T1 Mapping for Myocardial Extracellular Volume Measurement by CMR

Similar documents
Multiparametric T1, T2 and T2* MR Imaging

Outils d évaluation myocardique par relaxométrie (Myomaps)

CT for Myocardial Characterization of Cardiomyopathy. Byoung Wook Choi, Yonsei University Severance Hospital, Seoul, Korea

The Egyptian Journal of Hospital Medicine (July 2018) Vol. 72 (9), Page

Cardiovascular magnetic resonance measurement of myocardial extracellular volume in health and disease

Extracellular volume fraction mapping in the myocardium, part 1: evaluation of an automated method

Noncontrast T1 Mapping for the Diagnosis of Cardiac Amyloidosis

Myocardial Fibrosis in Heart Failure

HFPEF Echo with Strain vs. MRI T1 Mapping

T1 mapping: characterisation of myocardial interstitial space

Usefulness of Delayed Enhancement by Magnetic Resonance Imaging in Hypertrophic Cardiomyopathy as a Marker of Disease and Its Severity

Cardiovascular magnetic resonance in acute myocardial infarction

Role of CMR in heart failure and cardiomyopathy

Impaired Regional Myocardial Function Detection Using the Standard Inter-Segmental Integration SINE Wave Curve On Magnetic Resonance Imaging

The Value of Stress MRI in Evaluation of Myocardial Ischemia

DELAYED ENHANCEMENT IMAGING IN CHILDREN

Cardiac Imaging Tests

Myocardial T1 and T2 Mapping: Techniques and Clinical Applications

What s New in Cardiac MRI

How NOT to miss Hypertrophic Cardiomyopathy? Adaya Weissler-Snir, MD University Health Network, University of Toronto

Native T1 Mapping in Differentiation of Normal Myocardium From Diffuse Disease in Hypertrophic and Dilated Cardiomyopathy

Managing Hypertrophic Cardiomyopathy with Imaging. Gisela C. Mueller University of Michigan Department of Radiology

Horizon Scanning Technology Summary. Magnetic resonance angiography (MRA) imaging for the detection of coronary artery disease

Perfusion, Viability, Edema and Hemorrhage: How it Can (and Should) Change Clinical Practice. Rohan Dharmakumar, Ph.D.

Cardiac magnetic resonance imaging in rheumatoid arthritis: promising or misleading? Sophie Mavrogeni MD FESC

Clinical recommendations for cardiovascular magnetic resonance. of T1, T2, T2* and extracellular volume: A consensus statement

ADVANCED CARDIOVASCULAR IMAGING. Medical Knowledge. Goals and Objectives PF EF MF LF Aspirational

Mapping the Future of Cardiac MR Imaging: Case-based Review of T1 and T2 Mapping Techniques 1

Global left ventricular circumferential strain is a marker for both systolic and diastolic myocardial function

Review of Cardiac Imaging Modalities in the Renal Patient. George Youssef

Myocardial Characterization Using Dual-Energy CT in Doxorubicin-Induced DCM

Gender-related differences of magnetic resonance T1 relaxation times of normal myocardium: the impact of blood correction

Φαινόμενο No-Reflow. Απεικόνιση με CMR, κλινική συσχέτιση και προγνωστική σημασία

Klinische Anwendung und neue Entwicklungen: Welches Verfahren für welche Indika:on? Kardiales MR. 17. Zürcher Herzkurs

ORIGINAL RESEARCH. Native Myocardial Longitudinal (T 1 ) Relaxation Time: Regional, Age, and Sex Associations in the Healthy Adult Heart

A Light in the Dark: Cardiac MRI and Risk Mitigation. J. Ronald Mikolich MD Professor of Internal Medicine Northeast Ohio Medical University (NEOMED)

Measurement of Ventricular Volumes and Function: A Comparison of Gated PET and Cardiovascular Magnetic Resonance

Midwall Fibrosis and 5-Year Outcome In Patients With Moderate and Severe Aortic Stenosis Brief Title: Midwall fibrosis in aortic stenosis

MRI ACS-ben. Tamás Simor MD, PhD, Med Hab. University of Pécs, Heart Institute

Case Report Cardiovascular Imaging

The role of Magnetic Resonance Imaging in the diagnosis of viability & Coronary Artery Disease

Cardiac MRI in ACHD What We. ACHD Patients

Pearls & Pitfalls in nuclear cardiology

Engblom et al. Journal of Cardiovascular Magnetic Resonance (2018) 20:46

Gated blood pool ventriculography: Is there still a role in myocardial viability?

Cardiology for the Practitioner Advanced Cardiac Imaging: Worth the pretty pictures?

