Honors Biology Chapter 3: Macromolecules PPT Notes

Similar documents
INTRODUCTION TO ORGANIC COMPOUNDS. Copyright 2009 Pearson Education, Inc.

Chapter 3. The Molecules of Cells. Lecture by Richard L. Myers

INTRODUCTION TO ORGANIC COMPOUNDS. Introduction: Got Lactose? The Molecules of Cells. Most of the world s population cannot digest milkbased

Carbon. Isomers. The Chemical Building Blocks of Life

CHAPTER 3. Carbon & the Molecular Diversity of Life

The Chemical Building Blocks of Life. Chapter 3

Biological Molecules

Chapter 3 The Molecules of Cells

Biology 5A Fall 2010 Macromolecules Chapter 5

What are the molecules of life?

Biological Molecules

Chp 2 (cont.) Organic Molecules. Spider s web and close up of capture strand - spider silk protein

Macromolecules. Molecules of Life

Most life processes are a series of chemical reactions influenced by environmental and genetic factors.

Biology Chapter 5. Biological macromolecules

A. Lipids: Water-Insoluble Molecules

Chapter 5 THE STRUCTURE AND FUNCTION OF LARGE BIOLOGICAL MOLECULES

Lecture Series 2 Macromolecules: Their Structure and Function

Chapter 3 The Molecules of Life

Lecture Series 2 Macromolecules: Their Structure and Function

Biology Kevin Dees. Biology Chapter 5. Biological macromolecules

Biology: Life on Earth Chapter 3 Molecules of life

BIOCHEMISTRY. How Are Macromolecules Formed? Dehydration Synthesis or condensation reaction Polymers formed by combining monomers and removing water.

The Structure and Function of Large Biological Molecules

Macromolecules. copyright cmassengale

Organic Compounds. Compounds that contain CARBON are called organic. Macromolecules are large organic molecules.

Lesson 2. Biological Molecules. Introduction to Life Processes - SCI 102 1

Chapter 2 pt 2. Atoms, Molecules, and Life. Gregory Ahearn. John Crocker. Including the lecture Materials of

Lecture Series 2 Macromolecules: Their Structure and Function

I. Polymers & Macromolecules Figure 1: Polymers. Polymer: Macromolecule: Figure 2: Polymerization via Dehydration Synthesis

Macromolecules. Note: If you have not taken Chemistry 11 (or if you ve forgotten some of it), read the Chemistry Review Notes on your own.

3.1 Carbon is Central to the Living World

Composed of long chains of smaller molecules Macromolecules are formed through the process of polymerization

Biological Molecules. Carbohydrates, Proteins, Lipids, and Nucleic Acids

All living things are mostly composed of 4 elements: H, O, N, C honk Compounds are broken down into 2 general categories: Inorganic Compounds:

Good Afternoon! 11/30/18

The Building blocks of life. Macromolecules

The Structure and Function of Macromolecules

Chapter 3- Organic Molecules

The Structure and Function of Macromolecules (Chapter Five)

Many of the compounds we are concerned with in biology are carbon-based compounds The study of carbon-based compounds is called organic chemistry

Details of Organic Chem! Date. Carbon & The Molecular Diversity of Life & The Structure & Function of Macromolecules

INTRODUCTION TO ORGANIC COMPOUNDS

Chapter Three (Biochemistry)

Chapter 3 The Molecules of Cells

Macromolecules Carbohydrates A COMPLEX COLORING EXPERIENCE

The Carbon Atom (cont.)

Macromolecules. 3. There are several levels of protein structure, the most complex of which is A) primary B) secondary C) tertiary D) quaternary

Organic Compounds. Compounds that contain CARBON are called organic. Macromolecules are large organic molecules.

Organic Chemistry. Organic chemistry is the chemistry of carbon compounds. Biochemistry is the study of carbon compounds that crawl.

Essential Components of Food

Macromolecules. Honors Biology

CARBOHYDRATES. Produce energy for living things Atoms? Monomer Examples? Carbon, hydrogen, and oxygen in 1:2:1 ratio.

Carbon. Carbon. Carbon Skeleton 8/25/2016. The Chemical Building Blocks of Life

Unit 3: Chemistry of Life Mr. Nagel Meade High School

Biological Chemistry. Is biochemistry fun? - Find it out!

