GLYCOGEN BEFORE THE LAB YOU HAVE TO READ ABOUT:

Similar documents
Glycogen Metabolism. BCH 340 lecture 9

Lecture 2: Glycogen metabolism (Chapter 15)

BY: RASAQ NURUDEEN OLAJIDE

Lecture 3: Phosphorylase (parts of Chapter 15 + Buchbinder et al. 2001) Discussion of paper and talk assignments.

Lecture 34. Carbohydrate Metabolism 2. Glycogen. Key Concepts. Biochemistry and regulation of glycogen degradation

Biochemistry. Glycogenolysis. Metabolism of Carbohydrates. Dr.S.K.Khare,Professor IIT Delhi. Principal Investigator

Metabolism of pentoses, glycogen, fructose and galactose. Jana Novotna

Highlights Pentose Phosphate Pathway

Biochemistry Team 437. Glycogen metabolism. Color index: Doctors slides Notes and explanations Extra information Highlights. Musculoskeletal block

Experiment 1. Isolation of Glycogen from rat Liver

Carbohydrate. Metabolism

Carbohydrate Metabolism 2 Supplemental Reading

Glycogen Metabolism Dr. Mohammad Saadeh

Chapter 15 Homework Assignment

Regulation of glycogen degradation

Chapter 18: Carbohydrate Metabolism

Energy storage in cells

Β-FRUCTOFURANOSIDASE ENZYME

Link download full of Test Bank for Fundamentals of Biochemistry 4th Edition by Voet

PPP_glycogen_metabolism Part 2 الفريق الطبي األكاديمي. Done By: - Shady Soghayr

For example, monosaccharides such as glucose are polar and soluble in water, whereas lipids are nonpolar and insoluble in water.

Molecular Structure and Function Polysaccharides as Energy Storage. Biochemistry

Bio 366: Biological Chemistry II Test #1, 100 points (7 pages)

The concentration of glucose residues stored as glycogen in liver is ~0.4M, Whereas, glycogen concentration is only 10 nm.

Comparison of catabolic and anabolic pathways

Kinetics analysis of β-fructofuranosidase enzyme. 1-Effect of Time Incubation On The Rate Of An Enzymatic Reaction

OCR (A) Biology A-level

Integration Of Metabolism

Experiment 9. NATURE OF α-amylase ACTIVITY ON STARCH

number Done by Corrected by Doctor Nayef Karadsheh

Major Pathways in Carbohydrate Metabolism

2.1.1 Biological Molecules

Chapter 3. Table of Contents. Section 1 Carbon Compounds. Section 2 Molecules of Life. Biochemistry

Activity: Biologically Important Molecules

CHY2026: General Biochemistry UNIT 7& 8: CARBOHYDRATE METABOLISM

BIOLOGICAL MOLECULES REVIEW-UNIT 1 1. The factor being tested in an experiment is the A. data. B. variable. C. conclusion. D. observation. 2.

HiPer Carbohydrates Estimation Teaching Kit (Quantitative)

Higher Biology. Unit 2: Metabolism and Survival Topic 2: Respiration. Page 1 of 25

Assignment #1: Biological Molecules & the Chemistry of Life

SPECIFICATION CONTINUED Glucose has two isomers, α-glucose and β-glucose, with structures:

CELLULASE from PENICILLIUM FUNICULOSUM

5.0 HORMONAL CONTROL OF CARBOHYDRATE METABOLISM

I. Polymers & Macromolecules Figure 1: Polymers. Polymer: Macromolecule: Figure 2: Polymerization via Dehydration Synthesis

In glycolysis, glucose is converted to pyruvate. If the pyruvate is reduced to lactate, the pathway does not require O 2 and is called anaerobic

Chapter Three (Biochemistry)

9.A compare the structures and functions of different types of biomolecules, including carbohydrates, lipids, proteins, and nucleic acids

METABOLISM Biosynthetic Pathways

Carbohydrate Metabolism

Biology 12 - Biochemistry Practice Exam

Chapter 22. Before the class. 10 Steps of glycolysis. Outline. Can you tell the ten steps of glycolysis? Do you know how glucoses are

