Early Vision and Visual System Development

Similar documents
Photoreceptors Rods. Cones

Plasticity of Cerebral Cortex in Development

M Cells. Why parallel pathways? P Cells. Where from the retina? Cortical visual processing. Announcements. Main visual pathway from retina to V1

Reading Assignments: Lecture 5: Introduction to Vision. None. Brain Theory and Artificial Intelligence

OPTO 5320 VISION SCIENCE I

2/3/17. Visual System I. I. Eye, color space, adaptation II. Receptive fields and lateral inhibition III. Thalamus and primary visual cortex

Primary Visual Pathways (I)

V1 (Chap 3, part II) Lecture 8. Jonathan Pillow Sensation & Perception (PSY 345 / NEU 325) Princeton University, Fall 2017

The Eye. Cognitive Neuroscience of Language. Today s goals. 5 From eye to brain. Today s reading

The Visual System. Cortical Architecture Casagrande February 23, 2004

Carlson (7e) PowerPoint Lecture Outline Chapter 6: Vision

Biological Bases of Behavior. 6: Vision

1. The responses of on-center and off-center retinal ganglion cells

Vision II. Steven McLoon Department of Neuroscience University of Minnesota

THE VISUAL WORLD! Visual (Electromagnetic) Stimulus

Vision Seeing is in the mind

eye as a camera Kandel, Schwartz & Jessel (KSJ), Fig 27-3

THE VISUAL WORLD! Visual (Electromagnetic) Stimulus

Sensory Systems Vision, Audition, Somatosensation, Gustation, & Olfaction

Lighta part of the spectrum of Electromagnetic Energy. (the part that s visible to us!)

Prof. Greg Francis 7/31/15

COGS 101A: Sensation and Perception

Lateral Geniculate Nucleus (LGN)

Light passes through the lens, through the inner layer of ganglion cells and bipolar cells to reach the rods and cones. The retina

Activity-Dependent Development II April 25, 2007 Mu-ming Poo

Sensation and Perception. A. Sensation: awareness of simple characteristics B. Perception: making complex interpretations

Introduction to Physiological Psychology

Early Stages of Vision Might Explain Data to Information Transformation

Parallel streams of visual processing

Visual cortical plasticity

Visual Physiology. Perception and Attention. Graham Hole. Problems confronting the visual system: Solutions: The primary visual pathways: The eye:

Construction of the Visual Image

Image Processing in the Human Visual System, a Quick Overview

CS294-6 (Fall 2004) Recognizing People, Objects and Actions Lecture: January 27, 2004 Human Visual System

Senses are transducers. Change one form of energy into another Light, sound, pressure, etc. into What?

Psy393: Cognitive Neuroscience. Prof. Anderson Department of Psychology Week 3

LISC-322 Neuroscience Cortical Organization

Ch 5. Perception and Encoding

Neuroscience - Problem Drill 13: The Eye and Visual Processing

A MULTI-STAGE COLOR MODEL REVISITED: IMPLICATIONS FOR A GENE THERAPY CURE FOR RED-GREEN COLORBLINDNESS

ANAT2010. Concepts of Neuroanatomy (II) S2 2018

PHY3111 Mid-Semester Test Study. Lecture 2: The hierarchical organisation of vision

Neural Activity and the Development of Brain Circuits

Ch 5. Perception and Encoding

Neural circuits PSY 310 Greg Francis. Lecture 05. Rods and cones

Foundations. 1. Introduction 2. Gross Anatomy of the Eye 3. Simple Anatomy of the Retina

Perceptual Grouping in a Self-Organizing Map of Spiking Neurons

Spatial coding of position and orientation in primary visual cortex

Mind. Synopsis: Synopsis: Friday: Overview Perception Retina Central projections LGN (Visual Cortex)

The Visual System. Retinal Anatomy Dr. Casagrande February 2, Phone: Office: T2302 MCN

LISC-322 Neuroscience. Visual Field Representation. Visual Field Representation. Visual Field Representation. Visual Field Representation