Unit #2: Biochemistry

the nature and importance of biomacromolecules in the chemistry of the cell: synthesis of biomacromolecules through the condensation reaction lipids

Chapter 2. Chemical Composition of the Body

The Structure and Function of Macromolecules

Chapter 5 The Structure and Function of Macromolecules

Chapter 3: Macromolecules. 1. Carbohydrates. Polysaccharides. Maltose is a disaccharide. Macromolecules (in general) Most macromolecules are polymers

Biochemistry Macromolecules and Enzymes. Unit 02

Biological molecules

Study Guide Chapter 5 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question

General Biology 1004 Chapter 3 Lecture Handout, Summer 2005 Dr. Frisby

The Atoms of Life. What are other elements would you expect to be on this list? Carbon Hydrogen Nitrogen Oxygen Phosphorous Sulfur (sometimes)

small molecules that make up larger molecules organic compound made up of sugar molecules sugar that contains one sugar unit

Macro molecule = is all the reactions that take place in cells, the sum of all chemical reactions that occur within a living organism Anabolism:

From Atoms to Cells: Fundamental Building Blocks. Models of atoms. A chemical connection

Carbohydrates, Lipids, Proteins, and Nucleic Acids

The Structure and Function of Large Biological Molecules. Chapter 5

Biomolecules. Biomolecules. Carbohydrates. Biol 219 Lec 3 Fall Polysaccharides. Function: Glucose storage Fig. 2.2

Bio 12 Important Organic Compounds: Biological Molecules NOTES Name:

Activity: Biologically Important Molecules

Ch. 5 The S & F of Macromolecules. They may be extremely small but they are still macro.

WHY IS THIS IMPORTANT?

The Star of The Show (Ch. 3)

Organic Molecules. 8/27/2004 Mr. Davenport 1

The building blocks of life.

Chapter 1-2 Review Assignment

CP Biology: Basic Biochemistry

The Structure and Function of Large Biological Molecules

2 3 Carbon Compounds. Proteins. Proteins

Carbon Compounds. Lesson Overview. Lesson Overview. 2.3 Carbon Compounds

Chemistry of Carbon. All living things rely on one particular type of molecule: carbon

All living things are mostly composed of 4 elements: H, O, N, C honk Compounds are broken down into 2 general categories: Inorganic Compounds:

Chapter 2: The Chemical Level of. Organization. Copyright 2009, John Wiley & Sons, Inc.

Agenda. Chapter 3: Macromolecules. 1. Carbohydrates. Macromolecules (in general) What are organic compounds?

Lesson Overview. Carbon Compounds. Lesson Overview. 2.3 Carbon Compounds

Lesson Overview. Carbon Compounds. Lesson Overview. 2.3 Carbon Compounds

The Structure and Function of Macromolecules

Biological Molecules Ch 2: Chemistry Comes to Life

Chapter 2 The Chemistry of Life Part 2

Organic molecules are molecules that contain carbon and hydrogen.

Elements & Macromolecules in Organisms

5.2 Lipids 5.21 Triglycerides 5.22 Phospholipids 5.23 Wax 5.24 Steroids. 5.3 Proteins 5.4 Nucleic Acids

6/15/2015. Biological Molecules. Outline. Organic Compounds. Organic Compounds - definition Functional Groups Biological Molecules. What is organic?

Transcription:

Honors Biology Chapter 3: Macromolecules PPT Notes 3.1 I can explain why carbon is unparalleled in its ability to form large, diverse molecules. Diverse molecules found in cells are composed of carbon bonded to other elements Carbon-based molecules are called By sharing electrons, carbon can bond to four other atoms By doing so, it can branch in up to four directions 3.1 I can explain why carbon is unparalleled in its ability to form large, diverse molecules. Methane (CH 4 ) is one of the simplest organic compounds Four covalent bonds link four hydrogen atoms to the carbon atom Each of the four lines in the formula for methane represents a pair of shared electrons 3.1 I can define organic compounds, hydrocarbons, and carbon skeletons. Methane and other compounds composed of only carbon and hydrogen are called Carbon, with attached hydrogens, can bond together in chains of various lengths 3.1 I can define organic compounds, hydrocarbons, and carbon skeletons. A chain of carbon atoms is called a Carbon skeletons can be branched or unbranched Therefore, different compounds with the same molecular formula can be produced These structures are called 3.3 I can list the four main classes of macromolecules. There are four classes of biological molecules 3.3 I can explain the relationship between monomers and polymers The four classes of biological molecules contain very large molecules They are often called because of their large size They are also called because they are made from identical building blocks strung together

The building blocks are called 3.3 I can explain the relationship between monomers and polymers A cell makes a large number of polymers from a small group of monomers Proteins are made from only acids, and DNA is built from just four kinds of nucleotides The monomers used to make polymers are universal 3.3 I can compare the processes of dehydration synthesis and hydrolysis. Monomers are linked together to form polymers through, which remove water Polymers are broken apart by, the addition of water All biological reactions of this sort are mediated by, which speed up chemical reactions in cells 3.4 I can describe the structures, functions, properties, and types of carbohydrate molecules. Carbohydrates range from small sugar molecules (monomers) to large polysaccharides Sugar monomers are, such as glucose and fructose These can be hooked together to form the polysaccharides 3.4 I can describe the structures, functions, properties, and types of carbohydrate molecules. Monosaccharides are the for cellular work Monosaccharides are also used as raw materials to manufacture other organic molecules 3.5 I can describe the structures, functions, properties, and types of carbohydrate molecules. Two monosaccharides (monomers) can bond to form a in a dehydration reaction An example is a glucose monomer bonding to a fructose monomer to form sucrose, a common disaccharide 3.7 I can describe the structures, functions, properties, and types of carbohydrate molecules. are polymers of monosaccharides They can function in the cell as a storage molecule or as a structural compound 3.7 I can describe the structures, functions, properties, and types of carbohydrate molecules. is a storage polysaccharide composed of glucose monomers and found in plants is a storage polysaccharide composed of glucose, which is hydrolyzed by animals when glucose is needed is a polymer of glucose that forms plant cell walls is a polysaccharide used by insects and crustaceans to build an exoskeleton 3.8 I can describe the structures, functions, properties, and types of lipid molecules.