Enzymatic Assay of RIBONUCLEIC ACID POLYMERASE 1 (EC )

Diseases Associated with Glycogen Synthesis

Introduction to Carbohydrate metabolism

Chapter 13 Carbohydrate Metabolism

All living things are mostly composed of 4 elements: H, O, N, C honk Compounds are broken down into 2 general categories: Inorganic Compounds:

Chapter 5 MITOCHONDRIA AND RESPIRATION 5-1

SPRINGFIELD TECHNICAL COMMUNITY COLLEGE ACADEMIC AFFAIRS

Figure 2. Figure 1. Name: Bio AP Lab Organic Molecules

B i o c h e m i s t r y N o t e s

Name Class Date. Write the correct letter in the blank before each numbered term. a. forms large molecules from smaller. ones

The Structure and Function of Macromolecules

Name: Period: Date: Testing for Biological Macromolecules Lab

Organic Chemistry Worksheet

189,311, , ,561, ,639, ,679, Ch13; , Carbohydrates

Adenosine triphosphate (ATP)

HEMICELLULASE from ASPERGILLUS NIGER, var.

Ch. 5 The S & F of Macromolecules. They may be extremely small but they are still macro.

UNIVERSITY OF PNG SCHOOL OF MEDICINE AND HEALTH SCIENCES DIVISION OF BASIC MEDICAL SCIENCES DISCIPLINE OF BIOCHEMISTRY AND MOLECULAR BIOLOGY

Water: 1. The bond between water molecules is a(n) a. ionic bond b. covalent bond c. polar covalent bond d. hydrogen bond

2.2 Properties of Water

2.1. thebiotutor. Unit F212: Molecules, Biodiversity, Food and Health. 1.1 Biological molecules. Answers

Topic 4 - #2 Carbohydrates Topic 2

LAB 3: Biomolecules and Digestion

III. Metabolism Glucose Catabolism Part II

The effect of incubation time on the rate of an enzyme catalyzed reaction

The Structure and Function of Biomolecules

Student Manual. Background STUDENT MANUAL BACKGROUND. Enzymes

Bio 12 Chapter 2 Test Review

Chapter 1. Chemistry of Life - Advanced TABLE 1.2: title

Cellular Respiration. Cellular Respiration. C 6 H 12 O 6 + 6O > 6CO 2 + 6H energy. Heat + ATP. You need to know this!

Biomolecule: Carbohydrate

Yeast Extracts containing Mannoproteins (Tentative)

Background knowledge

Chapter 23 Carbohydrates and Nucleic Acids. Carbohydrates

6 The chemistry of living organisms

LAB 4 Macromolecules

Cellular Respiration

Dehydration Synthesis and Hydrolysis Reactions. ne_content/animations/reaction_types.ht ml

Objectives. Carbon Bonding. Carbon Bonding, continued. Carbon Bonding

Physiological Chemistry II Exam IV Dr. Melissa Kelley April 13, 2004

Name a property of. water why is it necessary for life?

Organic Molecule Composition of Milk: Lab Investigation

Chapter 2: Biochemistry

Introduction to Macromolecules. If you were to look at the nutrition label of whole milk, what main items stick out?

Macromolecules. The four groups of biomolecules or macromolecules found in living things which are essential to life are: 1. PROTEINS 1.

Tests for Carbohydrates

Question #2 Fructose, galactose, and glucose are monosaccharides (simple sugars). The open chain form of glucose is drawn below:

Water Carbon Macromolecules

In any solution, a scientist can talk about the concentration of the atoms that are dissolved in the solvent.

Transcription:

