Study Shows Positive Benefits Of Cellular Therapy For COPD Patients

Similar documents
Autologous Stem Cell Therapy & its Effects on COPD:

Treatment Overview Summary of Process native to the COPD Assessment Test (CAT)20. The Lung Institute (LI) provides treatment by harvesting autologous

PATHOPHYSIOLOGICAL PROCESS TEMPLATE

TORCH: Salmeterol and Fluticasone Propionate and Survival in COPD

Chronic respiratory disease: towards better treatments

RESPIRATORY DISORDERS

COPD Research at the University of Maryland School of Maryland

2/4/2019. GOLD Objectives. GOLD 2019 Report: Chapters

Overview of COPD INTRODUCTION

COPD. Breathing Made Easier

OPTIMIZING MANAGEMENT OF COPD IN THE PRACTICE SETTING 10/16/2018 DISCLOSURES I have no financial or other disclosures

Defining COPD. Georgina Grantham Community Respiratory Team Leader/ Respiratory Nurse Specialist

Respiratory Toxicology

Epidemiology of COPD Prof. David M. Mannino, M.D.

RESPIRATORY PHYSIOLOGY Pre-Lab Guide

How to treat COPD? What is the mechanism of dyspnea? Smoking cessation

UNDERSTANDING COPD MEDIA BACKGROUNDER

Lung Function Basics of Diagnosis of Obstructive, Restrictive and Mixed Defects

PDF of Trial CTRI Website URL -

American Thoracic Society (ATS) Perspective

PomPom SHOOTER. Activity Background: Common Obstructive Lung Disorders:

Basic mechanisms disturbing lung function and gas exchange

Biochemistry of Lungs. Lecture # 35 Lecturer: Alexander Koval

CHRONIC OBSTRUCTIVE PULMONARY DISEASE

Pulmonary Pathophysiology

COPD COPD. C - Chronic O - Obstructive P - Pulmonary D - Disease OBJECTIVES

Clinical and radiographic predictors of GOLD-Unclassified smokers in COPDGene

Chronic Obstructive Pulmonary Disease (COPD) Clinical Guideline

COPD: Genomic Biomarker Status and Challenge Scoring

Pulmo-Park Pom-Pom Shooter: Measuring the Effect of Restricted Breathing on Peak Expiratory Flow (PEF) Student Information Page Activity 5D

Global Strategy for the Diagnosis, Management and Prevention of COPD 2016 Clinical Practice Guideline. MedStar Health

Around-COPD Verona (Italy), January Highlights

A Place For Airway Clearance Therapy In Today s Healthcare Environment

Emphysema. Lungs The lungs help us breathe in oxygen and breathe out carbon dioxide. Everyone is born with 2 lungs: a right lung and a left lung.

Alpha-1 Antitrypsin Deficiency Alpha-1 Lung Disease

Pulmonary Function Testing: Concepts and Clinical Applications. Potential Conflict Of Interest. Objectives. Rationale: Why Test?

Commissioning for Better Outcomes in COPD

COPD. Helen Suen & Lexi Smith

COPD. The goals of COPD. about. you quit. If you. efforts to quit. Heart

The development of chronic obstructive pulmonary

Alpha-1-antitrypsin deficiency

THE CHALLENGES OF COPD MANAGEMENT IN PRIMARY CARE An Expert Roundtable

Life-long asthma and its relationship to COPD. Stephen T Holgate School of Medicine University of Southampton

THE PHARMA INNOVATION - JOURNAL Clinical Characteristics of Chronic Obstructive Pulmonary Disease

Running head: BEST-PRACTICE NURSING CARE FOR PATIENTS WITH 1 CHRONIC OBSTRUCTIVE PULMONARY DISEASE

Chronic Obstructive Pulmonary Disease (COPD)

UNDERSTANDING & MANAGING

A patient educational resource provided by Boehringer Ingelheim Pharmaceuticals, Inc.

Chronic Obstructive Pulmonary Disease (COPD).