Chapter 9 Refinement of Synaptic Connections

Retinal Waves and Ocular Dominance Columns

The Central Nervous System

9.14 Classes #21-23: Visual systems

SENSES: VISION. Chapter 5: Sensation AP Psychology Fall 2014

Neuronal responses to plaids

Definition Slides. Sensation. Perception. Bottom-up processing. Selective attention. Top-down processing 11/3/2013

Parallel pathways in the retina

= add definition here. Definition Slide

7. Sharp perception or vision 8. The process of transferring genetic material from one cell to another by a plasmid or bacteriophage

CSE511 Brain & Memory Modeling. Lect21-22: Vision Central Pathways

Sensing and Perceiving Our World

ASSUMPTION OF COGNITIVE UNIFORMITY

The lowest level of stimulation that a person can detect. absolute threshold. Adapting one's current understandings to incorporate new information.

NEUROSCIENCE. Barbora Cimrová

The ON and OFF Channels

What do we perceive?

PSY 214 Lecture 5 (09/19/2010) (Vision) Dr. Achtman PSY 214. Lecture 5 Topic: Introduction to Vision Chapter 3, pages 55-71

The Visual System. Chapter 3

PATTERN-GENERATOR-DRIVEN DEVELOPMENT IN SELF-ORGANIZING MODELS. James A. Bednar and Risto Miikkulainen

BINOCULAR VISUAL FIELD. fixation point. fovea

Rewiring Cortex: The Role of Patterned Activity in Development and Plasticity of Neocortical Circuits

Contextual Influences in Visual Processing

Mechanisms of plasticity in the developing visual cortex and how behavioral state changes cortical gain and adult plasticity

Seeing beyond the receptive field in primary visual cortex David Fitzpatrick

LOCAL CIRCUITS IN PRIMARY VISUAL CORTEX OF THE MACAQUE MONKEY

THE VISUAL SYSTEM Dan Tollin, PhD

Image Formation and Phototransduction. By Dr. Abdelaziz Hussein Lecturer of Physiology

SENSORY PLASTICITY. Sensory Plasticity

Neuroanatomy, Text and Atlas (J. H. Martin), 3 rd Edition Chapter 7, The Visual System, pp ,

Required Slide. Session Objectives

VISUAL CORTICAL PLASTICITY

Topographic Receptive Fields and Patterned Lateral Interaction in a Self-Organizing Model of The Primary Visual Cortex

Physiology Unit 2 SENSORY PHYSIOLOGY

THE VISUAL PATHWAY FOR DENTAL STUDENTS

Cognitive Modelling Themes in Neural Computation. Tom Hartley

Basics of Computational Neuroscience

Retinotopy & Phase Mapping

Information and neural computations

Pathway from the eye to the cortex

Vision. The Eye External View. The Eye in Cross-Section

Visual system invades the endbrain: pathways to striatum and cortex (continued) Why this happened in evolution

Visual System. By: Jordan Koehling

Stable Receptive Field Structure of Color Neurons in Primary Visual Cortex under Adapting and Non-adapting Conditions

Test Bank Chapter 2: The Beginnings of Perception

Thalamo-Cortical Relationships Ultrastructure of Thalamic Synaptic Glomerulus

Outline 2/19/2013. Please see me after class: Sarah Pagliero Ryan Paul Demetrius Prowell-Reed Ashley Rehm Giovanni Reynel Patricia Rochin

Modeling the Primary Visual Cortex

The Perceptual Experience

Transcription:

Early Vision and Visual System Development Dr. James A. Bednar jbednar@inf.ed.ac.uk http://homepages.inf.ed.ac.uk/jbednar CNV Spring 2009: Vision background 1

Studying the visual system (1) The visual system can be (and is) studied using many different techniques. In this course we will consider: Psychophysics What is the level of human visual performance under various different conditions? Anatomy Where are the visual system parts located, and what do they look like? Gross anatomy What do the visual system organs and tissues look like, and how are they connected? Histology What cellular and subcellular structures can be seen under a microscope? CNV Spring 2009: Vision background 2

