believe What I Saw on. Disclosures. Goals. Dimensions 2013 October 18 th Michael Pfeiffer, MD. No Financial Disclosures

Diversion of the inferior vena cava following repair of atrial septal defect causing hypoxemia

2/4/2011. Nathan Kerner, M.D.

ACUTE RESPIRATORY DISTRESS SYNDROME (ARDS) Rv

Radiologic Features of The Pulmonary Embolus

Introduction and Overview of Acute Respiratory Failure

Mechanical Ventilation & Cardiopulmonary Interactions: Clinical Application in Non- Conventional Circulations. Eric M. Graham, MD

Is Thrombolysis Only for a Crisis?

Adult Echocardiography Examination Content Outline

Review Article. Interactive Physiology in Critical Illness : Pulmonary and Cardiovascular Systems. Introduction

5. What is the cause of this patient s metabolic acidosis? LACTIC ACIDOSIS SECONDARY TO ANEMIC HYPOXIA (HIGH CO LEVEL)

Case 1 Organ Set 3. Case 1 (for Organ Sets 1 3) 10/2/2015 CARIOVASCULAR II LABORATORY

8/16/2012. Pulmonary Embolism

PE and DVT. Dr Anzo William Adiga WatsApp or Call Medical Officer/RHEMA MEDICAL GROUP

PATIENT CHARACTERISTICS AND PREOPERATIVE DATA (ecrf 1).

Bronchoconstriction is also treated with medications that inhibit bronchiolar constriction such as: Ipratropium (Atrovent)

PULMONARY EMBOLISM (PE): DIAGNOSIS AND TREATMENT

Chapter 21. Flail Chest. Mosby items and derived items 2011, 2006 by Mosby, Inc., an affiliate of Elsevier Inc.

Index. K Knobology, TTE artifact, image resolution, ultrasound, 14

Landmark articles on ventilation

ARIC HEART FAILURE HOSPITAL RECORD ABSTRACTION FORM. General Instructions: ID NUMBER: FORM NAME: H F A DATE: 10/13/2017 VERSION: CONTACT YEAR NUMBER:

What is Your Diagnosis?

Cardiovascular Practice Quiz

The production of murmurs is due to 3 main factors:

Echocardiography as a diagnostic and management tool in medical emergencies

Patent Foramen Ovale: Diagnosis and Treatment

APRV: An Update CHLOE STEINSHOUER, MD PULMONARY & SLEEP CONSULTANTS OF KANSAS 04/06/2017

ARIC HEART FAILURE HOSPITAL RECORD ABSTRACTION FORM

/ / / / / / Hospital Abstraction: Stroke/TIA. Participant ID: Hospital Code: Multi-Ethnic Study of Atherosclerosis

PFO- To Close for Comfort. By: Vincent J.Caracciolo, MD FACC

Emergency department bedside echocardiography diagnosis of massive pulmonary embolism with direct visualization of thrombus in the pulmonary artery

Introduction. Invasive Hemodynamic Monitoring. Determinants of Cardiovascular Function. Cardiovascular System. Hemodynamic Monitoring

Is Stroke a Paradoxical Embolism in Patients with Patent Foramen Ovale?

PHYSIOLOGY MeQ'S (Morgan) All the following statements related to blood volume are correct except for: 5 A. Blood volume is about 5 litres. B.

October 2017 Pulmonary Embolism

pulmonary thrombosis in Eisenmenger ASD: A case report

Anatomy & Physiology

CPAP. Pre-Hospital Treatment Using The Respironics Whisperflow CPAP Device. Charlottesville Albemarle Rescue Squad - CPAP

Test Bank Pilbeam's Mechanical Ventilation Physiological and Clinical Applications 6th Edition Cairo

Describe regional differences in pulmonary blood flow in an upright person. Describe the major functions of the bronchial circulation

Heart Failure. Cardiac Anatomy. Functions of the Heart. Cardiac Cycle/Hemodynamics. Determinants of Cardiac Output. Cardiac Output