are water insoluble (, or water fearing) compounds that are important in energy storage They contain twice as much energy as a polysaccharide are lipids made from glycerol and fatty acids 3.8 I can describe the structures, functions, properties, and types of lipid molecules. Fatty acids link to glycerol by a dehydration reaction A fat contains one glycerol linked to three fatty acids Fats are often called triglycerides because of their structure 3.8 I can describe the structures, functions, properties, and types of lipid molecules. Some fatty acids contain double bonds This causes kinks or bends in the carbon chain because the maximum number of hydrogen atoms cannot bond to the carbons at the double bond These compounds are called because they have fewer than the maximum number of hydrogens Fats with the maximum number of hydrogens are called 3.9 I can describe the structures, functions, properties, and types of lipids molecules. are structurally similar to fats and are an important component of all cells For example, they are a major part of cell membranes, in which they cluster into a bilayer of phospholipids The hydrophilic heads are in contact with the water of the environment and the internal part of the cell The hydrophobic tails band in the center of the bilayer 3.9 I can describe the structures, functions, properties, and types of lipid molecules. are lipids composed of fused ring structures is an example of a steroid that plays a significant role in the structure of the cell membrane In addition, cholesterol is the compound from which we synthesize sex hormones 3.11 I can describe the structures, functions, properties, and types of protein molecules. A is a polymer built from various combinations of 20 amino acid monomers Proteins have unique structures that are directly related to their functions, proteins that serve as metabolic catalysts, regulate the chemical reactions within cells 3.11 I can describe the structures, functions, properties, and types of protein molecules. proteins provide associations between body parts and proteins are found within muscle

proteins include antibodies of the immune system, and proteins are best exemplified by the hormones proteins serve as antenna for outside signals, and proteins carry oxygen 3.12 I can describe the structures, functions, properties, and types of protein molecules. Amino acid monomers are linked together to form polymeric proteins This is accomplished by an enzyme-mediated dehydration reaction This links the carboxyl group of one amino acid to the amino group of the next amino acid The covalent linkage resulting is called a 3.13 I can describe the structures, functions, properties, and types of protein molecules. A polypeptide chain contains hundreds or thousands of amino acids linked by peptide bonds The amino acid sequence causes the polypeptide to assume a particular shape The shape of a protein determines its 3.13 I can describe the structures, functions, properties, and types of protein molecules. If for some reason a protein s shape is altered, it can no longer function will cause polypeptide chains to unravel and lose their shape and, thus, their function Proteins can be denatured by changes in salt concentration and ph A protein can have four levels of structure The of a protein is its unique amino acid sequence The correct amino acid sequence is determined by the cell s genetic information The slightest change in this sequence affects the protein s ability to function Protein results from coiling or folding of the polypeptide Coiling results in a helical structure called an alpha helix Folding may lead to a structure called a pleated sheet

Coiling and folding result from hydrogen bonding between certain areas of the polypeptide chain The overall three-dimensional shape of a protein is called its Tertiary structure generally results from interactions between the R groups of the various amino acids Disulfide bridges are covalent bonds that further strengthen the protein s shape Two or more polypeptide chains (subunits) associate providing Collagen is an example of a protein with quaternary structure Its triple helix gives great strength to connective tissue, bone, tendons, and ligaments and are composed of monomers called Nucleotides have three parts A five-carbon sugar called ribose in RNA and deoxyribose in DNA A phosphate group A nitrogenous base DNA nitrogenous bases are adenine (A), thymine (T), cytosine (C), and guanine (G) RNA also has A, C, and G, but instead of T, it has uracil (U) A nucleic acid polymer, a polynucleotide, forms from the nucleotide monomers when the phosphate of one nucleotide bonds to the sugar of the next nucleotide The result is a repeating with protruding nitrogenous bases Two polynucleotide strands wrap around each other to form a DNA The two strands are associated because particular bases always hydrogen bond to one another A pairs with T, and C pairs with G, producing RNA is usually a single polynucleotide strand A particular nucleotide sequence that can instruct the formation of a polypeptide is called a Most DNA molecules consist of millions of base pairs and, consequently, many genes

These genes, many of which are unique to the species, determine the structure of proteins and, thus, life s structures and functions