Department of Pharmacology, Shri Guru Ram Rai Institute of Medical and Health Sciences, Dehradun, Uttarakhand, India.

Similar documents
Abstract. Effect of sitagliptin on glycemic control in patients with type 2 diabetes. Introduction. Abbas Mahdi Rahmah

DOI: /jemds/2014/2044 ORIGINAL ARTICLE

Types of Diabetes that the Dipeptidyl Peptidase-4 Inhibitor May Act Effectively and Safely

Sitagliptin: first DPP-4 inhibitor to treat type 2 diabetes Steve Chaplin MSc, MRPharmS and Andrew Krentz MD, FRCP

Combination therapy with DPP-4 inhibitors and pioglitazone in type 2 diabetes: theoretical consideration and therapeutic potential

T2DM is a global epidemic with

Incretin-based Therapies for Type 2 Diabetes Comparisons Between Glucagon-like Peptide-1 Receptor Agonists and Dipeptidyl Peptidase-4 Inhibitors

Sitagliptin: A component of incretin based therapy. Rezvan Salehidoost, M.D., Endocrinologist

Original Article J Clin Med Res 2012;4(4): ress. Elmer

Clinical Overview of Combination Therapy with Sitagliptin and Metformin

Volume : 05 Issue : 03 July-Sept Pages:

Early treatment for patients with Type 2 Diabetes

Efficacy and Safety of Incretin-Based Therapies in Patients with Type 2 Diabetes Mellitus

Sitagliptin. Agreed by Clinical Priorities Group

Diabetes Care Publish Ahead of Print, published online September 22, 2008

Sitagliptin/Metformin (Janumet) as Combination Therapy In the Treatment of Type-2 Diabetes Mellitus

Dipeptidyl-Peptidase 4 (DPP-4) Inhibitors Drug Class Prior Authorization Protocol

Chief of Endocrinology East Orange General Hospital

Oral Hypoglycemics and Risk of Adverse Cardiac Events: A Summary of the Controversy

Reviewing Diabetes Guidelines. Newsletter compiled by Danny Jaek, Pharm.D. Candidate

DPP-4 Inhibitors: What Is Their Place in Therapy?

Initial combination therapy for patients with type 2 diabetes mellitus: considerations for metformin plus linagliptin

Int. J. Pharm. Sci. Rev. Res., 22(2), Sep Oct 2013; nᵒ 21,

New Treatment Options for Type 2 Diabetes: Incretin-Based Therapy

ABSTRACT ORIGINAL RESEARCH. Elizabeth S. Ommen Lei Xu Edward A. O Neill Barry J. Goldstein Keith D. Kaufman Samuel S. Engel

COMMISSIONING POLICY RECOMMENDATION TREATMENT ADVISORY GROUP Policy agreed by (Vale of York CCG/date)

Practical Strategies for the Clinical Use of Incretin Mimetics CME/CE. CME/CE Released: 09/15/2009; Valid for credit through 09/15/2010

Factors Associated With Reduced Efficacy of Sitagliptin Therapy: Analysis of 93 Patients With Type 2 Diabetes Treated for 1.

Media Contacts: Amy Rose Investor Contact: Graeme Bell (908) (908)

Non-insulin treatment in Type 1 DM Sang Yong Kim

Data from an epidemiologic analysis of

Clinical study on the therapeutic efficacy of the dipeptidyl peptidase 4 inhibitors, in type 2 diabetes

Gliptins: A New Class of Oral Antidiabetic Agents

Obesity, Insulin Resistance, Metabolic Syndrome, and the Natural History of Type 2 Diabetes

Diabetes: Three Core Deficits

Supplementary Online Content

Patients characteristics associated with better glycemic response to teneligliptin and metformin therapy in type 2 diabetes: a retrospective study

PROCEEDINGS CLINICAL RESEARCH AND EXPERIENCE WITH INCRETIN-BASED THERAPIES * Vivian A. Fonseca, MD, FRCP ABSTRACT

DPP-4/SGLT2 inhibitor combined therapy for type 2 diabetes

Advances in Outpatient Diabetes Care: Algorithms for Care and the Role of Injectable Therapies. Module D

