Measurement of total thyroxine concentration in serum from dogs and cats by use of various methods Objective Sample Population Procedure Results

Similar documents
IDEXX Catalyst One Chemistry Analyzer for In-house Measurement of Total Thyroxine (TT 4 ) Concentration in Serum from Dogs and Cats

Evaluation of the EUROLYSER-SOLO Total T4 assay. for veterinary samples

Primary hypothyroidism is the most common form

In cats, as in other species, hypothyroidism is the clinical syndrome

the wait is over... screen for endocrine disorders in as little as 6 minutes

Canine hyperadrenocorticism: how not to stress about diagnosis

Performance of three portable blood glucose monitoring devices used in a veterinary application

Chapter 2. High-sensitivity C-reactive protein methods examined

2000 Canine Total T4

Triiodothyronine (T3) ELISA

Hypothyroidism part two diagnosis, treatment and nursing

Feline iatrogenic hypothyroidism: its recognition and management

Online Supplementary Appendix

Mouse/Rat THYROXINE (T4) ELISA Catalog No (96 Tests)

Diagnosis and management of feline iatrogenic hypothyroidism

IMMULITE Canine TLI

Development of Quantitative Immunoassay Reagent FUJI DRI-CHEM IMMUNO AU Cartridge vc-tsh and v-cor

IDEXX Catalyst SDMA Test for in-house measurement of SDMA concentration in serum from dogs and cats

Feline Hyperthyroid Update: Some Things Old, But Everything New

T3 (Total) (Human) ELISA Kit

Thyroid Stimulating Hormone (TSH) ELISA Catalog No. GWB , legacy id (96 Tests)

TSH ELISA Kit Medical Device Licence No.: 16419

Performance Characteristics of Eight Estradiol Immunoassays

SENSITIVE THYROID STIMULATING HORMONE (U-TSH) ENZYME IMMUNOASSAY TEST KIT Catalog Number: EA100970

Human T4-HRP ELISA Kit Medical Device Licence No.: 21177

Week 17 and 21 Comparing two assays and Measurement of Uncertainty Explain tools used to compare the performance of two assays, including

Total Thyroxine ELISA (T4)

Veterinary Free T4. For use on IMMULITE 2000 systems

The finding of a high serum total thyroxine (T 4 ) concentration

VetScan UA Urine Analyzer Clinical Performance Larry Lem, PhD & Andrew Rosenfeld, DVM, ABVP

Canine Total T4. For use on the IMMULITE and IMMULITE 1000 systems

Gentian Canine CRP Immunoassay Application Note for Abbott Architect * c4000

Evaluation of antithyroglobulin antibodies after routine vaccination in pet and research dogs

Gentian Canine CRP Immunoassay Application Note for scil VitroVet*

THYROID STIMULATING HORMONE (TSH) ENZYME IMMUNOASSAY TEST KIT Catalog Number: EA100969

An International Journal for the Study of Veterinary Dentistry

Thyroxine (T4) Human ELISA Kit

Performance Characteristics of the Daktari CD4 System

Human Ultrasensitive Thyroid Stimulating Hormone ELISA Kit

Evaluation of the hypothalamic-pituitary-adrenal

Human Thyroid Stimulating Hormone (TSH) ELISA Kit

Human Thyroid Stimulating Hormone CLIA kit

TSH (Human) ELISA Kit

See external label 2 C-8 C Σ=96 tests Cat # 3122Z MICROWELL ELISA THYROID STIMULATING HORMONE (TSH) ENZYME IMMUNOASSAY TEST KIT TSH.

David Bruyette, DVM DACVIM Medical Director

Evaluation Report. Eurolyser Phenobarbital test kit (VT0211) on. solo Analyser

EliKine Free Thyroxine (ft4) ELISA Kit

Canine Thyroid Stimulating Hormone, TSH ELISA Kit

See external label 96 tests ULTRASENSITIVE THYROID STIMULATING HORMONE (u-tsh) TSH Ultra Sensitive

Product Datasheet excellence in early discovery research MICRO-EIA T 3 TRIIODOTHYRONINE KIT

DBC s panel of thyroid hormone immunoassays is now more comprehensive with the new Reverse T3 ELISA kit. Test Your Hormones

Polymer Technology Systems, Inc. CardioChek PA Comparison Study

The Virtues and Pitfalls of Implementing a New Test

Hypothyroidism is one of the most common endocrine

An update on the analysis of agreement for orthodontic indices

ESVE Veterinary Endocrinology External Quality Assessment Scheme ESVE REPORT

System accuracy evaluation of FORA Test N Go Blood Glucose Monitoring System versus YSI 2300 STAT Plus glucose analyzer following ISO 15197:2013

Design Verification IMTEC-TSH R -A C Intended Use... 2 Diagnostic Sensitivity and Diagnostic Specificity... 2 Interferences... 4 Imprecision...