CASE-BASED SMALL GROUP DISCUSSION

INTRODUCTION The effect of CPAP works on lung mechanics to improve oxygenation (PaO 2

Epidermiology Early pulmonary embolism

Respiratory Disease. Dr Amal Damrah consultant Neonatologist and Paediatrician

Cardiac Emergencies in Infants. Michael Luceri, DO

Pathology of pulmonary vascular disease. Dr.Ashraf Abdelfatah Deyab. Assistant Professor of Pathology Faculty of Medicine Almajma ah University

Mechanical ventilation induced or exacerbated right ventricular failure

ARDS: an update 6 th March A. Hakeem Al Hashim, MD, FRCP SQUH

ECHO HAWAII. My home. Pulmonary Hypertension and Pulmonary Embolism: Role of Echo U.S.A. Japan. Hawaii Island 1/9/2018

Pulmonary circulation. Lung Blood supply : lungs have a unique blood supply system :

HEMODYNAMIC DISORDERS

A 50-year-old woman with syncope

Chapter 24. Kyphoscoliosis. Mosby items and derived items 2011, 2006 by Mosby, Inc., an affiliate of Elsevier Inc.

Chronic Obstructive Pulmonary Disease

Massive pulmonary embolism with ST-elevation in the inferior leads and other interesting ECG findings

Respiratory Failure. Causes of Acute Respiratory Failure (ARF): a- Intrapulmonary:

Acute Respiratory Distress Syndrome (ARDS) An Update

Pulmonary Pathophysiology

1. When a patient fails to ventilate or oxygenate adequately, the problem is caused by pathophysiological factors such as hyperventilation.

Lecture Notes. Chapter 9: Smoke Inhalation Injury and Burns

Form 136 WHI WOMEN S HEALTH INITIATIVE HEART FAILURE HOSPITAL RECORD ABSTRACTION FORM

CASE DISCUSSION. Dr JAYASREE VEERABOINA 2nd yr PG MS OBG

Congestive Heart Failure Patient Profile. Patient Identity - Mr. Douglas - 72 year old man - No drugs, smokes, moderate social alcohol consumption

a. Describe the physiological consequences of intermittent positive pressure ventilation and positive end-expiratory pressure.

Difficulties of timely diagnosis of the Pulmonary Embolism of patients with chronic obstructive lung disease: possibility MSCT.

7/4/2015. diffuse lung injury resulting in noncardiogenic pulmonary edema due to increase in capillary permeability

Das recht Ventrikel ist auch noch da! RV function The RV operates as. Physiology Not very sensitive to preload Good compliance of the free wall

Restrictive Pulmonary Diseases

Handling Common Problems & Pitfalls During. Oxygen desaturation in patients receiving mechanical ventilation ACUTE SEVERE RESPIRATORY FAILURE

Lung diseases of Vascular Origin. By: Shefaa Qa qqa

Radiology of the respiratory/cardiac diseases (part 2)

ACUTE HEART FAILURE in the ED. Pr. Samir Nouira Emergency Department Fattouma Bourguiba University Hospital Monastir Tunisia

Airway pressure release ventilation. Airway pressure release ventilation improves pulmonary blood flow in infants after cardiac surgery*

Index. Note: Page numbers of article titles are in boldface type.

A Case Report of Left Atrial Myxoma

INDICATIONS FOR RESPIRATORY ASSISTANCE A C U T E M E D I C I N E U N I T P - Y E A R M B B S 4

PULMONARY HYPERTENSION

Pulmonary hypertension

SESSION IV: MECHANISMS OF HUMAN DISEASE: LABORATORY SESSIONS PULMONARY PATHOLOGY I. December 5, 2012

HISTORY. Question: How do you interpret the patient s history? CHIEF COMPLAINT: Dyspnea of two days duration. PRESENT ILLNESS: 45-year-old man.

Contrast Echocardiography. What is the critical need? Meets a critical need! Cavity Opacification. What contrast is approved for: chamber assessment?