Current Diabetes Care for Internists:2011

Merck & Co, Inc. Announced Approval of JANUVIA TM (INN: sitagliptin), a new oral treatment of diabetes, by the US FDA

Current evidence on the effect of DPP-4 inhibitor drugs on mortality in type 2 diabetic (T2D) patients: A meta-analysis

Diabetes Management DPP-4 Inhibitors

Newer Drugs in the Management of Type 2 Diabetes Mellitus

la prise en charge du diabète de

National Horizon Scanning Centre. Saxagliptin (BMS ) for type 2 diabetes. April 2008

Modulating the Incretin System: A New Therapeutic Strategy for Type 2 Diabetes

The first stop for professional medicines advice

Efficacy and Safety of Initial Combination Therapy in Treatment-Naïve Type 2 Diabetes Patients: A Systematic Review and Meta-analysis

Update on Insulin-based Agents for T2D

The Many Faces of T2DM in Long-term Care Facilities

Multiple Factors Should Be Considered When Setting a Glycemic Goal

Efficacy and Safety of Sitagliptin in Various Clinical Settings of T2DM

Results of Phase III Studies of Sitagliptin, new oral treatment of diabetes, were presented by Merck & Co., Inc. at ADA (The 2 nd Announcement)

In the United States, most patients with type 2 diabetes fail to

NATIONAL INSTITUTE FOR HEALTH AND CARE EXCELLENCE. Single Technology Appraisal. Canagliflozin in combination therapy for treating type 2 diabetes

GLP-1 (glucagon-like peptide-1) Agonists (Byetta, Bydureon, Tanzeum, Trulicity, Victoza ) Step Therapy and Quantity Limit Criteria Program Summary

Incretin Hormones: Evolving Treatment Strategies For Type 2 Diabetes

Obesity may attenuate the HbA1c-lowering effect of sitagliptin in Japanese type 2 diabetic patients

DPP-4 inhibitor. The new class drug for Diabetes

Combination treatment for T2DM

Dipeptidyl Peptidase-4 (DPP-4) Inhibitors In the Management of Diabetes

JANUVIA should not be used in patients with type 1 diabetes or for the treatment of diabetic ketoacidosis.

Inpatient Management of Diabetes Mellitus. Jessica Garza, Pharm.D. PGY-1 Pharmacotherapy Resident TTUHSC School of Pharmacy

Metabolic Karma. - Essential Solution in Type2 DM - Eun Gyoung Hong, M.D., Ph.D

GLP-1 agonists. Ian Gallen Consultant Community Diabetologist Royal Berkshire Hospital Reading UK

Current Status of Incretin Based Therapies in Type 2 Diabetes

IDF Regions and global projections of the number of people with diabetes (20-79 years), 2013 and Diabetes Atlas -sixth Edition: IDF 2013

Disclosure. Learning Objectives. Case. Diabetes Update: Incretin Agents in Diabetes-When to Use Them? I have no disclosures to declare

Improving Glycemic Control With Combination Therapy for Adult Patients With Type 2 Diabetes. Topic Highlights

Differences in the glucose-lowering efficacy of dipeptidyl peptidase-4 inhibitors between Asians and non-asians: a systematic review and meta-analysis

Management of Type 2 Diabetes

Thiazolidinedione Step Therapy Program

Update on Insulin-based Agents for T2D. Harry Jiménez MD, FACE

Drug Class Monograph

Scottish Medicines Consortium

MOA: Long acting glucagon-like peptide 1 receptor agonist

Drug Class Monograph

Sodium-Glucose Co-Transporter 2 (SGLT-2) Inhibitors Drug Class Prior Authorization Protocol

효과적인경구혈당강하제의조합은? 대한당뇨병학회제 17 차연수강좌 ( ) 가천의대길병원내분비대사내과

Add-on saxagliptin improves glycemic status among uncontrolled type 2 diabetes mellitus

Newer and Expensive treatment of diabetes. Endocrinology Visiting Associate Professor Institute of Medicine TUTH

Comparative study: Efficacy and tolerability. tolerability of vildagliptin vs. pioglitazone as an add-on therapy to metformin in poorly controlled

Albiglutide, a Once-Weekly GLP-1RA, for the Treatment of Type 2 Diabetes

What s New in Diabetes Treatment. Disclosures

Modulating the Incretin System: A New Therapeutic Strategy for Type 2 Diabetes. Overview. Prevalence of Overweight in the U.S.