The recommended method for diagnosing sleep

Rubella virus IgG ELISA Kit

Thyroid Stimulating Hormone (S-TSH) Thyroid Stimulating

Coat-A-Count Canine T4

Dogs suspected of hypothyroidism are sometimes

Enzyme Immunoassay for the Quantitative Determination of Total Thyroxine (T4) in Human Serum

Proceeding of the SEVC Southern European Veterinary Conference

Updates on Feline Hyperthyroidism Stefanie DeMonaco, DVM, MS, DACVIM West Virginia Veterinary Medical Association 2017 April 8, 2017

RADIOIMMUNOASSAY OF THYROID RELATED HORMONES AND TSH IN PRIMARY HYPERTHYROIDISM

Cortisol (Sheep) ELISA Kit

METHOD VALIDATION: WHY, HOW AND WHEN?

Coat-A-Count. Canine TSH IRMA. Intended Use. Summary and Explanation. Principle of the Procedure

1 PROTOCOL. Comparison Study Summary. Springs Memorial Hospital. Springs Memorial Hospital 800 W. Meeting St. Lancaster, SC (803)

In rats and human beings, anticonvulsant drugs have considerable

A LOOK AT CANINE HYPOTHYROIDISM

TSH Receptor Autoantibody ELISA

TSH (Human) ELISA Kit

SEED HAEMATOLOGY. Medical statistics your support when interpreting results SYSMEX EDUCATIONAL ENHANCEMENT AND DEVELOPMENT APRIL 2015

Stability of thyroxine and triiodothyronine in

Glucose Analytical Comparability Evaluation of the YSI 2300 STAT Plus and YSI 2900D Biochemistry Analyzers

ADVANCED HAEMATOLOGY BATTLE OF THE BANDS. Dennis B. DeNicola, DVM, PhD, DACVP IDEXX Laboratories, Inc. Westbrook, Maine, USA BACKGROUND

Instructions for use. TSH rat ELISA. Please use only the valid version of the Instructions for Use provided with the kit AR E-8600

Seizure activity is one of the most common neurologic

Canine CRP Detection Kit

Evaluation of a species-specific C-reactive protein assay for the dog on the ABX Pentra 400 clinical chemistry analyzer

STATISTICS INFORMED DECISIONS USING DATA

Eileen Crimmins 1 Jianwei Hu 2 Peifeng Hu 3 Wei Huang 2 Jungki Kim 1 Yuhui Shi 2 John Strauss 1 Lu Zhang 1 Xiaohui Zhao 2 Yaohui Zhao 2

Hypercortisolism (HC) is a common endocrine disorder

The occurrence of multiple endocrine disorders in veterinary

Triiodothyronine (T3) Human ELISA Kit

Method Comparison Report Semi-Annual 1/5/2018

Thyroid Stimulating Hormone (TSH)

Quantitative Method for Amphetamines, Phentermine, and Designer Stimulants Using an Agilent 6430 LC/MS/MS

Hormonal disturbances associated with obesity in dogs

SCIEX Vitamin D 200M Assay for the Topaz System

T3 (Total) (Mouse/Rat) ELISA Kit

GUIDE TO THE EVALUATION OF COMMUTABILITY OF CONTROL MATERIALS

Thyroglobulin Interference in the Determination of Thyroglobulin Antibody in Wash-Out Fluid from Fine Needle Aspiration Biopsy of Lymph Node

T Uptake Cat # 3176Z

Assessing Agreement Between Methods Of Clinical Measurement

Establishment of Reference Intervals for Thyroid- Stimulating Hormone and Free Thyroxine in Amniotic Fluid Using the Bayer ADVIA Centaur

Clinical Evaluation for. Embrace No Code Blood Glucose Monitoring System

Transcription:

Measurement of total thyroxine concentration in serum from dogs and cats by use of various methods Robert J. Kemppainen, DVM, PhD, and Jeremy R. Birchfield, DVM Objective To compare results obtained from assay of total thyroxine (T 4 ) concentration in serum of dogs and cats by use of 4 methods. Sample Population Serum samples obtained from 98 dogs and 100 cats and submitted by veterinarians to an endocrine testing laboratory. Procedure Total T 4 concentration was determined in each sample by use of 4 assay methods. Assay methods included a radioimmunoassay (RIA) marketed for use in dogs, an RIA for use in humans, a chemiluminescent enzyme immunoassay for use in humans, and an in-house ELISA. Results Total T 4 concentrations obtained by use of all methods were significantly correlated. Bias-plot comparison revealed similar good overall agreement. Total T 4 concentrations determined by use of the RIA marketed for use in dogs were generally lower than concentrations measured by use of the other methods. Clinical comparisons were made by evaluation of the T 4 results in the context of the reference range recommended by each laboratory. A difference was found for clinical comparisons on the basis of T 4 assay method when used to identify dogs as possible hypothyroid suspects. This difference was related more to the reference range used than to the absolute T 4 value. The number of hyperthyroid-suspect cats with T 4 values greater than the reference range was the same for each of the 4 assay methods. Conclusions and Clinical Relevance Total T 4 concentrations determined in dogs and cats by use of 4 commonly used methods provided similar and consistent results. (Am J Vet Res 2006;67:259 265) Received June 2, 2005. Accepted August 15, 2005. From the Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849. Supported in part by the IDEXX Corporation. The authors thank Dr. Kate Sheldon for assistance with the thyroxine assays. Address correspondence to Dr. Kemppainen. Measurement of total T 4 concentrations in dogs and cats is commonplace in veterinary practice. In dogs, the test is most often used to exclude a diagnosis of hypothyroidism or to assess the adequacy of T 4 replacement treatment. 1 In dogs suspected of being hypothyroid that have borderline concentrations within the reference range or low T 4 concentrations, additional tests, such as determination of free T 4 or thyrotropin (ie, thyroid-stimulating hormone) concentrations, are usually performed to confirm the diagnosis. 1 In cats suspected of being hyperthyroid, the finding of an increased T 4 concentration is usually sufficient to confirm the diagnosis. 2 Concentrations of T 4 in the mid- to upper portion of the reference range in hyperthyroid-suspect cats are considered suspicious or suggestive of the disease and warrant additional testing, such as measurement of free T 4 concentrations. 2 Increasingly, new methods and technologic advances for measurement of T 4 concentrations are being developed. The RIA method has been used for many years and may justifiably be considered a criterion-referenced standard. 3-7 Results obtained by use of RIAs vary, probably as a result of differences in calibrators and their media, the antisera used, and the method used to separate bound T 4 from free T 4. Most RIA kit procedures are designed for use in samples obtained from humans but have been validated for use in samples obtained from domestic species. One total T 4 RIA kit a is marketed as specific for use in canine samples. Technologic advances in immunoassays have allowed for methods that avoid the use of radioisotopes and, in addition, permit automation. For example, chemiluminescent- and ELISA-based systems have been validated for determination of total T 4 concentration in serum obtained from dogs and cats. 8-10 Another ELISA b for measurement of total T 4 concentration is commercially available for use by veterinarians in a practice setting. Relatively few studies have reported total T 4 concentrations determined by use of various assay methods. In 1 study, 9 investigators compared total T 4 concentrations measured in samples obtained from dogs, cats, and horses by use of RIA, chemiluminescent immunoassay, and CEIA. Analysis of results of that study revealed that although values obtained by use of RIA agreed well with results obtained by use of CEIA, total T 4 concentration determined by use of chemiluminescent immunoassay was 30% to 40% lower. In another study, 11 total T 4 concentration in serum obtained from dogs and cats was determined by use of an RIA kit validated for use in dogs, and values were compared with those obtained when assayed by use of an in-house ELISA. Although T 4 concentrations determined by use of the 2 methods were moderately correlated, evaluation of bias plots and clinical assessment made on the basis of assay results revealed substantial disagreement. However, these findings differ from those for a preliminary study c in which investigators compared total T 4 concentrations mea- T 4 Thyroxine RIA Radioimmunoassay CEIA Chemiluminescent enzyme immunoassay CV Coefficient of variation AJVR, Vol 67, No. 2, February 2006 259

