Supporting Information. for

Similar documents
Spectroscopic Analysis of Flavonoid Quercetin from Methanol Extracts of Emblica Officinalis Fruits

Chem 203 December 10, Final Exam Part I (40 points) THIS FINAL EXAM CONSISTS OF PART I AND TWO OUT OF THE THREE PROBLEMS FROM PART II

ANALYTICAL REPORT 1. Mexedrone (C12H17NO2) 3-methoxy-2-(methylamino)-1-(4-methylphenyl)propan-1-one

ANALYTICAL REPORT 1. U ( C16H22Cl2N2O) 3,4-dichloro-N-[2-(dimethylamino)cyclohexyl]-N-methylbenzamide

ANALYTICAL REPORT 1.

Supporting Information

ANALYTICAL REPORT 1. 4-AcO-DET (C16H22N2O2) 3-[2-(diethylamino)ethyl]-1H-indol-4-yl acetate.

ANALYTICAL REPORT. 5Cl-AB-PINACA (C18H25ClN4O2) 2-{[1-(5-chloropentyl)-1H-indazol-3-yl]formamido}-3-methylbutanamide

Selective AKR1C3 inhibitors potentiate chemotherapeutic activity in multiple acute myeloid. leukemia (AML) cell lines

Supporting Information. 2-Pyridinyl-β-Ketones as New Ligands for Room-Temperature CuI-Catalyzed C-N Coupling Reaction

ANALYTICAL REPORT 1 HDEP-28 (C19H23NO2) ethyl 2-(naphthalen-2-yl)-2-(piperidin-2-yl)acetate.

SUPPORTING INFORMATION Synthesis of 1,2,4-Triazines and the Triazinoisoquinolinedione DEF Ring System of Noelaquinone

ANALYTICAL REPORT. 1-(1,3-diphenylpropan-2-yl)pyrrolidine (C19H23N) 1-(1,3-diphenylpropan-2-yl)pyrrolidine

Supplementary Information

Chapter 12: Mass Spectrometry: molecular weight of the sample

Supporting Information

DEPARTMENT OF CHEMISTRY AND CHEMICAL ORGANIC CHEMISTRY II 202-BZG-05 03

J-Type Hetero-Exciton Coupling Effect on an Asymmetric

Christophe Lincheneau, Bernard Jean-Denis and Thorfinnur Gunnlaugsson* Electronic Supplementary Information

Tunable surface plasmon resonance and enhanced electrical. conductivity of In doped ZnO colloidal nanocrystals

INTERNATIONAL JOURNAL OF ADVANCED RESEARCH IN ENGINEERING AND TECHNOLOGY (IJARET)

Supporting Information

Reversible Formation of Ag 44 from Selenolates

An Investigative Study of Reactions Involving Glucosinolates and Isothiocyanates

Ferrocene-based Compartmental Ligand for the Assembly

Synthesis, Characterization and Some Properties of Glycerol Ester Based Non-Ionic Gemini Surfactant with 1, 2, 7, 8 -Diepoxideoctane as Spacer

SI.2 Estimated average thickness and roughness of electrodeposited oligomer layers from profilometry measurements

Graduate School of Materials Science, Nara Institute of Science and Technology, Takayama, Ikoma, Nara, , Japan.

Supporting Information. Evolution of atomically precise silver clusters to superlattices

Supporting information for

Supporting Information

Graphene Quantum Dots-Band-Aids Used for Wound Disinfection

Influence of Indium doping on Zinc oxide thin film prepared by. Sol-gel Dip coating technique.