Studying the visual system (2) Physiology What is the behavior of the component parts of the visual system? Electrophysiology What is the electrical behavior of neurons, measured with an electrode? Imaging What is the behavior of a large area of the nervous system? Genetics Which genes control visual system development and function, and what do they do? CNV Spring 2009: Vision background 3

Electromagnetic spectrum (From web) Start with the physics: visible portion is small, but provides much information about biologically relevant stimuli CNV Spring 2009: Vision background 4

Cone spectral sensitivities (Dowling, 1987) Somehow we make do with sampling the visible range of wavelengths at only three points (3 cone types) CNV Spring 2009: Vision background 5

Early visual pathways c 1994 L. Kibiuk Eye LGN V1 Signals travel from retina, to LGN, then to primary visual cortex CNV Spring 2009: Vision background 6

Higher areas Many higher areas beyond V1 Selective for faces, motion, etc. Macaque visual areas (Van Essen et al. 1992) Not as well understood CNV Spring 2009: Vision background 7

Circuit diagram Connections between macaque visual areas (Van Essen et al. 1992) A bit messy! (Yet still just a start.) CNV Spring 2009: Vision background 8

Image formation (Kandel et al. 1991) Fixed Adjustable Sampling Camera: lens shape focal length uniform Eye: focal length lens shape higher at fovea CNV Spring 2009: Vision background 9

Visual fields Right eye right Visual field left Optic chiasm Right LGN Left LGN Primary visual cortex (V1) CMVC figure 2.1 Left eye Each eye sees partially overlapping areas Inputs from opposite hemifield cross over at chiasm CNV Spring 2009: Vision background 10

Retinotopic map Mapping of visual field in macaque monkey Blasdel and Campbell 2001 Visual field is mapped onto cortical surface Fovea is overrepresented CNV Spring 2009: Vision background 11

Effect of foveation (From omni.isr.ist.utl.pt) Smaller, tightly packed cones in the fovea give much higher resolution CNV Spring 2009: Vision background 12

Retinal surface (Ahnelt & Kolb 2000) Fovea (center ) Periphery Fovea: densely packed L,M cones (no rods) No S cones in central fovea; sparse elsewhere Cones are larger in periphery ( : S-cones) Cone spacing also increases, with gaps filled by rods CNV Spring 2009: Vision background 13

Retinal circuits (Kandel et al. 1991) Rod pathway Rod, rod bipolar cell, ganglion cell Cone pathway Cone, bipolar cell, ganglion cell CNV Spring 2009: Vision background 14

LGN layers Macaque; Hubel & Wiesel 1977 Multiple aligned representations of visual field in the LGN for different eyes and cell types CNV Spring 2009: Vision background 15

V1 layers (From webvision.umh.es) Multiple layers of cells in V1 Brodmann numbering CNV Spring 2009: Vision background 16

Retinal/LGN cell response types Types of receptive fields based on responses to light: in center in surround On-center excited inhibited Off-center inhibited excited CNV Spring 2009: Vision background 17

Color-opponent retinal/lgn cells (From webexhibits.org) Red/Green cells: (+R,-G), (-R,+G), (+G,-R), (-G,+R) Blue/Yellow cells: (+B,-Y); others? Error: light arrows in the figure are backwards! CNV Spring 2009: Vision background 18

V1 simple cell responses 2-lobe simple cell 3-lobe simple cell Starting in V1, only oriented patterns will cause any significant response Simple cells: pattern preferences can be plotted as above CNV Spring 2009: Vision background 19

V1 complex cell responses (Same response to all these patterns) Complex cells are also orientation selective, but have responses invariant to phase Can t measure complex RFs using pixel-based correlations CNV Spring 2009: Vision background 20

Spatiotemporal receptive fields Neurons are selective for multiple stimulus dimensions at once Typically prefer lines moving in direction perpendicular to orientation preference (Cat V1; DeAngelis et al. 1999) CNV Spring 2009: Vision background 21

Contrast perception 0% 3% 6% 12% 25% 100% Humans can detect patterns over a huge contrast range In the laboratory, increasing contrast above a fairly low value does not aid detection See 2AFC (two-alternative forced-choice) test in google and ROC (Receiver Operating Characteristic) in Wikipedia for more info on how such tests work CNV Spring 2009: Vision background 22