Why Cardiac MRI? Presented by:

General Cardiovascular Magnetic Resonance Imaging

Yongning Shang, 1 Xiaochun Zhang, 1 Weilling Leng, 2 Liu Chen, 2 Xiaotian Lei, 2 Tianjing Zhang, 3 Andreas Greiser, 4 Ziwen Liang, 2 and Jian Wang 1

Velocity Vector Imaging as a new approach for cardiac magnetic resonance: Comparison with echocardiography

Cardiac MRI: Cardiomyopathy

Acute chest pain: game changer or waste of resources? CMR one stop shop for function, structure and perfusion

HYPERTROPHY: Behind the curtain. V. Yotova St. Radboud Medical University Center, Nijmegen

Restrictive Cardiomyopathy

Cardiac MRI: Clinical Application to Disease

VECTORS OF CONTRACTION

MRI Sequences: What to use for what

Imaging and heart failure

Original Research. Li-Yueh Hsu, DSc, W. Patricia Ingkanisorn, MD, Peter Kellman, PhD, Anthony H. Aletras, PhD, and Andrew E.

CARDIAC MRI. Cardiovascular Disease. Cardiovascular Disease. Cardiovascular Disease. Overview

Cardiovascular Imaging Stress Echo

Identifying Changes in Myocardial Microstructure via a Novel Sonographic Imaging Algorithm

Understanding Cardiac Amyloidosis: Role of Cardiac Magnetic Resonance Imaging

ORIGINAL RESEARCH. Reproducibility of Myocardial T 1 and T 2 Relaxation Time Measurement Using Slice-Interleaved T 1 and T 2 Mapping Sequences

Current Guidelines for Diagnosis of AMI Chest pain ST change on EKG Cardiac Enzymes

Cardiac Stress MRI: Detection of Ischemia. Disclosures: Dobutamine Stress MR. April 28, 2018

THE NEW PLACE OF CARDIAC MRI IN AERONAUTICAL FITNESS

ASSESSMENT OF CARDIAC AMYLOIDOSIS BY USING 18F-SODIUM FLUORIDE PET/MR IMAGING.

Rotation: Imaging 2. Nuclear Cardiology (in Imaging 1 and 2)

Detection and Assessment of MI: Use of Imaging Methods. Robert O. Bonow, M.D.

Sung A Chang Department of Internal Medicine, Division of Cardiology, Sungkyunkwan University School of Medicine, Samsung Medical Center

Cardial MRI; Approaching the Level of Gold Standard for Viability Assessment

Presenter Disclosure Information

Advanced MR Imaging in Myocarditis

27-year-old professionnal rugby player: asymptomatic

Effect of intravenous contrast medium administration on prostate diffusion-weighted imaging

IMAGES THAT TEACH. William E. Moody, PhD, MRCP, a,b Matthias Schmitt, MD, PhD, c and Parthiban Arumugam, MBBS, FRCP, MSc b

Myocardial Perfusion Imaging Using OMNISCAN: A Dose Finding Study for Visual Assessment of Stress-Induced Regional Perfusion Abnormalities

IRM cardiaque en cancérologie: le rôle du radiologue

Strain and Strain Rate Imaging How, Why and When?

1. LV function and remodeling. 2. Contribution of myocardial ischemia due to CAD, and

Case based learning: CMR in Heart Failure

Cover Page. The handle holds various files of this Leiden University dissertation.

156 JACC: CARDIOVASCULAR IMAGING, VOL. 3, NO. 2, 2010 ABBREVIATIONS AND ACRONYMS BNP B-type natriuretic peptide CA cardiac amyloidosis CMR cardiac mag

Multiparametric Mapping for Assessment of Cancer Therapy Related Cardiotoxicity

Serum Cardiac Troponin T in Cardiac Amyloidosis: Serial Observations in Five Patients

EAE Teaching Course. Magnetic Resonance Imaging. Competitive or Complementary? Sofia, Bulgaria, 5-7 April F.E. Rademakers

Xiaorong Chen 1,2, Hongjie Hu 2, Yue Qian 2, Jiner Shu 1. Introduction

MRI Assessment of the Right Ventricle and Pulmonary Blood Flow, Perfusion and Ventilation

Evalua&on)of)Le-)Ventricular)Diastolic) Dysfunc&on)by)Echocardiography:) Role)of)Ejec&on)Frac&on)

Imaging in Heart Failure: A Multimodality Approach. Thomas Ryan, MD

Radiologic Assessment of Myocardial Viability

Advanced Imaging MRI and CTA

Imaging congestive heart failure: role of coronary computed tomography angiography (CCTA)

Measurement of myocardial native T1 in cardiovascular diseases and norm in 1291 subjects

Value of echocardiography in chronic dyspnea

Reproducibility of Chronic and Acute Infarct Size Measurement by Delayed Enhancement-Magnetic Resonance Imaging

Dr. Dermot Phelan MB BCh BAO PhD European Society of Cardiology 2012

A Light in the Dark: Cardiac MRI and Risk Mitigation. J. Ronald Mikolich MD Professor of Internal Medicine Northeast Ohio Medical University (NEOMED)

Transcription:

JACC: CARDIOVASCULAR IMAGING VOL. 6, NO. 9, 2013 2013 BY THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION ISSN 1936-878X/$36.00 PUBLISHED BY ELSEVIER INC. http://dx.doi.org/10.1016/j.jcmg.2013.01.011 T1 Mapping for Myocardial Extracellular Volume Measurement by CMR Bolus Only Versus Primed Infusion Technique Steven K. White, BSC, MBCHB,* Daniel M. Sado, BSC, BM,* Marianna Fontana, MD,* Sanjay M. Banypersad, BMEDSCI, MBCHB,* Viviana Maestrini, MD,* Andrew S. Flett, BSC, MBBS, MD(RES),* Stefan K. Piechnik, PHD, MSCEE, Matthew D. Robson, PHD, Derek J. Hausenloy, PHD,* Amir M. Sheikh, MD,* Philip N. Hawkins, PHD, FMEDSCI, James C. Moon, MD* London and Oxford, United Kingdom OBJECTIVES The aim of this study was to determine the accuracy of the contrast bolus only T1 mapping cardiac magnetic resonance (CMR) technique for measuring myocardial extracellular volume fraction (ECV). BACKGROUND Myocardial ECV can be measured with T1 mapping before and after contrast agent if the contrast agent distribution between blood/myocardium is at equilibrium. Equilibrium distribution can be achieved with a primed contrast infusion (equilibrium contrast-cmr [EQ-CMR]) or might be approximated by the dynamic equilibration achieved by delayed post-bolus measurement. This bolus only approach is highly attractive, but currently limited data support its use. We compared the bolus only technique with 2 independent standards: collagen volume fraction (CVF) from myocardial biopsy in aortic stenosis (AS); and the infusion technique in 5 representative conditions. METHODS One hundred forty-seven subjects were studied: healthy volunteers (n 50); hypertrophic cardiomyopathy (n 25); severe AS (n 22); amyloid (n 20); and chronic myocardial infarction (n 30). Bolus only (at 15 min) and infusion ECV measurements were performed and compared. In 18 subjects with severe AS the results were compared with histological CVF. RESULTS The ECV by both techniques correlated with histological CVF (n 18, r 2 0.69, p 0.01 vs. r 2 0.71, p 0.01, p 0.42 for comparison). Across health and disease, there was strong correlation between the techniques (r 2 0.97). However, in diseases of high ECV (amyloid, hypertrophic cardiomyopathy late gadolinium enhancement, and infarction), Bland-Altman analysis indicates the bolus only technique has a consistent and increasing offset, giving a higher value for ECVs above 0.4 (mean difference limit of agreement for ECV 0.4 0.004 0.037 vs. ECV 0.4 0.040 0.075, p 0.001). CONCLUSIONS Bolus only, T1 mapping-derived ECV measurement is sufficient for ECV measurement across a range of cardiac diseases, and this approach is histologically validated in AS. However, when ECV is 0.4, the bolus only technique consistently measures ECV higher compared with infusion. (J Am Coll Cardiol Img 2013;6:955 62) 2013 by the American College of Cardiology Foundation From *The Heart Hospital, London, United Kingdom; Institute of Cardiovascular Science, University College London, London, United Kingdom; The Hatter Cardiovascular Institute, University College London, London, United Kingdom; OCMR (University of Oxford Centre for Magnetic Resonance Research) Oxford University, John Radcliffe Hospital, Oxford, United Kingdom; and the Centre for Amyloidosis and Acute Phase Proteins and National Amyloidosis Centre, Royal Free Campus, University College London, London, United Kingdom. This work was undertaken at UCLH/UCL who received a