CHEM 242 UV-VIS SPECTROSCOPY, IR SPECTROSCOPY, CHAP 13A ASSIGN AND MASS SPECTROMETRY C 8 H 17 A B C

Electronic Supporting Information

Supporting Information:

EFFECT OF SOLVENTS ON PARTICLE STRUCTURE, MORPHOLOGY AND OPTICAL PROPERTIES OF ZINC OXIDE NANOPARTICLES

Supporting Information

Elementary tetrahelical protein design for diverse oxidoreductase functions

Electronic Supplementary Material

Eco friendly Novel Polymers based on Glycerol and Sorbitol as a Subtitutes of Acid Slurry in Detergents

L-Carnosine-Derived Fmoc-Tripeptides Forming ph- Sensitive and Proteolytically Stable Supramolecular

C. K. Manju, Jyoti Sarita Mohanty, Depanjan Sarkar, Sudhakar Chennu and Thalappil Pradeep a *

International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: Vol.8, No.6, pp , 2015

Enhanced NIR-I Emission from Water-Dispersible NIR-II Dye-sensitized Core/Active Shell Upconverting Nanoparticles

Isolation, Purification and Structural Elucidation of N-Acetyl-5- Methoxytryptamine (Melatonin) From Crataeva nurvala Buch-Ham Stem Bark

Identification of novel endophenaside antibiotics produced by Kitasatospora sp. MBT66

The peculiar behavior of Picha in the formation of metallacrown complexes with Cu(II), Ni(II) and Zn(II), in aqueous solution

bio-mof-1 DMASM Wavenumber (cm -1 ) Supplementary Figure S1 FTIR spectra of bio-mof-1, DMASMI, and bio-mof-1 DMASM.

Eszopiclone (Lunesta ): An Analytical Profile

Final Exam, Page 1 of 15. Your full signature

Tenofovir disoproxil fumarate (Tenofoviri disoproxili fumaras)

CHAPTER-6 IDENTIFICATION, AND CHARACTERISATION OF DEGRADATION IMPURITY IN VALSARTAN TABLETS

SUPPORTING INFORMATION. Lysine Carbonylation is a Previously Unrecognized Contributor. to Peroxidase Activation of Cytochrome c by Chloramine-T

Hudson Valley LyoMAC Webinar April 18, Elizabeth M. Topp, Ph.D. Professor, Dept. of Industrial and Physical Pharmacy Purdue University

Supplementary Figure 1. DTPA does not interfere with the activity of catalase. Dependency of CAT activity on DTPA concentration at 25 C.

Epitaxial Growth of ZnO Nanowires on Graphene-Au

Morphology Control of ZnO with Citrate: A Time and Concentration Dependent Mechanistic Insight. Somnath Das, Kingshuk Dutta and Amitava Pramanik*

Sunil P. Chavan, Vaishali A. Bambole Department of Physics, University of Mumbai, Mumbai, Maharashtra, India

Site-Selective Lysine Modification of Native Proteins and. Peptides via Kinetically Controlled Labeling

Supplementary. A multi-analyte responsive chemosensor vanilinyl Schiff base: fluorogenic. sensing to Zn(II), Cd(II) and I -

Development of a near-infrared fluorescent probe for monitoring hydrazine in serum and living cells

Analysis of Uncomplexed and Copper-complexed Methanobactin with UV/Visible Spectrophotometry, Mass Spectrometry and NMR Spectrometry

Fig.S1 ESI-MS spectrum of reaction of ApA and THPTb after 16 h.

Transparent ALD-grown Ta2O5 protective layer for highly stable ZnO photoelectrode in solar water splitting

Supplementary Material

Supporting Information

Acyl Radical Reactions in Fullerene Chemistry: Direct Acylation of. [60]Fullerene through an Efficient Decatungstate-Photomediated Approach.

Raman Spectroscopy and imaging to explore skin and hair. What is the Raman scattering effect?

Equation y = a + b*x Adj. R-Square Value Standard Error Intercept E Slope

AB Sciex QStar XL. AIMS Instrumentation & Sample Report Documentation. chemistry

CHAPTER 3. EFFECT OF PRASEODYMIUM DOPING ON THE STRUCTURAL AND OPTICAL PROPERTIES OF ZnO NANORODS

Naoya Takahashi, Keiya Hirota and Yoshitaka Saga* Supplementary material

Fluorescent Carbon Dots as Off-On Nanosensor for Ascorbic Acid

Supporting Information

Supporting Information. Magnetic Field and Chirality Effects on Electrochemical Charge Transfer Rates: Spin. Dependent Electrochemistry

Supporting Information

Key Words: Brassica oleraceae, glucosinolate, liquid chromatography mass spectrometry, FNH-I-003