sured by use of the RIA and CEIA methods with results obtained by use of an in-house ELISA. In that study, total T 4 concentrations measured by use of all 3 methods had excellent agreement. Reasons for conflicting results among the aforementioned studies are unclear. The objective of the study reported here was to perform a comprehensive examination and comparison of total T 4 concentrations determined in single serum samples by use of 4 methods. Serum samples from dogs and cats submitted to a veterinary endocrine diagnostic laboratory were used. Data were compared by statistical tests and evaluation of clinical recommendations, and decisions were made on the basis of the results and reference ranges for each assay. Particular attention was given to comparing results obtained by use of an in-house ELISA with those obtained by use of the other methods. Materials and Methods Sample population Serum samples obtained from 98 dogs and 100 cats and submitted to a veterinary endocrinology laboratory at our university for determination of T 4 concentration were used in the study. Samples selected for this study met 2 criteria. First, the T 4 concentration determined by laboratory personnel by use of an RIA T 4 assay a was within 1 of 4 ranges (0.5 to 1.5, 1.6 to 3.0, 3.1 to 4.9, or 5.0 to 7.0 µg/dl). Second, the sample volume was 0.75 ml. Approximately 25 samples for each species in each range were obtained. For canine samples, 41 were from dogs being screened for hypothyroidism. Most of these dogs had 1 or more clinical signs (most commonly alopecia) suggestive of hypothyroidism. An additional 39 samples were submitted to assess adequacy of treatment in dogs receiving T 4 replacement treatment. The reason for the request to measure T 4 concentration in the remaining 18 dogs was unknown. For cats, 64 samples were submitted to screen for hyperthyroidism, and an additional 17 were used to assess treatment in cats receiving methimazole. The reason for performing the assay on the remaining 19 samples was not known. Most of the cats tested for hyperthyroidism had signs suggestive of the disease (typically weight loss in an older cat). Samples with pronounced lipemia or hemolysis were not used. T 4 assays The T 4 concentration in each sample was determined by use of 4 validated assays. Samples were initially assayed by use of a canine total T 4 coated-tube RIA 5,6,a (assay A). Subsequently, total T 4 was measured by use of an ELISA b (ie, in-house ELISA; assay B) as described elsewhere c ; assay B was conducted by use of a diagnostic analyzer d that is currently marketed for use by veterinarians. These 2 assays were performed at the university veterinary endocrinology diagnostic laboratory. The RIA was performed by laboratory technicians, whereas the in-house ELISA was performed by a veterinary student who had experience with the assay. The remaining aliquots were mailed to a company where they were assayed by use of an RIA total T 4 kit e (assay C) and by use of a CEIA method f (assay D), both marketed for use in humans and validated for use in dogs and cats. 3,4,8,9 Precision estimates were determined for each assay. Serum obtained from dogs and cats was serially diluted and assayed by use of each method; each method yielded displacement lines parallel to the line for the standard. Any T 4 result that initially exceeded the highest calibrator was serially diluted by use of the assay calibration diluent and reanalyzed. Sensitivity was 0.15, 0.5, 0.25, and 0.4 µg/dl for assays A, B, C, and D, respectively. Sensitivity for assays A, C, and D was determined by calculating the concentration of T 4 that caused a significant (P < 0.05) difference in percentage binding, compared with binding for the 0 µg/dl standard. Each assay was performed in accordance with the respective manufacturer s recommendations. Data analysis Least squares linear regression and calculation of the Pearson product moment correlation were used to compare overall agreement of T 4 values among assays. In addition, mean T 4 results were compared by use of a 1-way ANOVA, and the χ 2 test was used to compare proportions. All analyses were performed by use of statistical analysis software g and were conducted in accordance with established methods. 12,13 Bias plots were constructed in accordance with the method of Bland and Altman 14 by plotting the mean T 4 values obtained by use of 2 methods on the x-axis and plotting the difference between their mean T 4 values on the y-axis. For categoric comparisons, canine T 4 values obtained by use of each assay were classified as low, clinically normal, or high on the basis of ranges recommended by the various laboratories (assays A, C, and D) or the kit manufacturer (assay B; Appendix). A similar comparison was made for samples obtained from cats. The laboratory ranges were originally established by assay of serum samples obtained from healthy dogs and cats. Additionally, T 4 values measured for the 41 dogs screened for hypothyroidism were examined to determine the number that would be considered hypothyroid suspects on the basis of detecting a T 4 concentration in the low range. Similarly, T 4 values measured for the 64 cats suspected of being hyperthyroid were examined to determine the number that would be categorized as consistent with the disease on the basis of detecting a T 4 concentration in the high range. Results The data allowed for a total of 12 pairs of comparisons for the 4 assay methods and values for 2 species. Table 1 Precision estimates for 4 total T 4 assays that were conducted on pooled canine serum containing relatively low (0.75 to 1.50 µg/dl), medium (2 to 4 µg/dl), or high (5 to 7 µg/dl) concentrations of T 4. Low T 4 Medium T 4 High T 4 Intra-assay Interassay Intra-assay Interassay Intra-assay Interassay Assay* CV (%) CV (%) CV (%) CV (%) CV (%) CV (%) A 9 10 5 7 5 6 B 10 15 4 8 4 8 C 13 21 11 9 9 7 D 8 9 8 6 5 6 Data reported represent CV values determined by assay of each serum pool in replicates within an assay (intra-assay) or among various assays (interassay). *The 4 assays were as follows: a total T 4 coated-tube RIA validated for use in dogs a (assay A), an ELISA b (ie, in-house ELISA; assay B), an RIA total T 4 kit marketed for use in humans e (assay C), and a CEIA method marketed for use in humans f (assay D). 260 AJVR, Vol 67, No. 2, February 2006