Incretin-Based Therapies: Focus on Effects Beyond Glycemic Control Alone

Liraglutide: First Once-Daily Human GLP-1 Analogue

Learning Objectives. Impact of Diabetes II UPDATES IN TYPE 2 DIABETES. David Doriguzzi, PA-C

Timely!Insulinization In!Type!2! Diabetes,!When!and!How

New Drug Evaluation: Dulaglutide

Update on Diabetes Mellitus

Julie White, MS Administrative Director Boston University School of Medicine Continuing Medical Education

Francesca Porcellati

Type 2 Diabetes: Where Do We Start with Treatment? DIABETES EDUCATION. Diabetes Mellitus: Complications and Co-Morbid Conditions

(Incretin) ( glucagon-like peptide-1 GLP-1 ) GLP-1. GLP-1 ( dipeptidyl peptidase IV DPP IV ) GLP-1 DPP IV GLP-1 exenatide liraglutide FDA 2 2 2

NATIONAL INSTITUTE FOR HEALTH AND CLINICAL EXCELLENCE. Proposed Health Technology Appraisal

New Drug Evaluation: lixisenatide injection, subcutaneous

Diabetes Guidelines in View of Recent Clinical Trials Are They Still Applicable?

Transcription:

Research Article Comparative evaluation of combination of metformin and glimepiride with that of metformin and sitagliptin in type 2 diabetes mellitus with respect to glycemic targets Mohammad Anjoom 1, Shaktibala Dutta 1, Mirza Atif Beg 1, Amit Varma 2, Shalu Bawa 1, Ravi Kant 2 1 Department of Pharmacology, Shri Guru Ram Rai Institute of Medical and Health Sciences, Dehradun, Uttarakhand, India. 2 Department of Medicine, Shri Guru Ram Rai Institute of Medical and Health Sciences, Dehradun, Uttarakhand, India. Correspondence to: Mirza Atif Beg, E-mail: mabeg1997@gmail.com Received December 2, 2014. Accepted December 9, 2014 Abstract Background: Sitagliptin, an oral and selective dipeptidyl peptidase-4 inhibitor, represents a novel therapeutic approach for the treatment of type 2 diabetes mellitus. Metformin and glimepiride are most commonly used oral hypoglycemic agents. Objective: To compare combination of metformin and glimepiride with that of metformin and sitagliptin in patients with type 2 diabetes mellitus. Materials and Methods: The study was conducted by Department of Pharmacology, Shri Guru Ram Rai Institute of Medical and Health Sciences, Dehradun, Uttarakhand, India, in Medicine OPD for 1 year. Total 60 patients with type 2 diabetes mellitus were included in the study. The patients were divided into two groups: Group I (n = 30), patients were put on metformin 500 mg + glimepiride 1 mg once daily and Group II, (n = 30), patients were put on metformin 500 + sitagliptin 50 mg once daily. The patients were stabilized for 2 weeks and followed up every 6 weeks for 24 weeks. Fasting blood sugar (FBS) and postprandial blood sugar (PPBS) were measured at every follow-up; glycosylated hemoglobin (HbA1c) was measured at 0 and 24 weeks. Analysis was done using t-test, and a p-value of <0.05 was considered significant. Results: The patients with type 2 diabetes mellitus having a mean age of 52.95 ± 0.95 years and mean duration of diabetes mellitus of 6.62 ±0.53 years were included in the study. Positive family history of diabetes mellitus was seen in 22 (36.67%) patients. FBS in groups I and II at 0 and 24 weeks was 164.4 ± 5.09 and 127.30 ± 2.31 mg/dl (p < 0.001) and 167.30 ± 5.69 and 125.16 ± 2.48 mg/dl (p < 0.001), respectively. PPBS in groups I and II at 0 and 24 weeks was 209.90 ± 8.29 and 160.83 ± 4.40 mg/dl (p < 0.001) and 214.53 ± 5.64 and 156.93 ± 2.10 (p < 0.001), respectively. HbA1c in group I at 0 and 24 weeks was 8.79 ± 0.11 and 7.32 ± 0.11% (p < 0.001) and in group II was 8.98 ± 0.13 and 7.09 ± 0.13% (p < 0.001), respectively. At 24 weeks, intergroup comparison in FBS (p > 0.05), PPBS (p < 0.05), and HbA1c (p > 0.05) was done. Most common adverse drug reactions were hypoglycemia, abdominal discomfort, weight loss, and nausea/vomiting. Conclusion: Both groups showed significant improvement in FBS, PPBS, and HbA1c at the end of the study period. Intergroup comparison showed significant improvement in PPG in group II (with a combination of metformin and sitagliptin) at the end of the study. KEY WORDS: Type 2 diabetes mellitus, DPP-4 inhibitors, novel therapeutic approach, HbA1c Access this article online Website: http://www.ijmsph.com Quick Response Code: DOI: 10.5455/ijmsph.2015.0212201498 Introduction Diabetes mellitus (DM) is a metabolic disorder with common denominator of hyperglycemia, arising from a variety of pathogenic mechanisms. It has emerged as a global epidemic and accounts for almost 90% of patients with the disease both in developing and developed countries. [1] Glycemic management in type 2 DM has become increasingly complex and, to some extent, controversial, with a wide 476