Molecular Biology Of The Lung: Emphysema And Infection (Respiratory Pharmacology And Pharmacotherapy) (v. 1) READ ONLINE

STOP SMOKING with Nicotine Replacement Therapy

Air Flow Limitation. In most serious respiratory disease, a key feature causing morbidity and functional disruption is air flow imitation.

Comments to the U.S. Food and Drug Administration Regarding the Patient-Focused Drug Development Re: Docket No. FDA-2012-N-0967

Because we care about your health

People with asthma who smoke. The combination of asthma, a chronic airway disease, and smoking increases the risk of COPD even more.

What do pulmonary function tests tell you?

Lecture Notes. Chapter 4: Chronic Obstructive Pulmonary Disease (COPD)

Living well with COPD

BETTER DEFINING AIRWAYS DISEASE WITH TECHNEGAS

COPD is a syndrome of chronic limitation in expiratory airflow encompassing emphysema or chronic bronchitis.

Pharmacological Management of Obstructive Airways in Humans. Introduction to Scientific Research. Submitted: 12/4/08

Chronic Obstructive Pulmonary Disease. Gabrielle Matarazzo 5/2/2016

COMMITTEE FOR MEDICINAL PRODUCTS FOR HUMAN USE (CHMP)

Outline FEF Reduced FEF25-75 in asthma. What does it mean and what are the clinical implications?

The Circulatory System

Integrated Cardiopulmonary Pharmacology Third Edition

COPD: early detection, screening and case-finding: what is the evidence? Prof. Jan-Willem Lammers, Md PhD Department of Respiratory Diseases

This is a cross-sectional analysis of the National Health and Nutrition Examination

TLALELETSO. Chronic Lung Disease

Function of the Respiratory System. Exchange CO2 (on expiration) for O2 (on inspiration)

Journal of the COPD Foundation Stem Cell Therapy for COPD: Where are we?

an inflammation of the bronchial tubes

The Relationship among COPD Severity, Inhaled Corticosteroid Use, and the Risk of Pneumonia.

Chronic Obstructive Pulmonary Disease A breathtaking condition

CHRONIC OBSTRUCTIVE PULMONARY DISEASE

Chronic obstructive lung disease. Dr/Rehab F.Gwada

ASTHMA-COPD OVERLAP SYNDROME 2018: What s All the Fuss?

Treatment Responses. Ronald Dahl, Aarhus University Hospital, Denmark

COPD. Dr.O.Paknejad Pulmonologist Shariati Hospital TUMS

11.3 RESPIRATORY SYSTEM DISORDERS

GOLD UPDATE on COPD and the Importance of Accurate Dyspnea Evaluation

9/22/2015 CONFLICT OF INTEREST OBJECTIVES. Understanding COPD - Recent Research and the Evolving Definition of COPD for MNACVPR

Understanding COPD - Recent Research and the Evolving Definition of COPD for MNACVPR

Using Pay-for-Performance to Improve COPD Care MHC64474 SV64474

COPD, Asthma, Or Something In Between? Sharon R. Rosenberg Assistant Professor of Medicine Northwestern University December 4, 2013

Update on heterogeneity of COPD, evaluation of COPD severity and exacerbation

Chapter 10 The Respiratory System

Diseases caused by Smoking

The beneficial effects of ICS in COPD

Turning Science into Real Life Roflumilast in Clinical Practice. Roland Buhl Pulmonary Department Mainz University Hospital

Chronic Obstructive Pulmonary Disease

Prevalence of Chronic Obstructive Pulmonary Disease and Tobacco Use in Veterans at Boise Veterans Affairs Medical Center

Known Allergies: Shellfish. Symptoms: abdominal pain, nausea, diarrhea, or vomiting. congestion, trouble breathing, or wheezing.