ECHOCARDIOGRAPHY. Patient Care. Goals and Objectives PF EF MF LF Aspirational

Paramedic Rounds. Pre-Hospital Continuous Positive Airway Pressure (CPAP)

Transcription:

ISSN 1941-5923 DOI: 10.12659/AJCR.898521 Received: 2016.03.15 Accepted: 2016.04.18 Published: 2016.07.05 Worsening Hypoxemia in the Face of Increasing PEEP: A Case of Large Pulmonary Embolism in the Setting of Intracardiac Shunt Authors Contribution: Study Design A Data Collection B Statistical Analysis C Data Interpretation D Manuscript Preparation E Literature Search F Funds Collection G DEF BDEF Glen T. Granati Getu Teressa Department of Internal Medicine, Health Science Center, Stony Brook University Hopsital, Stony Brook, NY, U.S.A. Corresponding Author: Conflict of interest: Glen T. Granati, e-mail: glen.granati@stonybrookmedicine.edu None declared Patient: Male, 40 Final Diagnosis: Patent foramen ovale Symptoms: Dyspnea exertional hemoptysis shortness of breath Medication: Clinical Procedure: Airway pressure release ventilation Specialty: Critical Care Medicine Objective: Background: Case Report: Conclusions: MeSH Keywords: Full-text PDF: Rare co-existance of disease or pathology Patent foramen ovale (PFO) are common, normally resulting in a left to right shunt or no net shunting. Pulmonary embolism (PE) can cause sustained increased pulmonary vascular resistance (PVR) and right atrial pressure. Increasing positive end-expiratory pressure (PEEP) improves oxygenation at the expense of increasing intrathoracic pressures (ITP). Airway pressure release ventilation (APRV) decreases shunt fraction, improves ventilation/perfusion (V/Q) matching, increases cardiac output, and decreases right atrial pressure by facilitating low airway pressure. A 40-year-old man presented with dyspnea and hemoptysis. Oxygen saturation (SaO 2 ) 80% on room air with A a gradient of 633 mmhg. Post-intubation SaO 2 dropped to 71% on assist control, FiO2 100%, and PEEP of 5 cmh 2 0. Successive PEEP dropped SaO 2 to 60 70% and blood pressure plummeted. APRV was initaiated with improvement in SaO 2 to 95% and improvement in blood pressure. Hemiparesis developed and CT head showed infarction. CT pulmonary angiogram found a large pulmonary embolism. Transthoracic echocardiogram detected right-to left intracardiac shunt, with large PFO. There should be suspicion for a PFO when severe hypoxemia paradoxically worsens in response to increasing airway pressures. Concomitant venous and arterial thromboemboli should prompt evaluation for intra cardiac shunt. Patients with PFO and hypoxemia should be evaluated for causes of sustained right-to left pressure gradient, such as PE. Management should aim to decrease PVR and optimize V/Q matching by treating the inciting incident (e.g., thrombolytics in PE) and by minimizing ITP. APRV can minimize PVR and maximize V/Q ratios and should be considered in treating patients similar to the one whose case is presented here. Continuous Positive Airway Pressure Embolism, Paradoxical Foramen Ovale, Patent Hemodynamics Pulmonary Embolism Ventilation-Perfusion Ratio http://www.amjcaserep.com/abstract/index/idart/898521 1464 1 3 1 13 454