Supporting Information

SUPPLEMENTARY DATA. Materials and Methods

Structural, Optical & Surface Morphology of Zinc Oxide (ZnO) Nanorods in Molten Solution

A 3D Porous Metal-Organic Framework Exhibiting Selective. Adsorption of Water over Organic Solvents

Photo-reduction and Stabilization Capability of Molecular Weight. Fractionated Natural Organic Matter in Transformation of Silver Ion to

Photon upconversion via triplet triplet annihilation


The synthesis of condensed imidazoles II. A simple synthesis of some 1,5-diaryl-3-[2-(naphtho[2,3-d]imidazol-2-yl)]formazans and its derivatives 1

CHAPTER 3. PHOTOCATALYTIC DEGRADATION OF METHYLENE BLUE AND ACID RED 18 DYES BY Bi-Au-ZnO

Electronic Supplementary Information (ESI) A unique dansyl-based chromogenic chemosensor for rapid and ultrasensitive hydrazine detection

CHAPTER 5 CHARACTERIZATION OF ZINC OXIDE NANO- PARTICLES

Supporting information

Abstract. Keywords: Zinc Oxide, Eu doped ZnO, Dy doped ZnO, Thin film INTERNATIONAL JOURNAL OF INFORMATION AND COMPUTING SCIENCE ISSN NO:

Supporting Information

Your Name: Question 1. Spectrum Prediction I: Ethyl Acetoacetate. (15 points) ppm ppm ppm ppm. J(A,D) = 8 Hz = 0.

Chromophores in wood and kraft pulp

Hetero Bodipy-dimers as heavy atom-free triplet photosensitizer showing long-lived triplet excited state for triplet-triplet annihilation upconversion

ISSN International Journal of Luminescence and Applications Vol.1 (II)

Mass Spectrometry Introduction

Supporting information for the manuscript

Electronic Supplementary Information

Engineering the Growth of TiO 2 Nanotube Arrays on Flexible Carbon Fibre Sheets

Transcription:

Supporting Information for Syntheses, Structures and Properties of thenium Complexes of Tridentate Ligands: Isolation and Characterization of a Rare Example of thenium itrosyl Complex Containing {O} 5 Moiety Kaushik Ghosh*, Rajan Kumar, Sushil Kumar and Jay Singh Meena Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247667 Uttarakhand IDIA. E-mail: ghoshfcy@iitr.ernet.in 1

8 9 3 4 2 1 5 6 7 11 12 10 15 13 14 Fig. S1 1 MR spectrum of complex 2 in CD 3 at room temperature. 2

41.97 Current Data Parameters AME RR-RULUPYP-31P-3-5-12 EXPO 2 PROCO 1 F2 - Acquisition Parameters Date_ 20120503 Time 11.33 ISTRUM Spect PROBD 5 mm PABBO BB- PULPROG zgpg30 TD 65536 SOLVET CD3 S 126 DS 4 SW 80645.164 z FIDRES 1.230548 z AQ 0.4063794 sec RG 23100 DW 6.200 usec DE 6.00 usec TE 298.1 K D1 2.00000000 sec d11 0.03000000 sec DELTA 1.89999998 sec TD0 1 ======== CAEL f1 ======== UC1 31P P1 13.60 usec PL1 4.00 db SFO1 202.4462120 Mz ======== CAEL f2 ======== CPDPRG2 waltz16 UC2 1 PCPD2 80.00 usec PL2 2.00 db PL12 16.60 db PL13 20.00 db SFO2 500.1320000 Mz F2 - Processing parameters SI 32768 SF 202.4563350 Mz WDW EM SSB 0 LB 1.00 z GB 0 PC 1.40 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 ppm Fig. S2 31 P MR spectrum of complex 2 in CD 3 at room temperature. 9.525 9.514 9.381 9.370 7.602 7.462 7.447 7.432 7.396 7.366 7.340 7.325 7.311 7.299 7.285 7.265 7.254 7.238 7.219 7.205 7.191 7.153 7.140 7.127 7.072 7.054 7.043 6.894 6.878 6.865 5.960 5.944 3.483 1.683 1.286 1.255 0.879 0.844 0.000 8 9 3 4 2 1 5 6 7 11 12 10 O 2 15 13 14 Current Data Parameters AME RR-RULUPYO2-1 EXPO 1 PROCO 1 F2 - Acquisition Parameters Date_ 20120604 Time 11.28 ISTRUM Spect PROBD 5 mm PABBO BB- PULPROG zg30 TD 65536 SOLVET CD3 S 256 DS 2 SW 10330.578 z FIDRES 0.157632 z AQ 3.1720407 sec RG 287 DW 48.400 usec DE 6.00 usec TE 295.5 K D1 1.00000000 sec TD0 1 ======== CAEL f1 ======== UC1 1 P1 14.90 usec PL1 2.00 db SFO1 500.1330885 Mz F2 - Processing parameters SI 32768 SF 500.1300118 Mz WDW EM SSB 0 LB 0.30 z GB 0 PC 1.00 13 12 11 10 9 8 7 6 5 4 3 2 1 0 ppm 1.00 0.99 3.96 1.07 4.01 11.81 1.04 3.86 1.00 Fig. S3 1 MR spectrum of complex 3 in CD 3 at room temperature. 3