956 ABBREVIATIONS AND ACRONYMS AS aortic stenosis CMR cardiac magnetic resonance CVF collagen volume fraction (%) ECV extracellular volume fraction EQ-CMR equilibrium contrast cardiac magnetic resonance HCM hypertrophic cardiomyopathy LGE late gadolinium enhancement ROI region of interest ShMOLLI shortened modified look-locker inversion recovery Expansion of the myocardial extracellular volume is ubiquitous in cardiac disease, whether as focal scar, diffuse fibrosis, through infiltration in amyloidosis, or edema (1). Extracellular volume expansion might represent a key intermediate phenotype preceding cardiac morbidity and mortality. Recent developments in T1 mapping by cardiac magnetic resonance (CMR) have permitted its noninvasive quantification. This new biological parameter has the potential to provide new mechanistic insights into health and disease states (2,3) and might have the ability to detect early disease, guide therapy, and/or predict outcomes (4). T1 mapping measures myocardial longitudinal magnetic relaxation, and this can be performed before and after a standard gadolinium-based contrast agent. The contrast agent distributes between cells embedded in the interstitium between cells (extracellular space) and blood plasma such that the relative pre- and post-contrast signal changes measure the myocardial extracellular volume fraction (ECV) (Fig. 1). However, this assumes that a steady-state equilibrium of gadolinium contrast agent exists between blood and myocardium. This can be established by the administration of a primed slow intravenous contrast infusion a technique known as equilibrium contrast cardiac magnetic resonance (EQ-CMR) (5) but it is time consuming and adds clinical complexity. One alternative is that at sufficient time after a single contrast bolus, a dynamic equilibrium might exist (6,7) principally because contrast flux between tissue compartments is faster than renal excretion allowing the equivalent ECV measurement. This clinically straightforward approach is highly attractive. However, concerns about the bolus only approach have been raised (8), and although the technique provides short-term prognostic information (4), it is not validated histologically and has not been tested in distinct disease groups. We hypothesized that the bolus only technique would be good enough to measure ECV across a range of cardiac diseases. To achieve this we compared our results with 2 independent techniques: firstly, with histology, specifically collagen volume fraction (CVF) (%) in severe aortic stenosis (AS); and secondly, the infusion technique, EQ-CMR. METHODS Bolus only and infusion ECV measurements were performed and compared with histological CVF in 18 subjects with severe AS and in a population of 147 subjects with a range of different diseases. In conditions with late gadolinium enhancement (LGE) where the ECV is high, these areas were considered separately. Patients with atrial fibrillation or a contraindication to contrast CMR examination were excluded from the study. The research received approval from the local research ethics committee, and all participants provided written informed consent. The study population consisted of: 1. Normal healthy subjects (n 50, median age 48 [range 24 to 88 years], 51% male) were recruited through advertising within the hospital, university, and general practitioner surgeries. All normal subjects had no history or symptoms of cardiovascular disease or diabetes. Four subjects had been prescribed statin therapy for hypercholesterolemia (primary cardiovascular prevention), but no other normal healthy subject was using any cardiovascular medication. All subjects had a normal blood pressure (defined as 140/90 mm Hg), 12-lead electrocardiogram, and clinical CMR scan. proportion of funding from the Department of Health National Institute for Health Research Biomedical Research Centres funding scheme. Drs. White, Sado, and Fontana are supported by British Heart Foundation Clinical Research Training Fellowships. Dr. Moon is funded by HEFCE. Drs. Piechnik and Robson are funded by the National Institute for Health Research (NIHR) Oxford Biomedical Research Centre based at The Oxford University Hospitals Trust at the University of Oxford. The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR, or the Department of Health. Dr. Piechnik reports U.S. patent pending 61/387,591: Systems and Methods for Shortened Look Locker Inversion Recovery (Sh-MOLLI) Cardiac Gated Mapping of T1. September 29, 2010. All rights sold exclusively to Siemens Medical. Drs. Piechnik and Robson report U.S. patent pending 61/689,067: Color Map Design Method For Immediate Assessment of the Deviation From Established Normal Population Statistics and Its Application to Cardiovascular T1 Mapping Images. All other authors have reported that they have no relationships relevant to the contents of this paper to disclose. Manuscript received October 15, 2012; revised manuscript received January 24, 2013, accepted January 29, 2013.

957 Figure 1. Calculation of ECV From Pre- and Post-Contrast T1 Maps The extracellular volume fraction (ECV) was calculated with regions of interest drawn pre- (A) and post-contrast (B) agent with the equation: myocardial ECV (1 hematocrit) ( R1 myocardium / R1 blood ), where R1 1/T1. Two post-contrast maps exist: 1 at 15 min postbolus; and 1 at equilibrium. In the future, pixel-by-pixel ECV maps will be constructed automatically online (C) (19). Here, the ECV of this chronic inferior infarct was high at 0.82; remote myocardium was 0.28 (infusion result). Infarction of part of the inferior papillary muscle is highlighted (small black arrows), with an intermediate ECV of 0.65. The large white arrows indicate the change in T1 values following contrast administration. The T1 values are given in milliseconds. 2. Hypertrophic cardiomyopathy (HCM) patients (n 25, median age 54 years [range 21 to 75 years], 76% male). All patients met previously described diagnostic criteria (9). Eighty percent of patients had an asymmetrical septal hypertrophy pattern with the remainder apical predominant hypertrophy. The mean maximal wall thickness (from CMR steady-state free precession short-axis assessment) was 20 4 mm. Patients were found to have LGE in a variety of locations, such as at the right ventricular insertion points or the left ventricular apex. LGE was absent in 4 patients. In 10 patients LGE was present on pre- and post-contrast T1 maps, allowing ECV measurement in both HCM LGE zones and HCM remote zones. 3. Severe AS patients (n 22, median age 72 years [range 46 to 84 years], 73% male). All patients had undergone clinical evaluation and echocardiography for diagnosis and were listed for surgical aortic valve replacement. 4. Cardiac AL amyloidosis patients (n 20, median age 62 [range 41 to 76 years], 75% male). All patients had disease proven by noncardiac biopsy. Cardiac involvement was ascertained through echocardiography, supported by a Mayo clinic classification score of 2or3(10). 5. Chronic myocardial infarction patients (n 30, median age 61 years [range 37 to 75 years], 87% male). Studies were performed at not 6 months after an acute ST-segment elevation myocardial infarction with complete culprit artery occlusion Thrombolysis In Myocardial Infarction flow grade 0 (culprit lesions: 11 left anterior descending artery; 11 right coronary; and 8 circumflex artery). The infarct zone was identified by routine LGE imaging. Remote myocardium was defined as nonenhancing myocardium outside of the infarct zone. CMR protocol. The EQ-CMR primed infusion technique uses the contrast agent Gadoterate meglumine, (gadolinium-dota, marketed as Dotarem, Guerbet S.A., Paris, France) at a dose of 0.1 mmol/kg for the bolus and up to an additional 0.1 mmol/kg for the infusion, started after a 15-min delay at 0.0011 mmol/kg/min for a minimum of 30 min (5). This meant T1 measurements could be made precontrast agent, at 15 min (dynamic equilibrium time) post-contrast agent bolus and at infusion, for 2 ECV calculations. The scanner used was a conventional cardiac-enabled magnetic resonance imaging scanner (1.5-T Avanto, Siemens Medical Solutions, Ehrlangen, Germany). The T1 mapping sequence employed was shortened look locker inversion recovery (ShMOLLI). The ShMOLLI T1 mapping was applied as previously described (11), allowing for standard cardiac planning adjustments. A complete set of sequence parameters are available online (12). Analysis. The ShMOLLI sequence T1 maps were generated with a previously published algorithm (11). A single region of interest (ROI) was then drawn for each of the 4 required parameters: myocardial T1 estimates and blood T1 estimates before and after gadolinium contrast administration. Myocardial T1 was measured in the basal to mid septum of a routinely planned 4-chamber acquisition,