GLYCGEN BEFRE THE LAB YU HAVE T READ ABUT:. Glycogen structure. 2. Glycogen synthesis and degradation (reactions with structural formulas and enzymes). 3. The role of glycogen in liver and muscles. INTRDUCTIN Glycogen represents the principal storage form of carbohydrate in the mammalian body, mainly in liver and muscles. It is a branched homoglycan composed of α-d-glucopyranose units which are linked via two types of bonds: α-, and α-,6 (Fig. ). Its corresponding form in plants is a starch but glycogen is more extensively branched (branches occur every twelve to fourteen glucose residues) and more compact than starch. Glycogen is stored mainly in liver (up to 6-8%) and muscles ( %). However, due to the greater mass, muscles contain about three to four times more glycogen than the liver. Glycogen accumulated in liver serves as a reservoir that releases glucose into the blood when the blood glucose level falls below the normal one. Phisiological glucose concentration in blood changes within a narrow interval ranged from. to 6.7 mmol/l (80-20 mg/dl). Glycogen accumulated in liver is sufficient to maintain glucose concentration on the appropriate level for 2-8 hours. Glycogen s role in maintaining blood-glucose level is especially important because glucose is the major metabolic fuel for mammals (except ruminants) and a universal fuel for the fetus. Glucose supply is necessary especially for the nervous system and erythrocytes. Glucose is virtually the only fuel used by the brain, except during prolonged starvation. Moreover, the glucose from glycogen is readily mobilized and is therefore a good source of energy for sudden, strenuous activity. Unlike fatty acids, the released glucose can provide energy in the absence of oxygen and can thus supply energy for anaerobic activity. A decrease in the glucose level below 70 mg/dl (hypoglycemia) causes brain dysfunction which can lead to coma and death. CH 2 -, linkage nonreducing end H CH 2 CH 2 CH 2 CH 2 6 -,6 linkage CH 2 Fig.. Branched structure of glycogen.

Muscle glycogen is not generally available to other tissues because muscles lack the enzyme glucose-6-phosphatase. Instead of it provides a source of energy for muscle contraction and is a readily available source of glucose for glycolysis within the muscle itself. Glycogen is synthesized from glucose by the pathway of glycogenesis, which occurs mainly in liver and muscle. The glucose donor in the biosynthesis of glycogen is an activated form of glucose - uridine diphosphate glucose (UDPGlc). UDPGlc is synthesized from glucose -phosphate and uridine triphosphate (UTP) in a reaction catalyzed by UDPGlc pyrophosphorylase. This is a key reaction in glycogen biosynthesis because the energy of the phospho-glycosyl bond of UDPGlc is utilized by glycogen synthase. glucose -phosphate + UTP UDPGlc + PP i Glycogen synthase catalyzes formation of glycosidic bonds between C of the activated glucose of UDPGlc and C of a terminal glucose residue at the non-reducing end of glycogen, liberating uridine diphosphate (UDP) (Fig. 2). HN HCH 2 H P P - - UDP-glucose N + HCH 2 H HCH 2 Glycogen (n residues of glucose) GLYCGEN SYNTHASE HN - P - P - UDP N + HCH 2 H HCH 2 HCH 2 Glycogen (n + residues of glucose) Fig.2. Elongation of a glycogen chain by glycogen synthase. Glycogen synthase can only extend existing chain of glycogen. The glycogen primer (known as glycogenin) must be present to initiate glycogen biosynthesis. Glycogenin is a 37-kDa protein, which catalyses the addition of a glucose monomer to one of its own tyrosine residues forming a bond between the C of glucose and the tyrosine hydroxyl group. This reaction is due to glycogenin s glucosyltransferase activity. Further glucose residues can be added to the α position to make a short chain that is a substrate for glycogen synthase. Glycogenin remains attached to the reducing end of the glycogen molecule. Glycogen synthase cannot make (α 6) bonds found at the branch points of glycogen. Instead, these are formed by a branching enzyme (amylo[ ] [ 6]-transglucosylase). When the chain has been lengthened to at least glucose residues, branching enzyme transfers a part of the α chain (at least six glucose residues) to a neighboring chain to form an α 6 linkage, establishing a branch point. The branches grow by further additions of α -glucosyl units and further branching. 2