What s new in COPD? Apichart Khanichap MD. Department of Medicine, Faculty of Medicine, Thammasat university

Tests Your Pulmonologist Might Order. Center For Cardiac Fitness Pulmonary Rehab Program The Miriam Hospital

COPD in Korea. Division of Pulmonary, Allergy and Critical Care Medicine of Hallym University Medical Center Park Yong Bum

Systematic Review of Early Diagnosis and Treatment of Chronic Obstructive Pulmonary Disease (COPD) in Family Practice

COPD, Pneumonia & Influenza, Accidents, Diabetes. Chapter 7

Cigarette Smoking and Lung Obstruction Among Adults Aged 40 79: United States,

Transcription:

Study Shows Positive Benefits Of Cellular Therapy For COPD Patients A recent article entitled Autologous Cellular Therapy & Its Effects on COPD: A Pilot Study reveals new data that shows the potential that cellular therapy has to positively benefit patients with chronic obstructive pulmonary disease (COPD). COPD Is a Growing Problem COPD is the name for a broad category of lung diseases, such as chronic bronchitis and emphysema. The conditions that fall into the category of COPD tend to have symptoms that include: kkshortness of breath kkcoughing kkwheezing kklung tissue inflammation and scarring kkincrease in mucus production These symptoms of COPD-labelled diseases combine to reduce the patient s ability to breathe and to maintain healthy blood oxygen levels by contributing to the destruction of the air sacs in the lung known as alveoli. Unfortunately, this incurable condition has continued to become more prominent. In fact, some sources report that almost 600 million cases of the disease currently exist worldwide. Commonly Used Treatments for COPD: An Exercise In Symptom Alleviation Historically, there has been difficulty finding treatments for slowing the progression of COPD because there was little understanding about how the disease operates at the molecular level. Consequently, there have been few developments in drugs that could affect the progression of the disease. Instead, drug treatments for COPD focus on reducing the patient s symptoms as much as possible. Drugs such as bronchodilators and corticosteroids are commonly used to treat COPD symptoms. Another, more drastic, form of treatment for COPD is a lung transplant. However, this treatment is typically only used as a last resort because it is highly invasive, typically has poor results and has not been recorded to measurably improve the patient s quality of life. In fact, approximately half of COPD patients who had lung transplants passed away within five years of having the surgery. STUDIES REVEAL THAT CELLULAR THERAPY HOLDS SIGNIFICANT PROMISE FOR TREATING COPD

Autologous Cellular Therapy & its Effects on COPD: A Pilot Study Jack A. Coleman Jr., M.D. Introduction by the Lung Health Institute THE PROBLEM WITH CHRONIC PULMONARY DISEASES page 1 Chronic Obstructive Pulmonary Disease (COPD) is a progressive lung disorder that occurs as a result of prolonged cigarette smoking, second-hand smoke, and polluted air or working conditions. COPD is the most prevalent form of chronic lung disease. The physiological symptoms of COPD include shortness of breath (dyspnea), cough, and sputum production, exercise intolerance and reduced Quality of Life (QOL). These signs and symptoms are brought about by chronic inflammation of the airways, which restricts breathing. When fibrotic tissues contract, the lumen is narrowed, compromising lung function. As histological studies confirm, airway fibrosis and luminal narrowing are major features that lead to airflow limitation in COPD 1-3. Today, COPD is a serious global health issue, with a prevalence of 9-10% of adults aged 40 and older 4. And the prevalence of the disease is only expected to rise. Currently COPD accounts for 27% of tobacco related deaths and is anticipated to become the fourth leading cause of death worldwide by 2030 5. Today, COPD affects approximately 600 million individuals roughly 5% of the world s population 6. Despite modern medicine and technological advancements, there is no known cure for COPD. The difficulty in treating COPD and other lung diseases rests in the trouble of stimulating alveolar wall formation 15. Until recently, treatment has been limited by two things: a lack of understanding of the pathophysiology of these disease processes on a molecular level and a lack of pharmaceutical development that would affect these molecular mechanisms. This results in treatment focused primarily in addressing the symptoms of the disease rather than healing or slowing the progression of the disease itself. The result is that there are few options available outside of bronchodilators and corticosteroids 7. Although lung transplants are performed as an alternative option, there is currently a severe shortage of donor lungs, leaving many patients to die on waiting lists prior to transplantation. Lung transplantation is also a very invasive form of treatment, commonly offering poor results, a poor quality of life with a 5-year mortality rate of approximately 50%, and a litany of health problems associated with lifelong immunosuppression 13. However, it has been shown that undifferentiated multipotent endogenous tissue cells (cells that have been identified in nearly all tissues) may contribute to tissue maintenance and repair due to their inherent anti-inflammatory properties. Human mesenchymal stromal cells have been shown to produce large quantities of bioactive factors including cytokines and various growth factors which provide molecular cueing for regenerative pathways. This affects the status of responding cells intrinsic in the tissue 18. These bioactive factors have the ability to influence multiple immune effector functions including cell development, maturation, and allo-reactive T-cell responses 19. Although research on the use of autologous cells (both hematopoietic and mesenchymal) in regenerative autologous cell therapy is still in the early stages of implementation, it has shown substantive progress in treating patients with few if any adverse effects.