Precision estimates were determined for each assay (Table 1). Regression analysis revealed that T 4 values obtained by use of each method were significantly correlated (Figures 1 and 2; Table 2). Analysis of bias plots indicated that results generally agreed well (bias value of approx 0) with T 4 values in the mid- to low range. Greater divergence was seen in a few samples containing higher T 4 concentrations. Overall, T 4 values measured by use of assay A yielded lower T 4 concentrations in serum from both Figure 1 Linear regression graphs (A, C, and E) and bias plots (B, D, and F) of pairwise comparisons of serum total T 4 concentrations in dogs measured by use of 4 assays. Only data comparing results for assay B with results for the other assays are shown, but they are representative of other comparisons among the 4 assays. Each point represents the measurement of total T 4 concentration by use of 2 assays and the line of best fit for the data is indicated in the linear regression graphs. In the bias plots, the solid horizontal line indicates possible exact agreement (ie, 0 bias), the dotted line indicates the mean of the difference between results for the 2 assays, and the dashed lines indicate the 95% confidence limits. The 4 assays were as follows: a total T 4 coated-tube RIA validated for use in dogs a (assay A), an ELISA b (ie, in-house ELISA; assay B), an RIA total T 4 kit marketed for use in humans e (assay C), and a CEIA method marketed for use in humans f (assay D). AJVR, Vol 67, No. 2, February 2006 261

species, which was reflected in the slopes of the regression lines (steeper slope) and in the bias plots. This difference was more profound as T 4 concentrations increased and was more obvious in samples obtained from cats. This pattern was further supported by the finding that the mean T 4 concentration of all samples obtained from dogs measured by use of assay A (mean ± SD, 3.3 ± 2.0 µg/dl) was significantly (P = 0.01) Figure 2 Linear regression graphs (A, C, and E) and bias plots (B, D, and F) of pairwise comparisons of serum total T 4 concentrations in cats measured by use of 4 assays. Only data comparing results for assay B with results for the other assays are shown, but they are representative of other comparisons among the 4 assays. See Figure 1 for remainder of key. 262 AJVR, Vol 67, No. 2, February 2006