The biological effect of branching is to make the glycogen molecule more soluble and increase in the number of nonreducing ends, which accelerates both synthesis and degradation of glycogen. Glycogen breakdown (glycogenolysis) requires the interplay of the following enzymes: glycogen phosphorylase, debranching enzyme (which has two activities of α-[ ] α-[ ]-glucan transferase and amylo-[ 6]-glucosidase) and phosphoglucomutase. Glycogen phosphorylase catalyzes the phosphorolytic cleavage by adding inorganic phosphate (phosphorolysis) to the α linkages of glycogen to yield glucose -phosphate. The phosphorolytic cleavage of glycogen is energetically advantageous because the released sugar is already phosphorylated. glycogen (n residues) + P i glucose -phosphate + glycogen (n- residues) α-[ ] α-[ ]-glucan transferase translocates a trisaccharide unit from one branch to the other, exposing a single glucose residue joined by an α-,6-glycosidic linkage. Amylo-[ 6]-glucosidase hydrolyzes the release of free glucose breaking an α 6 bond. Phosphoglucomutase converts glucose -phosphate formed during phosphorolytic cleavage of glycogen into glucose 6- phosphate. Further fate of glucose 6-phosphate depends on type of tissue. Liver and kidney contain a hydrolytic enzyme: glucose 6-phosphatase, which converts glucose 6-phosphate to dephosphorylated glucose. The free glucose formed from glycogen in liver is released into the bloodstream and carried to tissues that require it as a fuel. Glucose 6-phosphatase is not present in muscle, so muscle glycogen cannot directly act as a source of blood glucose. Instead, the glucose 6-phosphate is further processed by enzymes of glycolytic pathway. Glycogen is synthesized and degraded by different pathways. The principal enzymes controlling glycogen metabolism (glycogen phosphorylase and glycogen synthase) are regulated by allosteric mechanisms and covalent modifications due to its reversible phosphorylation and dephosphorylation in response to hormones action (glucagon, insulin, epinephrine). Cyclic adenosine-3,5 - monophosphate (camp) integrates the regulation of glycogenolysis and glycogenesis by promoting the simultaneous activation of phosphorylase and inhibition of glycogen synthase. Insulin acts reciprocally by inhibiting glycogenolysis and stimulating glycogenesis. EXPERIMENTS. Isolation of glycogen from animal liver Principle of the method Glycosidic bonds in glycogen are resistant to hydrolytic activity of - at elevated temperature. In contrast, peptide bonds in proteins, ester bonds in lipids and phosphodiester bonds in ribonucleic acids undergo hydrolysis at high temperature and in alkaline ph (i.e. in K solution). Under these conditions the glycogen solution, only slightly contaminated with other polysaccharides, fragments of denatured DNA and low molecular weight compounds, can be obtained. Addition of ethanol results in glycogen precipitation and allows to obtain relatively purified glycogen. 3

Reagents. 30% K solution 2. 96% ethanol Procedure Turn on the water bath before experiment!. Put one gram of liver into a centrifuge tube containing 2.5 ml of 30% K solution. 2. Seal the tube with rubber stopper with a reflux column and put it into a boiling water bath for 30 minutes shaking it from time to time. 3. After complete resolving of the tissue, cool the tube down.. Add.5 ml of 96% ethanol and shake it vigorously. 5. Seal the tube again with rubber stopper with a reflux column and put it into the boiling water bath. BE CAREFUL! Do not let alcohol evaporate, take the tube out of the water baths as soon as it starts to boil. 6. After cooling, spin down the glycogen precipitate by centrifugation (5 min, 3000 rpm). Before centrifugation, buckets with tubes should be balanced in pairs!!! 7. Discard the supernatant, dissolve the precipitate in 3 ml of water (stir with glass rod). 8. Afterwards, precipitate the glycogen by adding 6 ml of 96% ethanol (stir thoroughly the content of the tube). 9. Spin down the precipitated glycogen as previously described. 0. Discard the supernatant carefully.. Dry the precipitate by putting the tube upside down on a filter paper. 2. Dissolve the precipitate in 0 ml of distilled water. The resulting opaque solution of glycogen will be used in experiment 3. 2. Preparation of a calibration curve for glucose determination and quantitative task (individual for each student) Principle of the method Glucose has reducing properties and reduces dinitrosalicylic reagent under alkaline ph conditions, while itself is oxidized to gluconic acid. After reduction, the yellow dinitrosalicylic reagent changes to orange, with a maximum absorbance at 550 nm. The color change is directly proportional to the amount of glucose in the sample. Reagents. Glucose standard solution (0.0 mol/l) 2. 0.05 mol/l phosphate buffer, ph 6.9 3. Dinitrosalicylic reagent (% 3,5-dinitrosalicylic acid,.6% Na, 30% sodium potassium tartrate)