958 Figure 2. Histology of an Intra-Myocardial Biopsy Sample in 3 Patients With Severe Aortic Stenosis Picrosirius red stains collagen (fibrosis) red/pink, and counter stains myocytes yellow (A). Collagen volume fraction (%) was calculated by automated subtraction of these 2 color stains, which also thresholds out slicing artifact (seen in B) leaving collagen alone (C). avoiding areas of LGE, except in amyloid (where the ROI was drawn irrespective of the ill-defined presence/absence of LGE), HCM, and myocardial infarction (where ROIs were drawn around the LGE zone itself, and the remote nonenhancing zone in the short axis) (Fig. 1). Blood T1 was assessed in the LV cavity blood pool in all subjects, avoiding the papillary muscles. An ROI in the septum was chosen, because this corresponds with the site of previous histological validation (5) and the site of biopsy in this study. All analyses were performed blinded to the technique of ECV measurement. A hematocrit was taken in all subjects immediately before each CMR study. The ECV was calculated with each method as: myocardial ECV (1 hematocrit) ( R1 myocardium / R1 blood ), where R1 1/T1. Histological validation. Histological sampling and analysis was performed in 21 patients with severe AS listed for surgical aortic valve replacement as previously described (5). In summary, an intraoperative deep myocardial biopsy (Tru-Cut type biopsy needle) was taken from the basal LV septum, stained with picrosirius red, and photographed at high-power magnification (200 ) (Fig. 2). The CVF (%) was automatically quantified over an average of 12 high-power fields with a purposewritten macro in ImageJ (13). All samples were analyzed (A.S.F.) blinded to the CMR findings and ECV values. One biopsy specimen was excluded from analysis in accordance with pre-specified exclusion criteria: 1) extremes of patchy fibrosis (n 1); and 2) presence of LGE at the site of the biopsy (n 0). In addition, 2 samples were further excluded, because they were deemed to be superficial and included mainly endocardial tissue. One patient did not undergo sampling, because more than 6 months had elapsed between the CMR study and the operative procedure. These 4 patients excluded from histological correlation were included in the comparison of bolus technique with EQ-CMR. Statistical analysis. All data were normal and expressed as mean SD. Correlation between continuous variables was assessed with Pearson s test. Comparison of the strength of correlations was performed as described by Steiger (14), with a freely available online computer program (15). The differences between the 2 ECV techniques and the relationship to the mean were compared with Bland Altman plots, with limits of agreement quoted as 1.96 SD. Comparison of differences was assessed with T tests: unpaired for the means of ECV above and below 0.4; and paired for the comparison of differences in means between bolus only and infusion techniques. Analysis was performed with SPSS version 21 (SPSS, Chicago, Illinois). A statistical significance level of 0.05 was used. RESULTS Histological validation. All biopsies were uneventful. The mean histological CVF of the 18 biopsies was 17 8% (range 5% to 40%). The ECV by both techniques correlated well with histological CVF (r 2 0.69, p 0.01 vs. r 2 0.71, p 0.01, p 0.42 for comparison) (Fig. 3) and did not differ statistically. In keeping with previously published histological correlation (16), we also found correlation with post-contrast T1 values and CVF (bolus