Background Patent foramen ovale (PFO) is a common finding in many individuals, normally resulting in a left to right shunt or no net shunt. Pulmonary embolism (PE) can cause a sustained increased pulmonary vascular resistance (PVR) and right atrial pressure (RAP). Positive end-expiratory pressure (PEEP) has been shown to improve oxygenation by recruiting atelectatic airways, but it does so at the expense of increasing intrathoracic pressures (ITP). Airway pressure release ventilation (APRV), albeit an unconventionally used ventilator mode, improves oxygenation by maximizing ventilation/perfusion (V/Q) matching and decreasing shunt fraction. APRV has also been shown to increase cardiac output and decrease RAP by allowing lower peak and mean airway pressures when compared to standard ventilator modes. Case Report A 40-year-old man without prior medical history presented with 3 days of progressively worsening dyspnea at rest, cough productive of yellow sputum, subjective fever, cough, and 2 days of hemoptysis estimated to be approximately 100 ml per day. He denied chest pain, orthopnea, paroxysmal nocturnal dyspnea, chills, night sweats, weight loss/gain, sick contacts, travel, recent immobilization, leg swelling, or pain. Vital signs on presentation to the ER were: temperature 37.8 C (100 F), blood pressure (BP) 152/93 mmhg, pulse 113 beats per minute, and respiratory rate 21 breaths per minute. Oxygen saturation (SaO 2 ) was initially 80% on room air and 88 92% on a 100% non rebreather mask, with occasional desaturations with movement. Results of a physical exam were remarkable for rales in the left mid-lung field, and decreased breath sounds at the left lung base. Breathing was non-labored without accessory muscle use, and he spoke in full sentences. No wheezing, rhonchi, JVD, peripheral edema, leg swelling/pain, abdominal distension, or tenderness were appreciated. The patient had intact mental status. A a gradient was calculated to be 633 mmhg (Table 1). Chest X ray showed near complete opacification of the left lower lobe, pneumonia, and/or atelectasis, as well as effusion. The patient was intubated, with improvement in the appearance of his chest X ray. Vital signs post intubation showed BP of 199/99 and pulse of 124, but his SaO 2 dropped further to 71% on assist control with FiO2 100% and a PEEP of 5 cmh 2 0. With successive PEEP, SaO 2 dropped to 60 70% and BP decreased to 81/39. Due to hemodynamic compromise, APRV ventilation was initiated, with improvement of SaO 2 to 95% and improvement in BP. A CT pulmonary angiogram (CTPA) was ordered to evaluate the pulmonary vasculature as well as the lung parenchyma, which was not done immediately primarily due to hemodynamic instability and elevated serum creatinine. In the meantime, bedside lower-extremity venous duplex was performed showing extensive near occlusive or occlusive deep venous thrombus (DVT) within the left popliteal vein. While the venous duplex was being performed, it was noted that the patient was not moving his right side and examination revealed right-sided hemiparesis. He was emergently taken for CT of the head, as well as CTPA. The CT head showed extensive acute left middle cerebral artery territory infarct with associated significant left frontotemporal and parietal brain edema, and mild left-to right midline shift. CTPA showed pulmonary embolism with moderate to severe clot burden, right heart strain with flattening of interventricular septum, and enlargement of the right sided chambers and main pulmonary artery (Figures 1, 2). Transthoracic echocardiogram demonstrated an atrial septal aneurysm with a significant right-to-left intracardiac shunt, suggestive of a wide patent foramen ovale, and possible right ventricular enlargement with moderate right atrial enlargement (Figure 3, Video 1). Table 1. Standard laboratory assessment. Relevant findings include elevated creatinine, leukocytosis, and significant hypoxemia while on 100% FiO 2. Chemistry Sodium Potassium Chloride Bicarbonate BUN Creatinine Glucose 137 mmol/l 4.3 mmol/l 104 mmol/l 25 mmol/l 16 mg/dl 1.5 mg/dl 106 mg/dl CBC White blood cell Hemoglobin Hematocrit Platelet 13.6 K/uL 16 g/dl 45.2% 180 K/uL Arterial blood gas on 100% non-rebreather ph PCO2 PaO2 Bicarbonate 7.44 mmhg 34 mmhg 56 mmhg 25 mmhg 455