Procedure. Prepare 9 tubes calibrated for 0 ml. 2. Add ml of given individual task solution (IT) to the tubes 8 and 9. 3. To each of 9 tubes add the reagents in order according to the table. Mix carefully every time a new compound is added. PLEASE NTE that tubes tube is a blank sample, tubes 2-7 are the standard samples for preparation of a calibration curve,, while tubes 8 and 9 contain the individual task for each student. Table Tubes 2 3 5 6 7 8, 9 ml IT Glucose standard solution (0.0 mol/l) 0.2 0. 0.6 0.8.0.2 H 2 2.0.8.6..2.0 0.8.0 0.05 mol/l phosphate buffer, ph 6.9 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 Dinitrosalicylic reagent 2 2 2 2 2 2 2 2 In test tubes you have respectively: moles of glucose in sample 2 6 8 0 2?. After addition of reagents shake well the contents of all tubes and heat them in the boiling water bath for 0 minutes. 5. Take tubes out of the bath and cool them down. 6. Add distilled water to the final volume of 0 ml. 7. Shake the tubes carefully and read the absorbance of each sample (tubes 2-7 for calibration curve, 8-9 for individual task) against the blank sample (tube ) at 550 nm. 8. Draw the calibration curve. Plot the resulting absorbance values versus the amount of glucose [µmoles] in the appropriate samples. 9. Individual task: read the average amount [µmoles] of glucose in your task solution from the calibration curve. Calculate g of glucose in ml of the task solution using molecular weight value for glucose 80 g/mol. 3. Acid hydrolysis of glycogen. Quantification of glycogen content in liver (%) based on the released glucose amount Principle of the method Glycosidic bonds are fairly stable, they can be broken chemically by strong aqueous acids. Glycogen undergoes hydrolysis at 00 C under acidic ph, and if the hydrolysis lasts for a sufficiently long time, the whole amount of glycogen is degraded to free glucose. Reagents. 2 mol/l HCl solution 2..2 mol/l Na solution 3. Dinitrosalicylic reagent (% 3,5-dinitrosalicylic acid,.6% Na, 30% sodium potasium tartrate). 0.05 mol/l phosphate buffer, ph 6.9 5. Glycogen solution from experiment 5

Procedure. Take 5 ml of the glycogen solution obtained in the first experiment, add 5 ml of distilled water and shake it well (dilution :). 2. Prepare 0 calibrated test tubes. 3. Add 0. ml of the diluted glycogen to each test tube numbered from to 9, but 0. ml of distilled water to test tube 0 (blank sample).. Add 0.6 ml of 2 mol/l HCl solution to all tubes and write down the time (t o ). 5. Immediately neutralize the contents of and 0 tubes by adding ml of.2 mol/l Na solution. 6. Put the remaining tubes (from 2 to 9) into a boiling water bath. 7. Take out the tubes 2 to 8 from the water bath in intervals of four minutes, and immediately neutralize their contents with Na ( ml of.2 mol/l Na solution). 8. Take the tube 9 out from the bath after 0 minutes, and neutralize it as described above. 9. Add 0.5 ml of 0.05 mol/l phosphate buffer ph 6.9 to all tubes to obtain the same final ph value. 0. Add 2 ml of dinitrosalicylic reagent. Shake the tubes well to mix content, and put them into the boiling water bath for 0 minutes.. Afterwards, take the tubes out from the bath, cool down and add distilled water to the final volume of 0 ml. Mix well again. 2. Read the absorbance at 550 nm against the blank sample (tube 0). 3. Read the amount [µmoles] of glucose from the calibration curve for glucose prepared during experiment 2.. Plot the number of µmoles of released glucose (Y axis) versus time of acid hydrolysis of glycogen (X axis). 5. Calculate the amount of glucose [µg] released during complete hydrolysis of the glycogen sample and then, calculate percentage content of glycogen in liver. You should take into account all dilutions of the glycogen preparation obtained from g of tissue and multiply the calculated amount of glucose by 0.9 due to the fact that 62 g of glycogen yield 80 g of glucose (62:80). 6