Treatment Overview page 2 Summary of Process The Lung Health Institute (LHI) provides treatment by harvesting autologous cells (hematopoietic cells and mesenchymal stromal cells) by withdrawing bone marrow or peripheral blood. These harvested cells are isolated and concentrated, and along with platelet-rich plasma, are then reintroduced into the body and enter the pulmonary vasculature (vessels of the lungs) where cells are trapped in the microcirculation (the pulmonary trap ). Methodology Individuals diagnosed with COPD were tracked by the Lung Health Institute to measure the effects of treatment on both their pulmonary function as well as their Quality of Life. PULMONARY FUNCTION TEST (PFT) All PFTs were performed according to national practice guideline standards for repeatability and acceptability 8-10. On PFTs, pre-treatment data was collected through onsite testing or through previous medical examinations by the patient s primary physician (if done within two weeks). The test was then repeated by their primary physician 6 months after treatment.* * Due to the examination information required from primary physicians, only 53 out of 349 patients are reflected in the PFT data. QUALITY OF LIFE SURVEY (QLS) & QUALITY IMPROVEMENT SCORE (QIS) Patients with progressive COPD will typically experience a steady decrease in their Quality of Life. Given this development, a patient s Quality of Life score is frequently used to define additional therapeutic effects, with regulatory authorities frequently encouraging their use as primary or secondary outcomes 17. Demographics Over the duration of six months, the results of 349 patients treated for COPD through cell based therapies were tracked by the Lung Health Institute in order to measure changes in pulmonary function and any improvement in Quality of Life. Of the 349 patients treated by the Lung Health Institute, 213 were male (61%) and 136 were female (39%). Ages of those treated range from 40-92 years old with an average age of 71. PATIENT DEMOGRAPHICS 349 PATIENTS 136 FEMALE 60-69 AGE 70-79 40-59 80-92 71 AVG. AGE 213 MALE On quality of life testing, data was collected through the implementation of the Clinical COPD Questionnaire (CCQ) based survey 17. The survey measured the patient s self-assessed quality of life on a 0-6 scale, with adverse Quality of Life correlated in ascending numerical order. It was implemented in three stages: pre-treatment, 3-months post-treatment, and 6-months post-treatment. The survey measured two distinct outcomes: the QLS score, which measured the patient s self-assessed quality of life score, and the QIS, a percentage-based measurement determining the proportion of patients within the sample that experienced QLS score improvements.

