Dr. Suzana Voiculescu

Similar documents
Dr. Suzana Voiculescu Discipline of Physiology and Fundamental Neurosciences Carol Davila Univ. of Medicine and Pharmacy

Fluid and Electrolytes P A R T 4

D fini n tion: p = = -log [H+] ph=7 me m an s 10-7 Mol M H+ + (100 nmol m /l); ) p ; H=8 me m an s 10-8 Mol M H+ + (10 (10 n nmol m /l) Nor

ACID-BASE BALANCE URINE BLOOD AIR

Acids and Bases their definitions and meanings

Acid-Base Balance 11/18/2011. Regulation of Potassium Balance. Regulation of Potassium Balance. Regulatory Site: Cortical Collecting Ducts.

Renal Physiology. April, J. Mohan, PhD. Lecturer, Physiology Unit, Faculty of Medical Sciences, U.W.I., St Augustine.

Introduction. Acids, Bases and ph; a review

Acid-base balance is one of the most important of the body s homeostatic mechanisms Acid-base balance refers to regulation of hydrogen ion (H + )

Chapter 15 Fluid and Acid-Base Balance

Acid-Base Balance Dr. Gary Mumaugh

There are many buffers in the kidney, but the main one is the phosphate buffer.

Renal physiology V. Regulation of acid-base balance. Dr Alida Koorts BMS

Principles of Anatomy and Physiology

Chapter 27: WATER, ELECTROLYTES, AND ACID-BASE BALANCE

Acid and Base Balance

ACID BASE BALANCE & BODY FLUID. Ani Retno Prijanti Renal and Body Fluids Module Juni 2008

Objectives. Blood Buffers. Definitions. Strong/Weak Acids. Fixed (Non-Volatile) Acids. Module H Malley pages

Chapter 19 The Urinary System Fluid and Electrolyte Balance

Fluid, Electrolyte, and Acid Base Balance

CASE 27. What is the response of the kidney to metabolic acidosis? What is the response of the kidney to a respiratory alkalosis?

Acid Base Balance. Chapter 26 Balance. ph Imbalances. Acid Base Balance. CO 2 and ph. Carbonic Acid. Part 2. Acid/Base Balance

Acid-Base Balance. Every day, metabolic reactions in the body produce and. George A. Tanner, Ph.D.

Acid Base Balance. Professor Dr. Raid M. H. Al-Salih. Clinical Chemistry Professor Dr. Raid M. H. Al-Salih

Acid - base equilibrium

Carbon Dioxide Transport. Carbon Dioxide. Carbon Dioxide Transport. Carbon Dioxide Transport - Plasma. Hydrolysis of Water

Acid-Base Balance * OpenStax

CHAPTER 27 LECTURE OUTLINE

Acid-Base Tutorial 2/10/2014. Overview. Physiology (2) Physiology (1)

adam.com ( Benjamin/Cummings Publishing Co ( -42-

Carbon Dioxide Transport and Acid-Base Balance

NORMAL POTASSIUM DISTRIBUTION AND BALANCE

Dr. Suzana Voiculescu

EXCRETION QUESTIONS. Use the following information to answer the next two questions.

Acids, Bases, and Salts

UNIT VI: ACID BASE IMBALANCE

Slide 1. Slide 2. Slide 3. Learning Outcomes. Acid base terminology ARTERIAL BLOOD GAS INTERPRETATION

ikawalit Approach to Acid Base Disorders Author Dr Issa A kawalit

Physio 12 -Summer 02 - Renal Physiology - Page 1

Acid-Base 1, 2, and 3 Linda Costanzo, Ph.D.

Chapter 24 Water, Electrolyte and Acid-Base Balance

Kidneys in regulation of homeostasis

Dr. Suzana Voiculescu Discipline of Physiology and Fundamental Neurosciences Carol Davila Univ. of Medicine and Pharmacy

BIOL 2402 Fluid/Electrolyte Regulation

The equilibrium between basis and acid can be calculated and termed as the equilibrium constant = Ka. (sometimes referred as the dissociation constant

BUFFERING OF HYDROGEN LOAD

Urinary System. Dr. ZHANG Xiong. Dept. of Physiology. ZJU School of Medicine. QUESTION 6

Physiology week 16 Renal 2 (volume/buffers)

Blood Gases, ph, Acid- Base Balance

Metabolic Alkalosis: Vomiting

The Urinary System 15PART B. PowerPoint Lecture Slide Presentation by Patty Bostwick-Taylor, Florence-Darlington Technical College

3/19/2009. The task of the kidney in acid-base balance Excretion of the daily acid load. Buffering of an acid load. A o B - + H + B - A o +OH - C +

Functions of Proximal Convoluted Tubules

Acid-base balance (ABB)

1. a)label the parts indicated above and give one function for structures Y and Z

Acid-Base Physiology

Nephron Structure inside Kidney:

mmol.l -1 H+ Ca++ K+ Na+

Dept. of Physiology. ZJU School of Medicine.