959 0.45 0.45 ECV by Bolus Only (at 15 Minutes) 0.40 0.35 0.30 0.25 n = 18 R 2 = 0.69 p < 0.01 ECV by Infusion (EQ-CMR) 0.40 0.35 0.30 0.25 n = 18 R 2 = 0.71 p < 0.01 0.20 10 20 30 40 0.20 10 20 30 40 Collagen Volume Fraction % Collagen Volume Fraction % Figure 3. Correlation With Histological Collagen Volume Fraction in Severe Aortic Stenosis Both the bolus only technique (at 15 min) and the infusion technique (equilibrium contrast cardiac magnetic resonance imaging [EQ- CMR]) correlate well with collagen volume fraction. The dashed lines represent 95% confidence intervals. ECV extracellular volume fraction. only r 2 0.21, p 0.04, and infusion r 2 0.26, p 0.03), but these were statistically inferior to the ECV correlation by either technique. ECV comparison. Across health and disease, there was strong correlation between ECV as measured by bolus and infusion techniques (r 2 0.97) (Fig. 4). More importantly, in high ECV diseases (amyloid, the late enhancing myocardium in HCM, and the infarct zone of myocardial infarction), there was a consistent and increasing offset on Bland- Altman analysis (r 0.56, p 0.001), with the bolus technique measuring higher ECV than the infusion technique (Fig. 4). An iterative analysis of difference showed that, as ECV increased (at 0.05 intervals) above 0.4, a natural cutpoint was observed between the high ECV diseases (amyloid, LGE in HCM, and infarction) and all other conditions (mean difference limit of agreement for ECV 0.4 0.004 0.037 vs. ECV 0.4 0.040 0.075, p 0.001; and across the cohort as a whole 0.015 0.061). Mean T1 values pre- and postcontrast agent with the bolus only and infusion techniques are given in Table 1. DISCUSSION This is the first study to validate the bolus only technique against histology. The correlation with 1.00 0.15 ECV by Bolus Only 0.80 0.60 0.40 0.20 R 2 = 0.97 Difference Bolus Only-Infusion 0.10 0.05 0.00-0.05 +1.96SD -1.96SD 0.00 0.00 0.20 0.40 0.60 0.80 1.00-0.10 0.00 0.20 0.30 0.40 0.50 0.60 0.70 0.80 ECV by Infusion Average ECV by Bolus Only and Infusion Techniques Normal subjects (n = 50) HCM remote zone (n = 25) Remote infarct zone (n = 30) Aortic stenosis (n = 22) Amyloid (n = 20) HCM LGE zone (n = 10) Infarct zone (n = 30) Figure 4. Correlation and Bland-Altman Analysis of Comparison Between Bolus Only and Infusion Techniques Across Health and Disease There is an offset toward higher extracellular volume fraction (ECV) values in those diseases where the ECV 0.4, and this increases with increasing ECV (amyloid, hypertrophic cardiomyopathy [HCM] late gadolinium enhancement [LGE], chronic infarct zones). The dashed lines denote the line of identity in the scatterplot and the mean 1.96 SD in the Bland-Altman plots for all subjects combined.

960 Table 1. Mean T1 Values Pre- and Post-Contrast Agent With Bolus Only and Infusion Techniques Normal Subjects (n 50) HCM Remote Zone (n 25) Severe AS (n 22) Amyloid (n 20) HCM LGE Zone (n 10) Infarct Zone (n 30) Remote Infarct Zone (n 30) Blood Pre-contrast 1,530 1,519 1,558 1,597 1,498 1,532 1,532 Post-contrast bolus only (at 15 min) 496 501 508 590 498 513 513 Post-contrast infusion 512 506 465 525 477 447 447 Difference post-contrast 16* 5 43 65 21* 66 66 bolus only infusion Myocardium Pre-contrast 968 997 997 1,137 1,058 1,026 947 Post-contrast bolus only (at 15 min) 600 589 603 539 463 411 601 Post-contrast infusion 613 592 575 509 460 381 560 Difference post-contrast bolus only infusion 13 3 28 30 3 30 41 Values are in milliseconds. *p 0.05; p 0.01. AS aortic stenosis; HCM hypertrophic cardiomyopathy; LGE late gadolinium enhancement. CVF was similar to that with the infusion technique (0.69 vs. 0.71) and did not differ statistically. When compared with infusion-derived ECV (EQ- CMR), the bolus only approach seems to be equivalent provided that the disease under study has an ECV below 0.4. Above this (amyloid, LGE areas of HCM and chronic myocardial infarction) the bolus only approach consistently and increasingly provides a higher ECV. The clinical significance of this is yet to be explored. These findings are important, because an ECV measurement with a bolus only technique is extremely easy to incorporate into routine clinical practice a single breath-hold, here of approximately 8 s, before and after the contrast agent administration is all that is required (a total of 6 breath-holds for a 16-segment [ whole-heart ] approach). The approach might also be generalizable to other organs (17) and computed tomography with iodinated contrast agents (18). Given the potential importance of ECV as a biomarker representing interstitial expansion, this result goes some way to justifying clinical use. In scenarios where highly accurate ECV measurement is paramount (serial follow-up or research setting), a tailored technique could be employed: for example, with the advent of online, real-time, motioncorrected, and co-registration ECV map generation (shown in Fig. 1) (19,20), the ECV could realistically be measured at 15 min, and if found to be over 0.4, an infusion could be commenced, and the ECV could be re-measured with EQ-CMR. There is now a family of CMR techniques that use T1 mapping (1). Native or pre-/non-contrast T1 mapping techniques measure a composite signal from both myocytes and interstitium but can detect T1 elevation in disease (fibrosis [21], infarction [22], and amyloid [23]). A single post-contrast T1 measurement has been used to measure change in myocardial signal (16,24), but this approach has been criticized for its lack of correction for confounding variables (4). Our data support this, suggesting a significantly lower r 2 (0.21 vs. 0.71 with infusion) when post-contrast T1 values are correlated with CVF. Three techniques advance on this susceptibility to confounders (by a single postcontrast T1 assessment), by measuring the ratio of the blood and myocardial signal change postcontrast agent with correction for hematocrit to derive myocardial ECV. These remove kinetics effect in different ways, leaving signal change dependent only on contrast volume of distribution: 1) the logistic and time demanding primed infusion technique (EQ-CMR) (5); 2) a multiple measurement technique to derive the slope of the blood/ myocardial contrast dynamics (25); and 3) the bolus only technique, which assumes a dynamic equilibrium occurs with sufficient delay post-bolus, because blood/myocardial exchange rate constants are much faster than other effects that influence blood gadolinium concentration (such as renal excretion). This dynamic or pseudo-equilibrium technique was explored here: its simplicity gives it maximum potential clinical utility. Earlier work in healthy volunteers or patients with modest ECV increases has demonstrated either little drift in ECV with time post-bolus (0.6%) (6) or up to 10% over 40 min (8). Further work is needed to clarify this. It might be that such a time dependency is unimportant in many clinical scenarios. For infarction, however, contrast equilibration does not seem to be established in acute infarct zones when complicated by