array of pharmacological agents now available. [2 6] Metformin is considered first-line therapy unless not tolerated or contraindicated. Second-line therapy then includes sulfonylureas (SUs), thiazolidinediones, dipeptidyl peptidase-4 (DPP-4) inhibitors, glucagon-like polypeptide-1 (GLP-1) agonists, or insulin. DPP-4 inhibitors are relatively newer and are the only oral agent in the incretin family of therapeutic targets. The American Diabetes Association/European Association for the Study of Diabetes consensus algorithm for the treatment of type 2 DM endorses the use of newer class of drugs, the incretins or incretin-based therapies such as DPP-4 inhibitors, either alone or in combination. DPP-4 inhibitors is a unique class of drugs, which prevent the rapid degradation of endogenous GLP-1 and glucose-dependent insulinotropic polypeptide and increase the level of intact active form of endogenous GLP-1. [7] The DPP-4 inhibitors increase insulin concentrations in a glucose-dependent manner. Other advantages are little or no hypoglycemia, improvement in fasting and postprandial hyperglycemia, no weight gain, decrease in appetite, reduced glycosylated hemoglobin (HbA1c) level by an average of 0.8%, and an improved β-cell function. [1] Sitagliptin is a potent, oral and selective DPP-4 inhibitor for the treatment of patients with type 2 DM. [8] Metformin and sitagliptin have independent glucose-lowering properties and may increase GLP-1 levels by working through complementary mechanisms. [9] The combination of metformin and glimepiride is a well-established therapy for type 2 DM. This study assumes significance as it compares the combination of metformin and glimepiride with that of metformin and sitagliptin in type 2 DM with respect to glycemic targets. Materials and Methods This study was carried out in Medicine OPD at Shri Guru Ram Rai Institute of Medical and Health Sciences, Dehradun, Uttarakhand, India. Before initiation of study, approval of institutional ethics/research committee and written informed consent from the patient/legal guardian of the patient were obtained after full explanation of elements contained in the research protocol. All the patients with type 2 DM, diagnosed as per American Diabetes Association criteria, attending the medicine outpatient and inpatient department were included in the study. [9] The duration of the study was 1 year from January to December 2013. Patients aged between 18 and 70 years, both sexes, and established cases of type 2 DM were included in this study. Those aged less than 18 or more than 70 years, with type 1 DM, with secondary DM, with gestational DM, having history of hypersensitivity/allergy to any drug, pregnant and lactating, with impaired renal or hepatic function, or having history of any other severe systemic illness were excluded from the study. Study Groups This was an open-labeled comparative trial and included 60 patients with type 2 DM. These patients were divided into two groups of 30 patients each. Group I received metformin 500 mg + glimepiride 1 mg once daily (n = 30) whereas group II received metformin 500 mg+ sitagliptin 50 mg once daily (n = 30). The patients were given drugs on the basis of physician s discretion, depending on the glycemic parameters of the patients at the time of presentation. A detailed history regarding age, sex, profession, duration of disease, treatment history, family history, and personal history was taken for each patient. The patients were stabilized initially for 2 weeks with the drugs and followed up every 6 week till 24 weeks. Fasting blood sugar (FBS) and postprandial blood sugar (PPBS) were measured at every visit. HbA1c was measured at 0 and 24 weeks. Primary end points were change in FBS, PPBS, and HbA1c. Results Total 60 patients with type 2 DM were included in the study with a mean age of 52.95 ± 0.95 years. Male/female ratio was 28:32 (46.67% vs 53.33%). The mean duration of DM was 6.62 ± 0.53 years. Positive family history of DM was present in 22 (36.67%) patients [Table 1]. The baseline values of fasting plasma glucose (FPG), postprandial plasma glucose (PPG), and HbA1c were comparable in both the groups at the start of study period. The values of FBS in groups I and II were 180.70 ± 5.49 and 185.86 ± 5.99 mg/dl, respectively (p > 0.05) whereas those of PPBS were 235.60 ± 6.25 and 239.37 ± 7.52 mg/dl, respectively (p > 0.05). The values of HbA1c in groups I and II were 8.79 ± 0.11 and 8.98 ± 0.13%, respectively (p > 0.05) [Table 2]. The patients were stabilized for 2 weeks during the titration phase and the improvement was highly significant with respect to FBS, PPBS, and HbA1c in both the groups (p < 0.001). However, intergroup comparison was insignificant with respect to FBS, PPBS, and HbA1c during titration phase (p > 0.05) [Table 3]. Patients were followed up every 6 weeks up to 24 weeks. At 24 weeks, changes in FBS, PPBS, and HbA1c were compared between 0 and 24 weeks. The values of FBS in Table 1: Demographic profile Parameters Number (%) Total no. of patients 60 Male/female 28:32 (46.67% vs 53.33%) Mean age 52.95 ± 0.95 Mean duration of diabetes mellitus 6.62 ± 0.53 (years) Positive family history 22 (36.67%) Table 2: Baseline characteristics Parameters Group I Group II Fasting blood sugar (mg/dl) 180.70 ± 5.49 185.86 ± 5.99 Postprandial blood sugar (mg/dl) 235.60 ± 6.25 239.37 ± 7.52 HbA1c (%) 8.79 ± 0.11 8.98 ± 0.13 Group I, metformin + glimepiride; group II, metformin + sitagliptin. 477