Physiological Buffers

Neaam Al-Bahadili. Rana J. Rahhal. Mamoun Ahram

11/05/1431. Urine Formation by the Kidneys Tubular Processing of the Glomerular Filtrate

Water, Electrolytes, and Acid-Base Balance

Gas Exchange in the Tissues

Potassium regulation. -Kidney is a major regulator for potassium Homeostasis.

The kidney. (Pseudo) Practical questions. The kidneys are all about keeping the body s homeostasis. for questions Ella

Principles of Fluid Balance

PARAMEDIC RESOURCE MANUAL

Answers and Explanations

Renal Physiology Part II. Bio 219 Napa Valley College Dr. Adam Ross

Acid-Base Physiology. Dr. Tamás Bense Dr. Alexandra Turi

Acid-Base Imbalance-2 Lecture 9 (12/4/2015) Yanal A. Shafagoj MD. PhD

MS1 Physiology Review of Na+, K+, H + /HCO 3. /Acid-base, Ca+² and PO 4 physiology

DIURETICS-2. Dr. Shariq Syed. Shariq AIKC/TYB/2014

Na concentration in the extracellular compartment is 140

Human Anatomy and Physiology - Problem Drill 23: The Urinary System, Fluid, Electrolyte and Acid-Base Balance

BIOH122 Human Biological Science 2

1. 09/07/16 Ch 1: Intro to Human A & P 1

Neaam Al-Bahadili. Rana J. Rahhal. Mamoun Ahram

ANATOMY & PHYSIOLOGY - CLUTCH CH ACID-BASE BALANCE-- CONTROLLING BLOOD PH

Chapter 26 Fluid, Electrolyte, and Acid- Base Balance

RENAL FUNCTION An Overview

הנפרון. Introduction to Physiology (Course # 72336) THE KINDEY regulation of water and inorganic ions. Adi Mizrahi

Oxygen and CO 2 transport. Biochemistry II

014 Chapter 14 Created: 9:25:14 PM CST

RENAL PHYSIOLOGY. Physiology Unit 4

Acid/Base Balance. the concentrations of these two ions affect the acidity or alkalinity of body fluids

Major intra and extracellular ions Lec: 1

BCH 450 Biochemistry of Specialized Tissues

PBL SEMINAR. HEMOGLOBIN, O 2 -TRANSPORT and CYANOSIS An Overview

BIO132 Chapter 27 Fluid, Electrolyte and Acid Base Balance Lecture Outline

Dr. Puntarica Suwanprathes. Version 2007

Body Water Content Total Body Water is the percentage of a person s weight that is water. TBW can easily vary due to: gender

Ola Al-juneidi Abdel-Mu'ez Siyam. Dr. Nayef

Ch 17 Physiology of the Kidneys

Moayyad Al-Shafei. - Saad Hayek. - Yanal Shafaqoj. 1 P a g e

The Excretory System. Biology 20

I. Metabolic Wastes Metabolic Waste:

RENAL TUBULAR ACIDOSIS An Overview

Transcription:

Dr. Suzana Voiculescu

Definition All the processes inside the body which keep the H+ concentration within normal values. Depends on water and ion balance blood gas homeostasis Blood acidity may be expressed by: H+ concentration - 35-45 mmol/l Hydrogen activity, as ph- 7,35-7,45

ph ph= - log [H+] The more Hydrogen ions, the more acidic the solution and the LOWER the ph The lower Hydrogen concentration, the more alkaline the solution and the HIGHER the ph

Definition

Acid/ base Acids are H + donors. Bases are H + acceptors. Acids and bases can be: Strong dissociate completely in solution HCl, NaOH Weak dissociate only partially in solution Lactic acid, carbonic acid

Acid and alkali load ACID- Diet (acid containing foods)+ production from metabolism ALKALI- Alkali containing foods and production from metabolism in the end they must be buffered leads to extra acid load that must be buffered and then excreted

Acid load- fixed versus volatile FIXED= NON VOLATILE Daily production of acids= 50-100 meq of H+- under physiological conditions- from cell metabolism Dietary acids VOLATILE- CO2- it can be excreted through ventilation