39.19 Current Data Parameters AME RR-RULUPYO2-31P EXPO 2 PROCO 1 F2 - Acquisition Parameters Date_ 20120604 Time 11.42 ISTRUM Spect PROBD 5 mm PABBO BB- PULPROG zgpg30 TD 65536 SOLVET CD3 S 256 DS 4 SW 80645.164 z FIDRES 1.230548 z AQ 0.4063794 sec RG 23100 DW 6.200 usec DE 6.00 usec TE 296.5 K D1 2.00000000 sec d11 0.03000000 sec DELTA 1.89999998 sec TD0 1 ======== CAEL f1 ======== UC1 31P P1 13.60 usec PL1 4.00 db SFO1 202.4462120 Mz ======== CAEL f2 ======== CPDPRG2 waltz16 UC2 1 PCPD2 80.00 usec PL2 2.00 db PL12 16.60 db PL13 20.00 db SFO2 500.1320000 Mz F2 - Processing parameters SI 32768 SF 202.4563350 Mz WDW EM SSB 0 LB 1.00 z GB 0 PC 1.40 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 ppm 100.00 Fig. S4 31 P MR spectrum of complex 3 in CD 3 at room temperature. 8 4 5 O 7 3 2 1 6 15 O 9 10 11 12 13 14 Fig. S5 1 MR spectrum of complex 1 in CD 3 at room temperature. 4

8 3 4 2 1 5 6 7 O 15 (O 4 ) 2 9 10 11 12 13 14 Fig. S6 1 MR spectrum of complex 4 in CD 3 C at room temperature. Fig. S7 31 P MR spectrum of complex 4 in CD 3 at room temperature. 5

Table S1 1 MR Spectral Data [, ppm (J, z)] of Complexs 1, 2, 3, 4. Compd 2 11 7 15 6 Other protons 1 8.25 6.67 6.84 7.84 7.93 7.4 (ligand ) 2 8.73 5.84 6.57 8.62 7.34 7.44 6.92 (, 15 and ligand ) 3 9.52 5.95 6.86 9.37 7.45 7.34 7.12 (, 15 and ligand ) 4 8.79 6.43 7.35 8.31 7.63 7.89 7.48 (, 15 and ligand ) 0.8 0.6 4 1 Absorbance 0.4 0.2 0.0 300 400 500 600 700 Wavelength (nm) Fig. S8 Electronic absorption spectra of 1 (red line) and 4 (black line) in acetonitrile solutions. 6