Table 3: Stabilization of FBS and PPBS during titration phase Groups FBS baseline FBS 0 weeks p-value PPBS baseline PPBS 0 weeks p-value I 180.70 ± 5.49 164.40 ± 5.09 <0.001 235.60 ± 6.25 209.90 ± 8.29 <0.001 II 185.86 ± 5.99 167.30 ± 5.69 <0.001 239.37 ± 7.52 214.53 ± 5.64 <0.001 Group I, metformin + glimepiride; group II, metformin + sitagliptin. groups I and II at 0 and 24 weeks were 164.4 ± 5.09 and 127.3 ± 2.31 mg/dl (p < 0.001) and 167.3 ± 5.69 and 125.16 ± 2.48 mg/dl (p < 0.001), respectively [Figure 1]. The values of PPBS in groups I and II at 0 and 24 weeks were 209.9 ± 8.29 and 160.83 ± 4.4 mg/dl (p < 0.001) and 214.53 ± 5.64 and 156.93 ± 2.10 mg/dl (p < 0.001), respectively [Figure 2]. The values of HbA1c in groups I and II at 0 and 24 weeks were 8.79 ± 0.11 and 7.32 ± 0.11% (p < 0.001) and 8.98 ± 0.13 and 7.09 ± 0.13% (p < 0.001), respectively [Figure 3]. Intergroup comparison was made between the two groups for FBS, PPBS, and HbA1c at 24 weeks. It was insignificant for FBS and HbA1c (p > 0.05) and significant for PPBS (p < 0.05) [Figure 4]. Overall, 27 adverse drug reactions (12 in group I and 15 in group II) were recorded from the study population. Hypoglycemia and abdominal discomfort were the most common adverse drug reactions seen in three patients of group I and four patients of group II [Figure 5]. Figure 3: Comparison of HbA1c at 0 and 24 weeks. Group I, p < 0.001; group II, p < 0.00. Figure 1: Comparison of FBS at 0 and 24 weeks. Group I, p < 0.001; group II, p < 0.001. Figure 4: Intergroup comparison of FBS, PPBS, and Hb1Ac at 24 weeks. FBS, p > 0.05; PPBS, p < 0.05; HbA1c, p > 0.05. (Group I, metformin + glimepiride; group II, metformin + sitagliptin). Figure 2: Comparison of PPBS at 0 and 24 weeks. Group I, p < 0.001; group II, p < 0.001. Figure 5: Adverse effects noticed with the study drug groups over the study period. (Group I, metformin + glimepiride; group II, metformin + sitagliptin). 478