Fixed acids- catabolism Protein Amioacids Uric acid Sufphuric acid Phosphoric acid Carbohydrates Pyruvic acid Succinic acid Lactic acid (anaerobiosis) Fats Fatty acids Ketoacids (diabetes/starvation)- acetoacetic acid, betahydroxybutyric acid

Volatile acid THE ONLY VOLATILE ACID= CARBONIC ACID(H2CO3) THE ACID IS IN EQUILLIBRUM WITH ITS DISSOLVED GASEOUS COMPONENT (pco2)

Carbonic acid Metabolism of fats and carbohydrates result in the production of 15-20 mol of CO 2 per day Before elimination by the lungs, most of the CO 2 is taken up by red blood cells, reacting with H 2 O to form carbonic acid as shown below: CO 2 + H 2 O H 2 CO 3 (CA) H+ + HCO 3 - CA= CARBONIC ANHIDRASE- INTRACELLULAR

Acid excretion Lungs excrete volatile acid (CO2) Major source of rapid acid excretion 13000 meq/ day of carbonic acid Kidneys- excrete fixed acids 40-80 meq/day Fixed acids may increase to 300/ 24 h if necessary

Base excretion Only kidney regulated Primary base in the organism HCO3- The kidney can retain or excrete bicarbonate as needed

Physiological variations of ph Circadian rhythm (night CO2 accumulation) Age (anabolism in children/newborns; catabolism in aged) Physical effort (lactic acid) Digestion (gastric- alkalosis; intestinal- acidosis) Altitude (hyperventilation) Temperature variations (inversely prop)

Biological importance of ph 1. Enzyme activity 2. Action potential of myelinated nerve 3. Membrane permeability 4. Control of respiration 5. Heart activity 6. Oxygen Hb dissociation curve 7. Nerve excitability

Enzymes Enzymes are affected by changes in ph. The most favorable ph value - the point where the enzyme is most active - is known as the optimum ph

ph and synaptic transmission Alkalosis increases transmission- alkalosis> 7.8 seizures Acidosis decreases transmission- acidosis< 7 coma (uremic/ diabetic- ketone bodies )

ph and heart activity High H+ in blood H+ diffuses in the cells electroneutrality law K+ diffuses out of the cells Hyperpolarisation of heart muscle Low excitability Hyperkalemia

Bohr effect

Maintainance of AB balance 2 mechanisms: 1. Buffer systems- composed of a weak acid and it s salt with a powerful base, which have two origins: plasmatic and cellular (mosly erythrocyte)- they fight against sudden shifts in AB balance (act in seconds) 2. Biological mechanisms- in which lungs (regulate AB in minutes) and kidneys play a major role (regulate AB balance in days)

Buffer systems Take up H+ or release H+ as conditions change Buffer pairs weak acid and a base Exchange a strong acid or base for a weak one Results in a much smaller ph change Whenever a buffering reaction occurs, the concentration of one member of the pair increases while the other decreases.

Buffers Cannot remove H+ ions from the body Temporarily acts as a shock absorbant to reduce the free H+ ion. EC- BICARBONATE- SECONDS IC- HEMOGLOBIN, PHOSPHATE, PROTEINS BONE

The Major Body Buffer Systems Site Buffer System Comment ISF Bicarbonate For metabolic acids Phosphate Not important because concentration too low Protein Not important because concentration too low Blood Bicarbonate Important for metabolic acids Haemoglobin Important for carbon dioxide Plasma protein Minor buffer Phosphate Concentration too low ICF Proteins Important buffer Phosphates Important buffer Urine Phosphate Responsible for most of 'Titratable Acidity' Ammonia Important - formation of NH 4 + Bone Ca carbonate In prolonged metabolic acidosis

Buffering power of a buffer system Efficiency of a buffer system depends on the change in ph when a base or an acid are added- inversely prop (the smaller the change, the better the buffering effect) Buffering power depends on: pk of buffer system highest when pk=ph The relative conc of buffer components: the highest when components ratio is 1:1 The amount of buffer comp Open/ closed system (if the system can equillibrate with the environment)

Bicarbonate buffer The most important extracellular buffer (35% of total buffering cap of total blood, 75% of plasmatic one) Noncarbonic acids! Sodium Bicarbonate (NaHCO 3 ) and carbonic acid (H 2 CO 3 ) HCl + NaHCO 3 H 2 CO 3 + NaCl NaOH + H 2 CO 3 NaHCO 3 + H 2 O