90 80 Transmittance 70 60 50 40 1871 cm -1 1654 cm -1 4000 3500 3000 2500 2000 1500 1000 500 Wavenumber (cm -1 ) Fig. S9 Infrared spectrum of complex 1. IR (KBr disk, cm 1 ): 1871 (ν O ) and 1654 (ν CO ) cm 1. 100 90 80 Transmittance 70 60 50 1890 cm -1 623 cm -1 40 30 1092 cm -1 4000 3500 3000 2500 2000 1500 1000 500 Wavenumber (cm -1 ) Fig. S10 Infrared spectrum of complex 4. IR (KBr disk, cm 1 ): 1890 (ν O ), 1092, 623 (ν O4 ), 746, 694, 522 (ν PPh3 ) cm 1. 7

Absorbance 0.6 0.5 0.4 0.3 0.2 422 nm Mb-O Oxidized Mb Reduced Mb Reduced Mb + 1 in dark 0.1 0.0 400 450 500 550 600 650 700 Wavelength(nm) Fig. S11 Electronic spectra of conversion of reduced myoglobin to Mb O adduct upon reaction with 1 in buffer solution (50 mm phosphate buffer, p 6.8) under exposure of UV light. Green line, Met Mb (intense band at 409 nm); blue line, reduced Mb (near 433 nm, with excess of sodium dithionite); red dotted line, reduced Mb + solution of 1 (~ 4.5 x 10 5 M) in dark; black line, Mb O adduct for 1 at 422 nm when same solutions were exposed to UV light for 2-3 minutes. 0.6 0.5 Absorbance 0.4 0.3 0.2 0.1 0.0 400 500 600 700 800 Wavelength (nm) Fig. S12 Reaction of photoreleased O derived from complex 1 with DPP radical (~ 10 5 M) in acetonitrile solution. 8

(a) 100 90 % Transmittance 80 70 60 4 5 50 1910 1890 (b) 2000 1950 1900 1850 1800 Wavenumber (cm -1 ) Absorbance 1.2 1.0 0.8 0.6 0.4 0.2 0.0 300 400 500 600 700 Wavelength (nm) Fig. S13 (a) Infrared and (b) UV-Vis spectra (black line, complex 4; blue line, 4 (1 mm) + CA (8 mm); red line, 4 (1 mm) + CA (8 mm) + sodium dithionite (2 mm)) showing the conversion of {O} 6 to {O} 5 species when complex 4 was treated with ceric ammonium nitrate in acetonitrile solution. 9

100 80 Transmittance 60 40 20 1910 cm -1 1391 cm -1 0 4000 3500 3000 2500 2000 1500 1000 500 Wavenumber (cm -1 ) Fig. S14 Infrared spectrum of complex 5. IR (KBr disk, cm 1 ): 1910 (ν O ), 1391 (ν O3 ), 1085, 750, 695, 518 (ν PPh3 ) cm 1. 10

(a) 0.5 0.4 calculated experimental Intensity 0.3 0.2 0.1 0.0 300 400 500 600 Wavelength (nm) (b) 0.8 0.6 calculated experimental Intensity 0.4 0.2 0.0 300 400 500 600 Wavelength (nm) Fig. S15 Experimental and TDDFT calculated absorption spectra of (a) complex 1 and (b) complex 4. 11

Table S2 Selected bond distances (Å) and bond angles (º) for nitrosyl complexes 1 and 4 along with the optimized DFT bond parameters for comparison. Bond lengths (Å) Bond angles (deg.) Complex 1 X-ray DFT X-ray DFT (1) (1) 2.3678(8) 2.471 (1) (1) (4) 157.61(8) 156.81 (1) (2) 2.3882(8) 2.499 (2) (1) (5) 173.51(10) 174.22 (1) (2) 1.977(2) 1.993 (1)(1) (2) 175.55(3) 176.14 (1) (1) 2.074(2) 2.083 (1) (1) (2) 79.12(9) 78.16 (1) (4) 2.052(2) 2.098 (4) (1) (2) 78.59(9) 78.91 (1) (5) 1.761(2) 1.782 (4) (1) (1) 88.88(7) 87.76 (5) O(2) 1.147(3) 1.197 (4) (1) (2) 90.14(7) 92.05 O(2) (5) (1) 169.4(2) 171.89 Complex 4 (1) (1) 2.3858(12) 2.473 (3) (1) (2) 77.71(15) 77.70 (1) P(1) 2.4057(13) 2.581 (1) (1) (4) 96.44(16) 103.03 (1) (4) 2.082(3) 2.118 P(1) (1) (1) 173.71(5) 175.35 (1) (3) 2.002(4) 2.051 (4) (1) (3) 78.17(15) 78.13 (1) (2) 2.077(3) 2.100 (4) (1) (2) 155.39(14) 155.52 (1) (1) 1.731(4) 1.776 (2) (1) P(1) 92.53(9) 93.94 (1) O(1) 1.142(4) 1.184 (1) (1) P(1) 89.88(12) 94.95 O(1) (1) (1) 173.7(4) 172.31 Table S3 Calculated OMO compositions (in %) expressed in terms of individual fragments. Complex O Other [(L 1 )(O) 2 ] (1) 2 6 8 83 [(L 2 )( )(O)] 2+ (4) 5 6 0 89 [(L 2 )( )(O)] 3+ (5) 8 7 1 84 12