Discussion Type 2 DM is commonly seen in middle-aged individuals, especially after 50 years of age. [10] The mean age in our study was 52.95 ± 0.95 years, which was seen in collaboration with previous studies where the average ages were 53.51 and 58.3 years, respectively. [11,12] In this study, the male/female ratio was 28:32. Women outnumbered men, which may be due to their more sedentary and diabetogenic lifestyle. This was similar to the previous studies conducted by Bennett et al. [13] and Howteerakul et al., [14] which showed higher prevalence of type 2 DM in women than in men. In this study, 22 patients had a positive family history indicating either one or both the parents had type 2 DM, which was at one stage or the other transferred from one generation to another. [15] The genetics of type 2 DM is not completely understood but presumably both pancreatic β-cell failure and insulin resistance may have genetic component. Type 2 DM occurs when a diabetogenic lifestyle is superimposed on a susceptible genotype. [16 ] The average duration of DM in this study was found to be 6.62 years, which was in line with a previous study conducted by Jeon et al. where the mean duration was 5.89 years [12] [Table 1]. The total study period of 24 weeks showed a significant improvement in FPG and PPG for both the groups (p < 0.001). This was in accordance with previous studies conducted by Goldstein et al. [17] and Hermansen et al. [18] where the effects of combination of sitagliptin + metformin with other oral hypoglycemics have been well documented. The improvement in HbA1c was highly significant in both the study groups (p < 0.001) at the end of 24 weeks. Previous studies by Hermansen et al., [18] Raz et al., [19] and Bennett et al. [20] have proven the improvement in HbA1c by combination of metformin and sitagliptin and metformin and glimepiride [Figures 1 3]. At the end of the study period, the intergroup comparison between groups I and II was done for FPG, PPG, and HbA1c. It was insignificant for FPG and HbA1c (p > 0.05) and significant for PPG (p < 0.05) indicating that the group where combination of sitagliptin and metformin was given had a better glycemic control in terms of PPG [Figure 4]. Previous studies conducted by Reasner et al., [21] Pérez-Monteverde et al., [22] and Wainstein et al. [23] have proven that combination of sitagliptin and metformin produces significant improvement in glycemic parameters such as FPG, PPG, and HbA1c. The adverse drug reactions were mild in both the groups and did not require any alteration or discontinuation of study drugs. The incidence of hypoglycemia was similar in both the study groups, which is well known in previous studies. [24,25] Weight gain was seen in patients receiving metformin + glimepiride, which has been well proven earlier [26] [Figure 5]. Although SUs have traditionally been the oral antidia betic of choice to add on to metformin and are highly effective with respect to glucose lowering, they are associated with modest weight gain and risk of hypoglycemia. [27] Sitagliptin, a DPP-4 inhibitor, presents an alternative therapeutic strategy for patients with type 2 DM and, in general, shows significant improvements in glycemic control. It is well tolerated, particularly with regard to weight change and hypoglycemia. [28] Study Limitations This was an open label study. The patients and the doctors were aware