Table 2 Results from linear regression analysis of pairwise comparisons to contrast all possible pairs of assays* used to measure T 4 concentrations in serum samples obtained from dogs and cats. Dogs Cats Assay pair Slope Intercept r 2 Slope Intercept r 2 A vs B 1.23 0.22 0.87 1.43 0.08 0.95 C vs B 0.93 0.23 0.91 0.99 0.64 0.94 D vs B 1.09 0.66 0.64 0.82 0.58 0.91 A vs C 1.23 0.26 0.95 1.38 0.53 0.93 A vs D 1.2 0.18 0.71 1.63 0.42 0.91 C vs D 0.93 0.23 0.91 1.19 0.2 0.97 See Table 1 for remainder of key. lower than that measured by use of assays B, C, or D (3.9 ± 2.7 µg/dl, 3.6 ± 2.4 µg/dl, and 3.5 ± 2.6 µg/dl, respectively). Similar results were found when mean concentrations were compared for serum samples obtained from cats. For an unknown reason, a bimodal distribution was apparent in serum T 4 values for dogs measured by use of assay B, compared with results obtained by use of assay D (Figure 1). This distribution accounted for a relatively lower correlation (Table 2). Reference ranges recommended by the testing laboratories (assays A, C, and D) or the kit manufacturer (assay B) were used to categorize results; the number of concordant results was compared. The proportion of animals assigned to each category did not vary significantly among the various assay methods. To investigate the potential influence of source of T 4 result on clinical decisions, T 4 values in the 41 dogs screened for hypothyroidism were evaluated. Each T 4 concentration was compared with its respective reference range, and dogs were categorized as hypothyroid-suspect dogs (ie, value in the low range) or clinically normal dogs. None of the 41 dogs had a T 4 result in the high range. The number of dogs with low T 4 values categorized on the basis of results for assays A to D was 25, 14, 14, and 22, respectively; the number of dogs differed significantly among assays. Assays A and D used the same T 4 value to define the lower limit of the reference range (ie, 1.6 µg/dl), whereas assays B and C used another value (ie, 1.3 µg/dl). To examine the influence of the cutoff value on categorization, the 41 dogs were recategorized on the basis of a common T 4 cutoff value of 1.45 µg/dl, which was a value midway between 1.3 and 1.6 µg/dl. The number of dogs with a low T 4 concentration by use of this intermediate cutoff value was 20, 20, 18, and 19 for assays A to D, respectively; the number of dogs did not differ significantly among assays. Sixteen of these dogs had a total T 4 concentration in the low range when measured by use of all 4 assay methods. A similar categorization was made by use of the data for serum samples obtained from 64 hyperthyroid-suspect cats. For this categorization, cats were classified as clearly consistent with hyperthyroidism (T 4 in the high range) or not consistent with hyperthyroidism (T 4 in the low or clinically normal range). The number of cats with a high T 4 concentration was similar when results for all assays were compared (29, 27, 30, and 30 cats for assays A to D, respectively). Twenty-five of these cats had a high T 4 concentration consistent with hyperthyroidism when measured by use of all 4 assays. Discussion The study reported here was conducted to achieve 2 main objectives. First, because of conflicting findings related to the accuracy and validity of the in-house ELISA method for total T 4 measurement, 11,c a more comprehensive evaluation of this assay was obtained by comparing serum T 4 concentrations measured in serum samples obtained from dogs and cats by use of the in-house ELISA and 3 other validated methods. The second objective was to assess the variation in total T 4 concentrations and the clinical assessment of these results, similar to the situation that veterinarians may encounter when submitting samples to a reference laboratory. Interpretation of results is influenced by the method used to make the determination as well as by the reference ranges recommended by the laboratory for use in clinical assessment. A weakness of the study was that the exact clinical status and diagnoses for each patient were not known. Strengths of the study were that samples originated from clinical cases and that sufficient sample volume allowed for measurement by multiple T 4 assays. Statistical comparisons of T 4 results revealed, in general, good correlation between T 4 concentrations measured by use of the 4 methods. Analysis of regression lines, correlations, and, more importantly, bias plots 14 indicated that agreement was generally excellent for T 4 concentrations in the low to middle portion of the clinically normal ranges. A few divergent results were seen when comparing results for all methods at higher T 4 concentrations. It is possible that factors such as lipemia, hemolysis, or the method of serum collection (eg, use of serum separator collection tubes) contributed to these differences. A major finding was that total T 4 concentrations obtained by use of assay A (canine RIA) were generally lower than those determined by use of the other methods. This difference increased progressively as the T 4 concentration increased and was more profound in samples obtained from cats, as indicated by the slopes of the regression lines (Table 2). Factors likely contributing to the lower T 4 concentrations for assay A include the fact that assay A used calibrators (one of canine origin) and a lower calibration range that differed from those used by the other assays. In addition, assay A had the lowest sensitivity of all 4 methods. Overall, analysis of these data indicated that users of assay A should anticipate lower absolute total T 4 concentrations, compared with values obtained by use of the other 3 methods. AJVR, Vol 67, No. 2, February 2006 263