Table S4 Calculated TD-DFT excitation energies (in ev), oscillator strengths (f), and nature of transitions in the complexes 1 and 4.. Composition E (ev) Oscillator strength (f) Complex 1 λ theo (nm) λ exp (nm) OMO LUMO+2 (88%) OMO 1 LUMO+3 (6%) OMO LUMO+5 (49%) OMO 12 LUMO+1 (17%) OMO 1 LUMO+6 (4%) OMO 2 LUMO+2 (3%) OMO 10 LUMO+1 (3%) OMO 3 LUMO+2 (3%) OMO 12 LUMO (13%) OMO 3 LUMO+4 (13%) OMO 13 LUMO+1 (11%) OMO 14 LUMO+1 (10%) OMO 10 LUMO+1 (7%) OMO 9 LUMO+1 (5%) OMO 3 LUMO+5 (4%) OMO 13 LUMO (4%) OMO 14 LUMO (3%) OMO 10 LUMO+2 (53%) OMO 7 LUMO+4 (9%) OMO 11 LUMO+2 (7%) OMO 10 LUMO+3 (3%) OMO 7 LUMO+5 (3%) OMO 1 LUMO+7 (2%) OMO 5 LUMO+6 (2%) 2.76 0.0309 448.98 442 3.56 0.0366 348.20 383 4.52 0.0609 274.11 274 4.91 0.0726 252.67 250 13

Complex 4 OMO LUMO+2 (63%) OMO 2 LUMO+2 (3%) OMO 5 LUMO+2 (3%) OMO 4 LUMO+2 (5%) OMO 6 LUMO+2 (7%) OMO 11 LUMO (15%) 2.94 0.0355 420.98 425 OMO 1 LUMO+6 (4%) OMO 1 LUMO+5 (3%) OMO 9 LUMO+4 (45%) OMO LUMO+6 (8%) OMO 10 LUMO+4 (24%) OMO 6 LUMO+5 (3%) OMO 12 LUMO+2 (2%) OMO 8 LUMO+4 (2%) 4.42 0.0429 280.62 275 Fig S16 Spin density distribution in complex 5. 14

+ m/z = 708.06 (M) + m/z = 673.09 (M-) + Fig. S17 ESI-MS spectrum of complex 2 along with fragmentation pattern. 15

O 2 O 2 + m/z = 719.08 (M) + m/z = 684.11 (M-) + Fig. S18 ESI-MS spectrum of complex 3 along with fragmentation pattern. 16

O (O 3 ) 3 3 m/z = 889.05 (M) + 2O 3, O 3 m/z = 673.09 (M-3O 3 -O-) + O 3 L 2, O 3 O 2 (O 3 ), O 3 O 3 m/z = 455.98 (M-L 2 - - 2O 3 ) + m/z = 765.07 (M-2O 3 ) + m/z = 440.99 (M-3O 3 - ) + O, O, O 3 3 2 (O 3 ) 2 (O3 ) m/z = 411.00 (M--O- -3O 3 ) + m/z = 735.07 (M-O-2O 3 ) + m/z = 700.11 (M-O--2O 3 ) + Fig. S19 ESI-MS spectrum of complex 5 along with fragmentation pattern. 17