Figure 1. CT pulmonary angiography demonstrating a large embolus lodged in the right main pulmonary artery with dilation of the pulmonary trunk. Also seen is bilateral parenchymal airspace disease, likely representing atelectasis and/or pneumonia. Figure 3. Transthoracic echocardiogram with bubble study in the apical 4-chamber view demonstrating a large PFO, as well as right atrial and right ventricular enlargement. Video 1. Transthoracic echocardiogram with bubble study in the apical 4-chamber view. Large PFO is demonstrated by immediate passage of bubbles from the right side of the heart (viewer s left) to the left side of the heart (viewer s right). Figure 2. CT pulmonary angiography with evidence of right ventricular and right atrial enlargement, interventricular septal flattening, and bilateral parenchymal airspace disease, likely representing atelectasis and/or pneumonia. Discussion The patient presented with refractory hypoxemia that was resistant to, and in fact was progressively worsened by, higher positive pressure. Moreover, the patient developed arterial embolism (stroke) associated with venous thrombosis (DVT and PE), signifying possible paradoxical embolism. Both the presence of refractory hypoxemia, especially when worsening with increasing PEEP, as well as coexistence of venous and arterial thromboembolic disease should raise suspicion for intra cardiac anatomical shunt and a pressure gradient that favors right-to left shunting. PEEP, through recruitment of unused respiratory units, leads to an increase in lung volume at which a patient breathes, i.e., an increase in functional residual capacity (FRC); this increases oxygenation [1]. This increase in FRC within the confined volume of the thorax (and to some extent the abdomen) in turn causes increased ITP, as well as increased pericardial, myocardial, and pulmonary vascular transmural pressures. In doing so, RAP will increase, as will PVR at higher levels of PEEP [1]. PE is also shown to increase PVR and right ventricular afterload, leading to an increase in RAP. Increased RAP decreases systemic venous return, dropping both left ventricular preload and cardiac output [1]. A PFO is a communication between the right atrium and left atrium. PFO was found in 25 30% of individuals in both an autopsy study and in a community-based transesophageal 456

echocardiography study [2,3]. PFOs are normally a hemodynamically insignificant defect, as left atrial pressure largely outweighs RAP, normally resulting in a left-to right shunt or no net shunt. But, as seen in our patient, a large PE can cause a sustained increase in PVR and RAP, which is enough to shift this shunt in the opposite direction. This relatively large anatomic pressure gradient can result in the shunting of blood to the left side of the heart without contacting the pulmonary vascular bed, causing profound hypoxemia Additionally, increased right-sided pressure can further facilitate the transit of venous emboli to the arterial circulation, and may pre-dispose a patient to further embolic injury, as seen in this case. Classically, echocardiography with bubble study or contrast has been the confirmatory study of choice for PFOs and atrial septal defects. More recently, transcranial Doppler has become a validated method for detecting right-to-left shunts, as well as their degree of severity. Transesophageal echocardiography is now thought by many to underestimate the severity of shunts, especially in sedated and intubated patients [4]. Transcranial Doppler can grade shunt severity more accurately than echocardiogram by quantifying microbubble detection [5]. For these reasons, transcranial Doppler would be appropriate to evaluate a patient such as the one discussed in this report. Lack of improvement in oxygenation despite increase in PEEP should raise suspicion for intra cardiac shunt [6]. A similar finding has been documented in patients with acute respiratory distress syndrome (which can also increase PVR) who have PFOs [7]. This results in the bypass of blood to the left side of the heart without contacting the pulmonary vascular bed, causing profound hypoxemia. Adding positive pressure in an attempt to improve oxygenation can in fact further increase PVR and RAP. This can increase right to-left shunt through the PFO, resulting in paradoxical hypoxemia [6,7]. As mentioned earlier, transcranial Doppler can accurately quantify the severity of a right-to-left shunt. The use of transcranial Doppler in patients with PFO on APRV may demonstrate the effect of this ventilator mode on intracardiac shunts. In addition to precipitating right-to left shunt, our patient s PE itself contributed to his hypoxemia by causing a significant V/Q mismatch in the form of physiologic dead space. Moreover, the presence of large PE in our patient resulted in a dramatic reduction in systemic blood pressure in response to increasing levels of PEEP owing to a decrease in left ventricular preload and cardiac output [1]. APRV was used in our patient, which likely resulted in positive effects on both oxygenation and hemodynamics. APRV improves oxygenation by maximizing V/Q matching through recruitment of collapsed respiratory units with adequate perfusion, decreasing shunt fraction [8 10]. APRV is also known to improve hemodynamics by allowing lower peak and mean airway pressures [6,7,11 13]. This resulted in increased cardiac output and decreased RAP, decreasing our patient s rightto left shunt and maintaining a higher BP. Conclusions In patients with severe and refractory hypoxemia, especially when associated with a paradoxical worsening of oxygenation in response to elevated airway pressures, there should be a suspicion for shunts such as PFO. Similarly, patients with concomitant venous and arterial thromboembolic disease should be evaluated for paradoxical embolism via intra cardiac shunt. While a transient right to-left gradient is sufficient to cause a paradoxical embolism in the absence of a net right-to left shunting, patients with profound hypoxemia should be evaluated for etiologies that result in sustained net right-to left pressure gradient, such as PE. This requires the clinician to have a high index of suspicion for anatomic shunts, especially when routine chest radiography shows little or no pathology to explain the degree of hypoxemia. Management should be aimed toward decreasing PVR and optimizing V/Q matching by both treating the inciting incident (e.g., thrombolytic therapy in PE) and by minimizing the effects of mechanical ventilation on ITP. Ventilator modes such as APRV can work to minimize both PVR and maximize V/Q ratios and should be considered in treating patients similar to the one in this report. The use of transcranial Doppler in patients with intracardiac shunts on APRV may confirm our hypothesis that low-pressure ventilator modes are beneficial in reducing right-to-left shunts. References: 1. Luecke T, Pelosi P: Clinical review: Positive end expiratory pressure and cardiac output. Crit Care, 2005; 9(6): 607 21 2. Hagen P, Scholz D, Edwards W: Incidence and size of patent foramen ovale during the first 10 decades of life: An autopsy study of 965 normal hearts. Mayo Clin Proc, 1984; 59(1): 17 20 3. Meissner I, Whisnant J, Khandheria B et al: Prevalence of potential risk factors for stroke assessed by transesophageal echocardiography and carotid ultrasonography: the SPARC study. Stroke Prevention: Assessment of Risk in a Community. Mayo Clin Proc, 1999; 74(9): 862 69 4. Rodrigues A, Picard M, Carbone A et al: Importance of adequately performed Valsalva maneuver to detect patent foramen ovale during transesophageal echocardiography. J Am Soc Echocardiogr, 2013; 26(11): 1337 43 457