Results page QUALITY OF LIFE SURVEY (QLS) Average Score* Data Size % Improvement Pre-Treatment 3.5 349-3 Month Post-Treatment 2.3 349 33.5% 6 Month Post-Treatment 2.4 349 33.0% PULMONARY FUNCTION TEST (PFT) RESULTS (53 PATIENTS) Average PFT Improvement 12.0% PFT Change > 10% 49.1% Figure 1.2 - Lung Health Institute Outcomes Data * The survey measured the patient s self-assessed quality of life on a 0-6 scale, with adverse Quality of Life correlated in ascending numerical order. Over the course of the study, the patient group averaged an increase of 33.5% to their Quality of Life (QLS) score within three months of treatment. While in the QIS, 84.5% of all patients found that their Quality of Life score had improved within three months of treatment (figure 1.3). * Within this metric, the QIS denotes general improvement within the CCQ score, while statistically significant improvement is marked by a.4 or greater improvement within this score. Within the PFT results, 49.1% of patients tested saw an increase of over 10% to their original pulmonary function with an average increase of 12.0%. During the three to six month period after treatment, patients naturally saw a small decline in their progress, with QLS scores dropping from 33.5% to 33.0%, and the QIS from 84.5% to 81.7%. QUALITY IMPROVEMENT SCORE 3 MONTH POST-TREATMENT 81.7% 6 MONTH POST-TREATMENT 84.5% Fletcher and Peto s work shows that patient survival rate can be improved through appropriate or positive intervention 14 (figure 1.4). It remains to be seen if better quality of life will translate to longevity, but if one examines what factors allow for improved quality of life such as improvement in oxygen use, exercise tolerance, medication use, visits to the hospital and reduction in disease flare ups then one can see that quality of life improves in association with clinical improvement. FEV1 (% OF VALUE OF AGE 25) 100 75 50 25 0 Symptoms Disability Death Never smoked or not susceptible to smoke Smoked and susceptible to smoke Stopped at 45 years 25 50 75 AGE Stopped at 65 years 0% 25% 50% 75% 100% Figure 1.4 - Fletcher and Peto s Lung Function decline in COPD % OF PATIENTS THAT FOUND IMPROVEMENT Figure 1.3 - Quality Improvement Score (QIS)