Contrast-invariant tuning (Sclar & Freeman 1982) Single-cell tuning curves are typically Gaussian 5%, 20%, 80% contrasts shown Peak response increases, but Tuning width changes little CNV Spring 2009: Vision background 23

Definitions of contrast Luminance (luminosity): Physical amount of light Contrast: Luminance relative to background levels to which the visual system has become adapted Contrast is a fuzzy concept clear only in special cases: Weber contrast (e.g. a tiny spot on uniform background) C = Lmax Lmin Lmin Michelson contrast (e.g. a full-field sine grating): C = Lmax Lmin Lmax+Lmin CNV Spring 2009: Vision background 24

Measuring cortical maps CMVC figure 2.3 Surface reflectance (or voltage-sensitive-dye emission) changes with activity Measured with optical imaging Preferences computed as correlation between measurement and input CNV Spring 2009: Vision background 25

Orientation map in V1 Adult monkey; Blasdel 1992; 4 3mm Overall organization is retinotopic Local patches prefer different orientations CNV Spring 2009: Vision background 26

Ocular dominance map in V1 Adult monkey; Blasdel 1992; 4 3mm Most neurons are binocular, but prefer one eye Eye preference alternates in stripes or patches CNV Spring 2009: Vision background 27

Combined OR/OD map in V1 Adult monkey; Blasdel 1992; 4 3mm Same neurons have preference for both features OR has linear zones, fractures, pinwheels, saddles OD boundaries typically align with linear zones CNV Spring 2009: Vision background 28

Direction map in V1 Direction preference (3.2 2mm) OR/Direction pref. (1 1.4mm) (Adult ferret; Weliky et al. 1996) Local patches prefer different directions Single-OR patches often subdivided by direction Other maps: spatial frequency, color, disparity CNV Spring 2009: Vision background 29

Cell-level organization Two-photon microscopy: New technique with cell-level resolution Can measure a small volume very precisely (Ohki et al. 2005) Rat V1 (scale bars 0.1mm) CNV Spring 2009: Vision background 30

Cell-level organization 2 Individual cells can be tagged with feature preference In rat, orientation preferences are random Random also expected in mouse, squirrel Rat V1 (scale bars 0.1mm) (Ohki et al. 2005) CNV Spring 2009: Vision background 31

Cell-level organization 3 In cat, validates results from optical imaging Smooth organization for direction overall Sharp, well-segregated discontinuities (Ohki et al. 2005) Cat V1 Dir. (scale bars 0.1mm) CNV Spring 2009: Vision background 32

Cell-level organization 4 Very close match with optical imaging results Low-res map (2 1.2mm) Stack of all labeled cells (0.6 0.4mm) Stacking labeled cells from all layers shows very strong ordering spatially and in across layers No significant loss of selectivity in pinwheels (Ohki et al. 2006) CNV Spring 2009: Vision background 33

Surround modulation 40% 30% 20% 10% Which of the contrasts at left matches the central area? CNV Spring 2009: Vision background 34

Surround modulation 40% 30% 20% 10% Which of the contrasts at left matches the central area? 40% CNV Spring 2009: Vision background 35

Contextual interactions Orientation and shape perception is not entirely local (e.g. due to individual V1 neurons). Instead, adjacent line elements interact (tilt illusion). Presumably due to lateral or feedback connections at V1 or above. CNV Spring 2009: Vision background 36

Lateral connections (Macaque; Gilbert et al. 1990) Example layer 2/3 pyramidal cell Patchy every 1mm CNV Spring 2009: Vision background 37

Lateral connections (2.5 mm 2 mm in tree shrew V1; Bosking et al. 1997) Connections up to 8mm link to similar preferences Patchy structure, extend along OR preference CNV Spring 2009: Vision background 38

Feedback connections (Macaque; Angelucci et al. 2002) Relatively little known about feedback connections Large number, wide spread Some appear to be diffuse Some are patchy and orientation-specific CNV Spring 2009: Vision background 39