5. Tobe J, Bogiatzi C, Munoz C et al: Transcranial Doppler is complementary to echocardiography for detection and risk stratification of patent foramen ovale. Can J Cardiol, 2015 [Epub ahead of print] 6. Cujec B, Polasek P, Mayers I, Johnson D: Positive end-expiratory pressure increases the right-to-left shunt in mechanically ventilated patients with patent foramen ovale. Ann Intern Med, 1993; 119(9): 887 94 7. Mekontso Dessap A, Boissier F, Leon R et al: Prevalence and prognosis of shunting across patent foramen ovale during acute respiratory distress syndrome. Crit Care Med, 2010; 38(9): 1786 92 8. Daoud E, Farag H, Chatburn R: Airway pressure release ventilation: What do we know? Respir Care, 2012; 57(2): 282 92 9. Daoud E: Airway pressure release ventilation. Ann Thorac Med, 2007; 2(4): 176 79 10. Putensen C, Zech S, Wrigge H et al: Long term effects of spontaneous breathing during ventilatory support in patients with acute lung injury. Am J Respir Crit Care Med, 2001; 164(1): 43 49 11. Habashi N: Other approaches to open-lung ventilation: Airway pressure release ventilation. Crit Care Med, 2005; 33(3 Suppl.): S228 40 12. Kaplan L, Bailey H, Formosa V: Airway pressure release ventilation increases cardiac performance in patients with acute lung injury/adult respiratory distress syndrome. Crit Care, 2001; 5(4): 221 26 13. Räsänen J, Cane R, Downs J et al: Airway pressure release ventilation during acute lung injury: a prospective multicenter trial. Crit Care Med, 1991; 19(10): 1234 41 458