Veterinarians commonly submit serum samples for total T 4 measurement to screen dogs for hypothyroidism. The T 4 result is compared with the laboratory s reference range to assist in determining the likelihood that the dog is hypothyroid. Generally, the test is considered to be more useful in ruling out the disease, rather than in confirming the diagnosis. Dogs with T 4 concentrations below the reference range may or may not be hypothyroid because a multitude of factors can cause low total T 4 concentrations in euthyroid dogs. 15 Generally, additional tests of thyroid function (measurement of free T 4 or thyroid-stimulating hormone) are recommended to confirm or reject the diagnosis for dogs with low T 4 concentrations. The study reported here enabled direct examination of the impact of the origin of the T 4 result on this categorization process. Analysis of our results revealed that the source of the T 4 result affected whether a dog was categorized as a hypothyroid suspect. However, the reason for this difference related more to the limits of the reference range, rather than to significant variations in total T 4 concentrations. The finding that the absolute T 4 concentrations were generally similar for the 4 assays for samples from the 41 hypothyroid-suspect dogs may appear surprising, especially given that assay A typically yielded lower T 4 concentrations. However, examination of bias plots revealed that T 4 concentrations in dogs agreed quite well on the basis of comparison of results for assay A with results for the other assays when hormone concentrations were approximately 6 µg/dl. Because we did not know with certainty which of these dogs was truly hypothyroid, it was not possible to comment on the reference range that was most accurate. Changes in the reference range will impact test specificity and sensitivity and therefore affect the number of false-positive and false-negative results. 15 Overall, analysis of the results reported here indicated that these 4 methods had good agreement when segregating dogs into the 2 chosen categories (hypothyroidsuspect dogs and clinically normal dogs). It should be mentioned that there was a difference in categorization for some dogs even when a common reference range was used for all assays. Most cats with hyperthyroidism have total T 4 serum concentrations above the reference range. 2,16 Examination of T 4 concentrations in the 64 hyperthyroid-suspect cats revealed good agreement when comparing results for assay methods to identify those cats with T 4 concentrations above the reference range. As expected from the bias-plot data for these cats, T 4 concentrations determined by use of assay A were lower, compared with values derived by use of the other assays (Figure 2). The reference range used for assay A reflected this difference. It should be mentioned that the finding of a T 4 concentration within the reference range in a hyperthyroid-suspect cat cannot be used to rule out the disease. 16 Some hyperthyroid cats, particularly those with early or mild disease or those with concurrent nonthyroidal illness, may have a total T 4 concentration within the reference range. 2,16 Analysis of results of the study reported here indicated that serum total T 4 concentrations measured by use of the in-house ELISA method (assay B) were generally in agreement with results of T 4 concentrations measured by use of the other 3 methods. This finding differs from that in another comparative study 11 but concurs with the results of a preliminary report. c In the study 11 in which there was poor correlation, a singlepair comparison was made by use of results for the canine total T 4 RIA and the in-house ELISA. The fact that the canine RIA assay yielded lower T 4 values than did the in-house ELISA could have contributed to some of the discrepancy; however, it is unlikely that this factor accounted for most of the differences. A contributing factor likely was related to differences in precision by use of the in-house method when comparing results for that study 11 with results for the study reported here. Furthermore, interassay CV was 18% and 28% for pooled serum obtained from dogs and cats, respectively, in that study. 11 In the study reported here in which we used pooled canine serum and pooled feline serum (data not shown) that contained a similar concentration of T 4 to that in the other study (approx 2.5 µg/dl), the intra-assay and interassay CVs associated with the in-house method were both 8%. The reason for this substantial difference in precision between the 2 studies is unclear. The in-house ELISA measurements were obtained by use of 2 instruments. Another factor contributing to the differences between the studies relates to the influence of reference ranges on clinical decisions. Even in the study reported here, clinical categorizations made on the basis of results for the canine RIA varied significantly from those derived by use of results for the in-house ELISA. However, these differences were related more to the established limits of the reference ranges, rather than to inconsistencies in the absolute T 4 concentrations. Overall, analysis of these results supports the conclusion that the in-house ELISA method provides reliable and consistent total T 4 concentrations for serum samples obtained from dogs and cats. As with all test systems, including those in private veterinary clinics and reference laboratories, it is advisable that users periodically measure T 4 concentrations in stored pooled serum of dogs and cats to confirm consistent performance for the assay. The findings reported here may not apply to T 4 concentrations measured by use of other assays and methods. Each of the 4 assays in this study has been validated for use in companion animals. Importantly, sensitivity of all these assays was a T 4 concentration of 0.5 µg/dl, which is a necessity when evaluating the relatively low concentrations of T 4 circulating in the bloodstream of dogs and cats. Analysis of the data reported here indicated good overall agreement for serum T 4 concentrations in samples obtained from dogs and cats measured by use of 4 assay methods, including an in-house ELISA. Differences in clinical decisions when evaluating dogs for hypothyroidism related more to the reference range used, rather than to inconsistencies in results for the 4 assays. a. Coat-A-Count canine total T 4, Diagnostic Products Corp, Los Angeles, Calif. b. SNAP T 4, IDEXX Laboratories, Westbrook, Me. c. Peterson ME, DeMarco CL, Sheldon KM. Total thyroxine testing: comparison of an in-house test kit with radioimmuno- 264 AJVR, Vol 67, No. 2, February 2006