Bicarbonate buffer system Pk=6,1 plasma conc 25 meq/l Base:acid= 20:1 H2CO3+ NaHCO3 H2CO3- forms from CO2 + H2O (carbonic anhidrase) H2CO3 H+ + HCO3- NaHCO3 Na+ + HCO3- CO2 + H2O H2CO3 H+ + HCO3- Na+

When a strong acid is added to the solution Carbonic acid is mostly unchanged, but bicarbonate ions of the salt bind excess H +, forming more carbonic acid. H+ + HCO3- H2CO3 H2O+ CO2 (excess CO2-- > eliminated through respiration)

When a strong base is added to solution Sodium bicarbonate remains relatively unaffected, but carbonic acid dissociates further, donating more H + to bind the excess hydroxide. NaOH + H2CO3 NaHCO3 + H2O H2CO3 consumes more CO2 is used to bring H2CO3 back to normal low CO2 inhibits respiration Also: NaHCO3 Na+ + HCO3- high HCO3- urine excreted

Protein buffer systems Plasmatic- albumins Intracellular- very imp HB in RBC! Proteins are highly concentrated inside the cells Low importance in plasma (low conc-7% of buffering cap of whole blood/10% of plasmatic one)

Protein buffer systems They buffer extracellular H+ because IC ph is lower than EC ph ions are slowly diffusing inside the cell This process is slow- it takes several hours RBC equilibrium happens fast; Hb is an important buffer: H+ + Hb= HHb

Amphoteric substances

Hemoglobin buffer system Main non-bicarbonate buffer system in the blood 35% of total blood buffering cap Extracellular acidity buffering (RBC mb highly permeable)

ph and CO2 influence on Hb affinity for O2 H+ in blood links to His residues and -NH2 terminal groups tensed Hb molecule O2 release pco2 in blood links to the 4 -NH2 globin groups/ val residues carbaminohb O2 release

Bohr effect Systemic capillary High pco2 and/or low ph HbCO2 formation H+ buffering Pulmonary capillary Low pco2 and/or high blood ph low HbCO2 formation

Haldane effect Pulmonary capillary High po2 oxyhb H+ release from Hb low tendency to form carbaminohb high RBC CO2 synthesis blood alveoli Systemic capillary Low po2 O2 release (Hb affinity for O2 becomes low) low H+ release from Hb low RBC CO2 synthesis CO2 enters RBC

Hamburger/ reversed Hamburger phenomenon Hamburger ph- RBC bicarbonate synthesis Reversed Hamburger ph- RBC carbonic acid synthesis

HAMBURGER REVERSED HAMBURGER

Blood buffer systems comparison Protein buffers in blood include haemoglobin (150g/l) and plasma proteins (70g/l). Buffering is by the imidazole group of the histidine residues which has a pka of about 6.8. This is suitable for effective buffering at physiological ph. Haemoglobin is quantitatively about 6 times more important then the plasma proteins twice the concentration contains about three times the number of histidine residues per molecule. For example if blood ph changed from 7.5 to 6.5, haemoglobin would buffer 27.5 mmol/l of H+ and total plasma protein buffering would account for only 4.2 mmol/l of H+.

Interstitial buffer systems Bicarbonate - interstitial fluid volume= 3x plasma- important for noncarbonic acid buffering - concentration= plasma one Phosphate Low imp (low conc) Proteins

Cellular buffers- others than RBC Muscle and bone 60-70% of the total chemical buffering of the body fluids Phosphate buffer system Protein buffer system Slight diffusion of elements of bicarbonate buffer through the cell mb (except for RBC- fast) Takes hours (2-4) to become maximally effective

Phosphate buffer system The phosphate buffer system operates in the urine and intracellular fluid similar to the bicarbonate buffer system (in the EC fluid, it s concentration is 8% of the bicarbonate one) sodium dihydrogen phosphate (NaH 2 PO 4 ) is its weak acid, and monohydrogen phosphate (Na 2 HPO 4 ) is its weak base. HCl + Na2HPO4 NaH2PO4 + NaCl NaOH + NaH2PO4 Na2HPO4 + H2O

Phosphate buffer system Low imp in the plasma (low conc) Plasma conc= 2mEq/l pk=6,8 (intracellular ph) Basis/acid=4:1

Bone Bone represents an important site of buffering acid load. uptake of excess H+ ions by bone which occurs in exchange for Na+ and K+ dissolution of bone mineral, resulting in the release of buffer compounds, such as NaHCO3, CaHCO3, and CaHPO4. 40% of an acute acid load BONES Chronic acidosis bone demineralisation