Visual development Research questions: Where does the visual system structure come from? How much of the architecture is specific to vision? What influence does the environment have? How plastic is the system in the adult? Most visual development studies focus on ferrets and cats, whose visual systems are very immature at birth. CNV Spring 2009: Vision background 40

Initial development (Ziv 1996) Tissues develop into eye, brain RGC axons grow from eye to LGN and superior colliculus (SC) following chemical gradients Axons form synapses at LGN, SC LGN axons grow to V1, V2, etc., forming synapses CNV Spring 2009: Vision background 41

Cortical development Coarse cortical architecture (e.g. division into areas) appears to be fixed after birth Cortical architecture similar across areas Much of cortical development appears driven by different peripheral circuitry (auditory, visual, etc.) E.g. Sur et al. 1988-2000: auditory cortex can develop into visual cortex CNV Spring 2009: Vision background 42

Rewired ferrets Sur et al. 1988-2000: 1. Disrupt connections to MGN 2. RGC axons now terminate in MGN 3. Then to A1 instead of V1 4. Functional orientation cells, map in A1 CNV Spring 2009: Vision background 43

Human visual system at birth Some visual ability Fovea barely there Color vision poor Binocular vision difficult Poor control of eye movements Seems to develop later Acuity increases 25X (birth to 6 months) CNV Spring 2009: Vision background 44

Map development Initial orientation, OD maps develop without visual experience (Crair et al. 1998) Maps match between the eyes even without shared visual experience (Kim & Bonhoeffer 1994) Experience leads to more selective neurons and maps (Crair et al. 1998) Lid suture (leaving light through eyelids) during critical period destroys maps (White et al. 2001) Complicated interaction between system and environment. CNV Spring 2009: Vision background 45

OR map development Map not visible when eyes first forced open Gradually becomes stronger over weeks (Ferret; Chapman et al. 1996) (approx 5mm 3.5mm; p31-p42) Shape doesn t change significantly Initial development affected little by dark rearing CNV Spring 2009: Vision background 46

Monocular deprivation (Monkey V1 layer 4C; Wiesel 1982) (Left eye (open) labeled white) Raising with one eyelid sutured shut results in larger area for other eye Sengpiel et al. 1999: Area for overrepresented orientations increases too CNV Spring 2009: Vision background 47

Internally generated inputs 0.0s 1.0s 2.0s 3.0s 4.0s 0.0s 0.5s 1.0s 1.5s 2.0s (Feller et al. 1996, 1mm 2 ferret retina) Retinal waves: drifting patches of spontaneous activity Training patterns? CNV Spring 2009: Vision background 48

Role of spontaneous activity Silencing of retinal waves prevents eye-specific segregation in LGN Boosting in one eye disrupts LGN, but not if in both Effect of retinal waves on cortex unclear Other sources of input to V1: spontaneous cortical activity, brainstem activity All developing areas seem to be spontaneously active, e.g. auditory system, spinal cord CNV Spring 2009: Vision background 49

Timeline: Cat (Sengpiel & Kind 2002) CNV Spring 2009: Vision background 50

Timeline: Ferret (Sengpiel & Kind 2002) CNV Spring 2009: Vision background 51

Cat vs. Ferret Should be readable in a printout, not on screen (Issa et al. 1999) OD, Ocular dominance MD, monocular deprivation GC, ganglion cell C-I, contralateral-ipsilateral CNV Spring 2009: Vision background 52

Conclusions Early areas well studied Higher areas much less so Little understanding of how entire system works together Development also a mystery Lots of work to do CNV Spring 2009: Vision background 53