and chemiluminescent assays (abstr). J Vet Intern Med 2003;17:396. d. IDEXX SNAP reader series II, IDEXX Laboratories, Westbrook, Me. e. Coat-A-Count total T 4, Diagnostic Products Corp, Los Angeles, Calif. f. Immulite total T 4, Diagnostic Products Corp, Los Angeles, Calif. g. Sigma Stat 3.1 for Windows, Systat Software, Point Richmond, Calif. References 1. Dixon RM. Canine hypothyroidism. In: Mooney CT, Peterson ME, eds. BSAVA manual of canine and feline endocrinology. 3rd ed. Gloucester, UK: BSAVA Publications, 2004;76 94. 2. Mooney CT, Peterson ME. Feline hyperthyroidism. In: Mooney CT, Peterson ME, eds. BSAVA manual of canine and feline endocrinology. 3rd ed. Gloucester, UK: BSAVA Publications, 2004;95 111. 3. Peterson ME, Broussard JD, Gamble DA. Use of the thyrotropin releasing hormone stimulation test to diagnose mild hyperthyroidism in cats. J Vet Intern Med 1994;8:279 286. 4. Panciera DL, Post K. Effect of oral administration of sulfadiazine and trimethoprim in combination on thyroid function in dogs. Can J Vet Res 1992;56:349 352. 5. Kemppainen RJ, Sartin JL. Evidence of episodic but not circadian activity in plasma concentrations of adrenocorticotrophin, cortisol and thyroxine in dogs. J Endocrinol 1984;103:219 226. 6. Peterson ME, Melian C, Nichols R. Measurement of serum total thyroxine, triiodothyronine, free thyroxin, and thyrotropin concentrations for diagnosis of hypothyroidism in dogs. J Am Vet Med Assoc 1997;211:1396 1402. 7. Eckersall PD, McEwan NA, Mooney CT. An assessment of the CITE T4 immunoassay. Vet Rec 1991;129:532 533. 8. Scott-Moncrieff JC, Nelson RW. Change in serum thyroidstimulating hormone concentration in response to administration of thyrotropin-releasing hormone to healthy dogs, hypothyroid dogs, and euthyroid dogs with concurrent disease. J Am Vet Med Assoc 1998;213:1435 1438. 9. Singh AK, Jiang Y, White T, et al. Validation of nonradioactive chemiluminescent immunoassay methods for the analysis of thyroxine and cortisol in blood samples obtained from dogs, cats, and horses. J Vet Diagn Invest 1997;9:261 268. 10. Horney BS, MacKenzie AL, Burton SA, et al. Evaluation of an automated, homogeneous enzyme immunoassay for serum thyroxine measurement in dog and cat serum. Vet Clin Pathol 1999; 28:20 28. 11. Lurye JC, Behrend EN, Kemppainen RJ. Evaluation of an inhouse enzyme-linked immunosorbent assay for the quantitative measurement of serum total thyroxine concentration in dogs and cats. J Am Vet Med Assoc 2002;221:243 249. 12. Zar JH. Contingency tables. In: Zar JH, ed. Biostatistical analysis. 2nd ed. Englewood Cliffs, NJ: Prentice-Hall Inc, 1984;61 78. 13. Zar JH. Multisample hypotheses: the analysis of variance. In: Zar JH, ed. Biostatistical analysis. 2nd ed. Englewood Cliffs, NJ: Prentice-Hall Inc, 1984;162 184. 14. Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986;8:307 310. 15. Feldman EC, Nelson RW. Hypothyroidism. In: Feldman EC, Nelson RW, eds. Canine and feline endocrinology and reproduction. 3rd ed. Philadelphia: WB Saunders Co, 2004;86 151. 16. Peterson ME, Melian C, Nichols R. Measurement of serum concentrations of free thyroxine, total thyroxine, and total triiodothyronine in cats with hyperthyroidism and cats with nonthyroidal disease. J Am Vet Med Assoc 2001;218:529 536. Appendix Reference ranges recommended by the various laboratories (assays A, C, and D) or the manufacturer of the kit (assay B) for 4 assays* used to measure T 4 concentrations in serum samples obtained from dogs and cats. Dogs Cats Range A B C D A B C D Low (µg/dl) 1.6 1.3 1.3 1.6 1.0 1.0 1.0 0.7 Clinically normal 1.6 4.3 1.3 4.0 1.3 4.0 1.6 5.0 1.0 3.9 1.0 5.0 1.0 5.0 0.7 5.2 (µg/dl) High (µg/dl) 4.3 4.0 4.0 5.0 3.9 5.0 5.0 5.2 *The 4 assays were as follows: a total T 4 coated-tube RIA validated for use in dogs a (assay A), an ELISA b (ie, in-house ELISA; assay B), an RIA total T 4 kit marketed for use in humans e (assay C), and a CEIA method marketed for use in humans f (assay D). AJVR, Vol 67, No. 2, February 2006 265