Muscle Half the cellular mass Most intracellular buffering

Buffer system take home message Carbonate and Hb- most efficient (Hb more efficient releases bicarbonate) Bicarbonate- most imp extracellular Proteins and phosphates- most imp intracellular Anemia lowers buffering capacity

Acid base balance and lungs CO2 formed by tissue metabolism is eliminated through respiration CO2 regulates ventilation rate and depth directly and indirectly by H+ increase CO2 passes the blood brain barrier It hydrates (CA) and forms H2CO3 H+ + HCO3- H+ influences central chemor

Acid base balance and lungs High pco2= hyperventilation Low pco2= hypoventilation Ex: ventilation increases 4-5 x when ph is 7!

Kidneys and AB balance Kidneys excrete nonvolatile acid load H+ are buffered in the blood, they are not filtered Kidneys SECRETE H+ IN the tubes: 1. H+ combines with filtered HCO3 bicarbonate reabsorption 2. H+ combines with urinary buffers TITRABLE ACIDS and AMMONIUM 3. Low amount free in the urine

Secretion of H+ in proximal tubule Mostly in the proximal tube (85%) Secondary active secretion Na+ gradient established by Na+-K+ pump in basolateral membrane of tubular cells For each H+ secreted, there is a HCO3- reabsorption

Secretion of H+ in the late distal and collecting tubules In intercalated cells Primary active transport- H+ pump (aldosterone) For each H+ secreted, a HCO3- is reabsorbed by Cl-/ HCO3- antiporter

Bicarbonate reabsorption Bicarbonate freely filtrates But... almost none excreted in urine: Proximal tubule reabsorption 85%- Na+/H+ exchanger Distal and collecting tubules- 15%- H+ pump (aldosterone)

Bicarbonate reabsorption

Reabsorption of filtered HCO3-= new bicarbonate formation! HCO3- cannot pass the apical membrane of tubular cell They combine with H+ in the lumen H2CO3 H2O + CO2 CO2 diffuses in the cell CO2+ H2O--- H+ + HCO3- HCO3- reabsorbed in the blood

H+ secretion and bicarbonate reabsorpion

H+ free excretion in limited Excretion of 70 meq /day of non-volatile acids as free H+ would require more than 2000 l of urine output/24 h Minimum urinary ph= 4.5 (0,03 meq/l) Any H+ that exceeds this limit (up to 500 meq/day) urinary buffers that DO NOT generate extra H+phosphate (titrable acidity) and NH4+

Combination of excess H+ with phosphate and ammonia buffers If high amounts of H+ are secreted (> HCO3- filtered), H+ is buffered by phosphate and ammonia systems in the tubule H+ is eliminated by: H+ + NaHPO4- NaH2PO4 NH3 + H+ NH4+

Formation and excretion of titrable acid (TA)- phosphate BS pk HPO4 2- /H2PO4-= 6,8 and 90% of the buffering activity of HPO4 2- occurs above a ph of 6.8 more efficient (more concentrated) Daily filtered dibasic phosphate accounts for the excretion of approx 50% of the daily fixed H+ excretion Titrable acid because it is measured by back titration of the urine with NaOH to a ph of 7.4 Limited by the quantity of dibasic phosphate filtered

Titrable acidity Proximal tubule Collecting tubule For each H+ buffered by a weak acid and excretion in the urine as titrable acid, a HCO3- is released in the plasma

Formation and excretion of ammonium (NH4+) 30-40 meq of fixed acid per day Less limited up to 300 meq/day Ammonium- synthesized in proximal tube by glutamine deamination GLUTAMINE GLUTAMATE + NH4+

NH4+ is transported in the interstitium in the thick ascending limb substituting a K+ in the Na+/K+/2Cl carrier Then, ammonium dissociates to ammonia in the medullary interstitium (higher ph)

Cortical collecting duct ammonium trapping Ammonia subsequently diffuses into the medullary collecting duct It is trapped in the increasingly acidic urine as NH4+ A HCO3- is released in the systemic circ for each ammonium that is excreted in the urine

Bicarbonate as an open system Lungs eliminate CO2 (volatile acid) and determine the conc of H2CO3 by regulating pco2 at 40 mmhg pco2 dissolved CO2 by hydration is in equillibrum with H2CO3 The kidneys maintain [HCO3-] at 24mEq/l Thus ph= 7.4!!