961 microvascular obstruction. In chronic infarction, there is evidence that equilibration can be reached after 20 min (with a higher dose of contrast agent: 0.2 mmol/kg) (26,27). Currently, disease-orientated T1 mapping research is fast-developing, but to date, little technical validation has been presented of the bolus only approach, either in disease particularly those with high ECV values and enhancing myocardium or with histological validation with single breath-hold T1 mapping. Here, we emphasize a difference in measuring high ECV diseases. Study limitations. We do not yet know which precise experimental details are important for bolus only T1 mapping. Here, a single contrast bolus (not split, as might be used in perfusion protocols) at 3 ml/s of a single contrast agent Dotarem (Gadoterate meglumine) at 0.1 mmol/kg with post-contrast T1 map at 15 min was performed. Bolus delivery rate, dose, contrast agent, and timing of postcontrast imaging might have modifying effects and must be investigated systematically. It might be that in diseases with ECV 0.4 simply waiting longer or giving a larger dose might reduce this difference. Furthermore, the data here do not necessarily support either approach for serial measurement, for example, as a surrogate endpoint in a clinical trial. In this situation, where other major changes might be occurring in body composition or hematocrit or renal function and where over time these could influence, systematically, the residual pharmacokinetic effects, the infusion approach is theoretically less confounded, but this is unproven. The key parameter for clinical trials and detecting differences will be the reproducibility of the respective measures. Lastly, this study provided biopsy data in only 1 disease, and we used only 1 T1 mapping sequence, ShMOLLI. Despite these limitations, these data advance the field of ECV measurement and provide substantial justification for the simplification of ECV methodology in this implementation of the bolus only technique. Further technical development work will be required before a comprehensive model of bolus only ECV measurement is available, accounting for all potentially relevant parameters. CONCLUSIONS A bolus only, T1 mapping-derived ECV measurement is sufficient for ECV measurement across a range of cardiac diseases, and this approach is now histologically validated in AS. However, when ECV is 0.4, the bolus only technique consistently measures ECV higher, compared with infusion. Reprint requests and correspondence: Dr. James C. Moon, The Heart Hospital, 16 18 Westmoreland Street, London W1G 8PH, United Kingdom. E-mail: james. moon@uclh.nhs.uk REFERENCES 1. White SK, Sado DM, Flett AS, Moon JC. Characterising the myocardial interstitial space: the clinical relevance of non-invasive imaging. Heart 2012;98:773 9. 2. Sado DM, Flett AS, Banypersad SM, et al. Cardiovascular magnetic resonance measurement of myocardial extracellular volume in health and disease. Heart 2012;98:1436 41. 3. Flett AS, Sado DM, Quarta G, et al. Diffuse myocardial fibrosis in severe aortic stenosis: an equilibrium contrast cardiovascular magnetic resonance study. Eur Heart J Cardiovasc Imaging 2012;13: 819 26. 4. Wong TC, Piehler K, Meier CG, et al. Association between extracellular matrix expansion quantified by cardiovascular magnetic resonance and short-term mortality. Circulation 2012; 126:1206 16. 5. Flett AS, Hayward MP, Ashworth MT, et al. Equilibrium contrast cardiovascular magnetic resonance for the measurement of diffuse myocardial fibrosis: preliminary validation in humans. Circulation 2010;122: 138 44. 6. Schelbert EB, Testa SM, Meier CG, et al. Myocardial extravascular extracellular volume fraction measurement by gadolinium cardiovascular magnetic resonance in humans: slow infusion versus bolus. J Cardiovasc Magn Reson 2011;13:16. 7. Ugander M, Oki AJ, Hsu LY, et al. Extracellular volume imaging by magnetic resonance imaging provides insights into overt and sub-clinical myocardial pathology. Eur Heart J 2012; 33:1268 78. 8. Kawel N, Nacif M, Zavodni A, et al. T1 mapping of the myocardium: intraindividual assessment of post-contrast T1 time evolution and extracellular volume fraction at 3T for Gd-DTPA and Gd-BOPTA. J Cardiovasc Magn Reson 2012;14:26. 9. Elliott P, Andersson B, Arbustini E, et al. Classification of the cardiomyopathies: a position statement from the European Society Of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur Heart J 2008;29:270 6. 10. Dispenzieri A, Gertz MA, Kyle RA, et al. Serum cardiac troponins and N-terminal pro-brain natriuretic peptide: a staging system for primary systemic amyloidosis. J Clin Oncol 2004; 22:3751 7. 11. Piechnik SK, Ferreira VM, Dall Armellina E, et al. Shortened Modified Look-Locker Inversion recovery (ShMOLLI) for clinical myocardial T1- mapping at 1.5 and 3 T within a 9 heartbeat breathhold. J Cardiovasc Magn Reson 2010;12:69. 12. Piechnik SK, Ferreira VM, Lewandowski AJ, et al. Normal variation of magnetic resonance T1 relaxation times in the human population at 1.5T using ShMOLLI. J Cardiovasc Magn Reson 2013;15:13. ShMOLLI sequence parameters available at: http://jcmr-online.com/imedia/