Analysis page 4 Currently the most utilized options for treating COPD are bronchodilator inhalers with or without corticosteroids and lung transplant each has downsides. Inhalers are often used incorrectly 11, are expensive over time, and can only provide temporary relief of symptoms. Corticosteroids, though useful, have risk of serious adverse side effects such as infections, blood sugar imbalance, and weight gain to name a few 16. Lung transplants are expensive, have an adverse impact on quality of life and have a high probability of rejection by the body the treatment of which creates a new set of problems for patients. In contrast, initial studies of cellular treatments show efficacy, lack of adverse side effects and may be used safely in conjunction with other treatments. Conclusion Through the data collected by the Lung Health Institute, developing methodologies for this form of treatment are quickly taking place as other entities of the medical community follow suit. In a recent study of regenerative cellular therapy done by the University of Utah, patients exhibited improvement in PFTs and oxygen requirement compared to the control group with no acute adverse events 12. Through the infusion of autologous cells derived from the patient s own body, cellular therapy minimizes the chance of rejection to the highest degree, promotes healing and can improve the patient s pulmonary function and quality of life with no adverse side effects. Although more studies using a greater number of patients is needed to further examine objective parameters such as PFTs, exercise tests, oxygen, medication use and hospital visits, larger sample sizes will also help determine if one protocol is more beneficial than others. With deeper research, utilizing economic analysis along with longerterm follow up will answer questions on patient selection, the benefits of repeated treatments, and a possible reduction in healthcare costs for COPD treatment. The field of Cellular Therapy and Regenerative Medicine is rapidly advancing and providing effective treatments for diseases in many areas of medicine. The Lung Health Institutes strives to provide the latest in safe, effective therapy for chronic lung disease and maintain a leadership role in the clinical application of these technologies. In accordance with the most up-to-date draft guidelines and exemptions set forth by the Food and Drug Administration on the use of human cells, tissues, and cellular and tissue-based products, the Lung Health Institute practices safe and effective treatment within full compliance of current industry mandates and regulations. In a landscape of scarce options and rising costs, the Lung Health Institute believes that cellular therapy is the future of treatment for those suffering from COPD and other lung diseases. Although data is limited at this stage, we are proud to champion this form of treatment while sharing our findings. 1 Kuwano K, Bosken C, Pare P, Bai T, Wiggs B, Hogg J. Small airways dimensions in asthma and chronic obstructive pulmonary disease. Am Rev Respir Dis 1993; 148: 1220-25 2 Hogg J, Chu F, Utokaparch S, et al. The nature of small-airway obstruction in chronic obstructive pulmonary disease. N Engl J Med 2004; 350: 2645-53. 3 Niewoehner D. Structure-function relationships: the pathophysiology of airflow obstruction. In: Stockley R, Rnnard S. Rabe K, Celli B, eds. Chronic Obstructive Pulmonary Disease. Hoboken, NJ: Blackwell, 2007: 3-19. 4 Halbert R, Natoli J. Gano A, Badamgarav E, Buist A, Mannino D. Global burden of COPD: systematic review and meta-analysis. Eur Respir J 2006; 28: 423-32 5 Fernando J Martinez, James F Donohue, Stephen I Rennard. The future of chronic obstructive pulmonary disease treatment-difficulties of and barriers to drug development. Lancet 2011; 378: 1027-37. 6 Michelle J. Hansen, Rosa C. Gualano, Steve Bozinovski, Ross Vlahos, Gary P. Anderson. Therapeutic prospects to treat skeletal muscle wasting in COPD (chronic obstructive lung disease). Pharmacology & Therapy 2006; 109: 162-172. 7 European Medicines Agency. Guideline on clinical investigation of medicinal products for the treatment of Chronic Obstructive Pulmonary Disease (COPD). London: European Medicines Agency, 2010. 8 Wanger J, Clausen JL, Coastes A, et al. Standardisation of the measurement of lung volumes. Eur Respir J 2005; 26(3): 511-22. 9 Miller MR, Hankinson J, Brusasco V, et al. Standardisation of spirometry. Eur Respir J 2005; 26(2):319-38. ATS/ERS statement on respiratory muscle testing. Am J Respir Crit Care Med 2002; 166(4):518-624. 10 Macintyre N, Crapo RO, Viegi G, et al. Standardisation of the single-breath determination of carbon monoxide uptake in the lung. Eur Respir J 2005; 26 (4): 720-35. 11 Int J Chron Obstruct Pulmon Dis. 2008 Sep; 3(3): 371 384. 12 J. Tuma, F. Silva, A.A. Winters, C. Bartlett, A.N. Patel. Maison de Sante. Lima, Peru; University of Utah, Salt Lake City, UT. 13 Viranuj Sueblinvong, MD and Daniel J. Weiss, M.D., PHD. Stem Cells and Cell Therapy Approaches in Lung Biology and Diseases. b. 14 Tantucci C, Modina D. Lung function decline in COPD. International Journal of Chronic Obstructive Pulmonary Disease. 2012; 7:95-99. doi:10.2147/copd.s27480. 15 Massaro G, Massaro D. Retinoic acid treatment abrogates elastase-induced pulmonary emphysema in rats. Nas Med 1997; 3: 675-77. 16 Samy Suissa, Valerie Patenaude, Francesco Lapi, Pierre Ernst. Inhaled corticosteroids in COPD and the risk of serious pneumonia. Thorax 2013; 68: 1029-1036 17 Clinical COPD Questionnaire. http://www.ccq.nl/. Accessed October 28, 2015. 18 Tracey L. Bonfield, Arnold I. Caplan. Adult Mesenchymal Stem Cells: An Innovative Therapeutic for Lung Diseases. Discovery Medicine. April 2010; 9(47): 337-345. 19 Giselle Chamberlain, James Fox, Brian Ashton, Jim Middleton. Mesenchymal Stem Cells: Their Phenotype, Differentiation Capacity, Immunological Features, and Potential for Homing. Stem Cells. 2007; 25:2739-2749