References Ahnelt, P. K., & Kolb, H. (2000). The mammalian photoreceptor mosaic adaptive design. Progress in Retinal and Eye Research, 19 (6), 711 777. Angelucci, A., Levitt, J. B., & Lund, J. S. (2002). Anatomical origins of the classical receptive field and modulatory surround field of single neurons in macaque visual cortical area V1. Progress in Brain Research, 136, 373 388. Bosking, W. H., Zhang, Y., Schofield, B. R., & Fitzpatrick, D. (1997). Orientation selectivity and the arrangement of horizontal connections CNV Spring 2009: Vision background 53

in tree shrew striate cortex. The Journal of Neuroscience, 17 (6), 2112 2127. Chapman, B., Stryker, M. P., & Bonhoeffer, T. (1996). Development of orientation preference maps in ferret primary visual cortex. The Journal of Neuroscience, 16 (20), 6443 6453. Crair, M. C., Gillespie, D. C., & Stryker, M. P. (1998). The role of visual experience in the development of columns in cat visual cortex. Science, 279, 566 570. DeAngelis, G. C., Ghose, G. M., Ohzawa, I., & Freeman, R. D. (1999). Functional micro-organization of primary visual cortex: Receptive CNV Spring 2009: Vision background 53

field analysis of nearby neurons. 19 (10), 4046 4064. The Journal of Neuroscience, Feller, M. B., Wellis, D. P., Stellwagen, D., Werblin, F. S., & Shatz, C. J. (1996). Requirement for cholinergic synaptic transmission in the propagation of spontaneous retinal waves. Science, 272, 1182 1187. Gilbert, C. D., Hirsch, J. A., & Wiesel, T. N. (1990). Lateral interactions in visual cortex. In The Brain (Vol. LV of Cold Spring Harbor Symposia on Quantitative Biology, pp. 663 677). Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press. Hubel, D. H., & Wiesel, T. N. (1977). Functional architecture of macaque CNV Spring 2009: Vision background 53

visual cortex. Proceedings of the Royal Society of London Series B, 198, 1 59. Issa, N. P., Trachtenberg, J. T., Chapman, B., Zahs, K. R., & Stryker, M. P. (1999). The critical period for ocular dominance plasticity in the ferret s visual cortex. The Journal of Neuroscience, 19 (16), 6965 6978. Kandel, E. R., Schwartz, J. H., & Jessell, T. M. (1991). Neural Science (3rd Ed.). Amsterdam: Elsevier. Principles of Kim, D. S., & Bonhoeffer, T. (1994). Reverse occlusion leads to a precise restoration of orientation preference maps in visual cortex. Nature, 370 (6488), 370 372. CNV Spring 2009: Vision background 53

Ohki, K., Chung, S., Ch ng, Y. H., Kara, P., & Reid, R. C. (2005). Functional imaging with cellular resolution reveals precise microarchitecture in visual cortex. Nature, 433 (7026), 597 603. Ohki, K., Chung, S., Kara, P., Hubener, M., Bonhoeffer, T., & Reid, R. C. (2006). Highly ordered arrangement of single neurons in orientation pinwheels. Nature, 442 (7105), 925 928. Sclar, G., & Freeman, R. D. (1982). Orientation selectivity in the cat s striate cortex is invariant with stimulus contrast. Experimental Brain Research, 46, 457 461. Sengpiel, F., & Kind, P. C. (2002). The role of activity in development of the visual system. Current Biology, 12 (23), R818 R826. CNV Spring 2009: Vision background 53

Sengpiel, F., Stawinski, P., & Bonhoeffer, T. (1999). Influence of experience on orientation maps in cat visual cortex. Nature Neuroscience, 2 (8), 727 732. Sur, M., Garraghty, P. E., & Roe, A. W. (1988). Experimentally induced visual projections in auditory thalamus and cortex. Science, 242, 1437 1441. Van Essen, D. C., Anderson, C. H., & Felleman, D. J. (1992). Information processing in the primate visual system: An integrated systems perspective. Science, 255, 419 423. Weliky, M., Bosking, W. H., & Fitzpatrick, D. (1996). A systematic map CNV Spring 2009: Vision background 53

of direction preference in primary visual cortex. Nature, 379, 725 728. White, L. E., Coppola, D. M., & Fitzpatrick, D. (2001). The contribution of sensory experience to the maturation of orientation selectivity in ferret visual cortex. Nature, 411, 1049 1052. Wiesel, T. N. (1982). Postnatal development of the visual cortex and the influence of the environment. Nature, 299, 583 591. CNV Spring 2009: Vision background 53