962 1171260451896391/supp1.pdf. Accessed January 26, 2013. 13. Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods 2012; 9:671 5. 14. Steiger JH. Tests for comparing elements of a correlation matrix. Psychol Bull 1980;87:245 51. 15. Pickering AD. Compcor1: A programme for comparing correlations using the methods advocated by Steiger (1980). 2001. Available at: http://homepages.gold.ac.uk/ aphome/compcor1.exe. Accessed August 30, 2012. 16. Iles L, Pfluger H, Phrommintikul A, et al. Evaluation of diffuse myocardial fibrosis in heart failure with cardiac magnetic resonance contrast-enhanced T1 mapping. J Am Coll Cardiol 2008;52: 1574 80. 17. Bandula S, Banypersad SM, Sado D, et al. Measurement of tissue interstitial volume in healthy patients and those with amyloidosis with equilibrium contrast-enhanced MR imaging. Radiology 2013 May 14 [E-pub ahead of print]. 18. Nacif MS, Kawel N, Lee JJ, et al. Interstitial myocardial fibrosis assessed as extracellular volume fraction with low-radiation-dose cardiac CT. Radiology 2012;264:876 83. 19. Kellman P, Wilson JR, Xue H, Ugander M, Arai AE. Extracellular volume fraction mapping in the myocardium, part 1: evaluation of an automated method. J Cardiovasc Magn Reson 2012;14:63. 20. Kellman P, Wilson JR, Xue H, et al. Extracellular volume fraction mapping in the myocardium, part 2: initial clinical experience. J Cardiovasc Magn Reson 2012;14:64. 21. Bull S, White SK, Piechnik SK, et al. Human non-contrast T1 values and correlation with histology in diffuse fibrosis. Heart 2013 Jan 24 [E-pub ahead of print]. 22. Messroghli DR, Walters K, Plein S, et al. Myocardial T1 mapping: application to patients with acute and chronic myocardial infarction. Magn Reson Med 2007;58:34 40. 23. Karamitsos TD, Piechnik SK, Banypersad SM. Noncontrast T1 mapping for the diagnosis of cardiac amyloidosis. J Am Coll Cardiol Img 2013;6:488 97. 24. Chan W, Duffy SJ, White DA, et al. Acute left ventricular remodeling following myocardial infarction: coupling of regional healing with remote extracellular matrix expansion. J Am Coll Cardiol Img 2012;5:884 93. 25. Jerosch-Herold M, Sheridan DC, Kushner JD, et al. Cardiac magnetic resonance imaging of myocardial contrast uptake and blood flow in patients affected with idiopathic or familial dilated cardiomyopathy. Am J Physiol Heart Circ Physiol 2008;295:H1234 42. 26. Klein C, Nekolla SG, Balbach T, et al. The influence of myocardial blood flow and volume of distribution on late Gd-DTPA kinetics in ischemic heart failure. J Magn Reson Imaging 2004;20:588 93. 27. Klein C, Schmal TR, Nekolla SG, Schnackenburg B, Fleck E, Nagel E. Mechanism of late gadolinium enhancement in patients with acute myocardial infarction. J Cardiovasc Magn Reson 2007;9:653 8. Key Words: bolus y cardiac imaging techniques y cardiac magnetic resonance y dynamic y ECV y EQ-CMR y equilibrium y extracellular space y extracellular volume y fibrosis y infusion y T1 mapping.