of the prescribed drugs. Hence, there are more chances of errors. Sample size was small, which may not be sufficient enough to show intergroup differences in efficacy of study drugs. Duration of study was also short, which may not be sufficient enough to evaluate the efficacy and safety of study drugs. A study with larger sample size and of longer duration may have yielded different results. Conclusion To conclude, all the patients showed improvement in glycemic parameters such as FPG, PPG, and HbA1c during the study period. Intergroup comparison showed better glycemic control in patients receiving a combination of sitagliptin and metformin for PPG, and it was insignificant for FPG and HbA1c. But further larger studies with more number of patients are needed to evaluate the magnitude of antidiabetic effects of DPP-4 inhibitors. References 1. Powers AC, D Alessio D. Endocrine pancreas and pharmacotherapy of diabetes mellitus and hypoglycemia. In: Goodman and Gilman s the Pharmacological Basis of Therapeutics, Brunton LL, Chabner BA, Knollman BC (Eds.), 12th edn. New York: McGraw-Hill, 2011. pp.1237 73. 2. Bolen S, Feldman L, Vassy J, Wilson L, Yeh HC, Marinopoulos S, et al. Systematic review: comparative effectiveness and safety of oral medications for type 2 diabetes mellitus. Ann Intern Med 2007;147:386 99. 3. Bergenstal RM, Bailey CJ, Kendall DM. Type 2 diabetes: assessing the relative risks and benefits of glucose-lowering medications. Am J Med 2010;123(374):e9 18. 4. Nyenwe EA, Jerkins TW, Umpierrez GE, Kitabchi AE. Management of type 2 diabetes: evolving strategies for the treatment of patients with type 2 diabetes. Metabolism 2011;60:1 23. 5. Nolan JJ. Consensus guidelines, algorithms and care of the individual patient with type 2 diabetes. Diabetologia 2010; 53:1247 9. 6. Blonde L. Current antihyperglycemic treatment guidelines and algorithms for patients with type 2 diabetes mellitus. Am J Med 2010;123(3 Suppl):S12 18. 7. Cobble M. Differentiating among incretin-based therapies in the management of patients with type 2 diabetes mellitus. Diabetol Metab Syndr 2012;4(8):1 10. 8. Product Information. JANUVIA (sitagliptin). Whitehouse Station: Merck & Co., Inc. October 2006. 9. Ballav C, Gough SC. Safety and efficacy of sitagliptin-metformin in fixed combination for the treatment of type 2 diabetes mellitus. Clin Med Insights Endocrinol Diabetes 2013:6:25 37. 479

10. Rosenstock J, Brazg R, Andryuk PJ, Lu K, Stein P. Efficacy and safety of the dipeptidyl peptidase-4 inhibitor sitagliptin added to ongoing pioglitazone therapy in patients with type 2 diabetes: a 24-week, multicenter, randomized, double-blind, placebo-controlled parallel group study. Clin Ther 2006; 28:1556 68. 11. JC Fredric, EC Jonathan. Recent antihyperglycemic prescribing trends for U.S. privately insured patients with type 2 diabetes. Diabetes Care 2003;26:1847 51. 12. Jeon HJ, Oh TK. Comparison of vildagliptin-metformin and glimepiride-metformin treatments in type 2 diabetic patients. Diabetes Metab J 2011;35:529 35. 13. Bennett P, Rewers M, Knowler W. Epidemiology of diabetes mellitus. In: Ellenberg & Rifkin s Diabetes Mellitus: Theory and Practice, Porte D Jr, Sherwin RS (Eds.), 5th edn. New York: Elsevier Science, 1997. pp. 373 400. 14. Howteerakul N, Suwannapong N, Rittichu C, Rawdaree P. Adherence to regimens and glycemic control of patients with type 2 diabetes attending a tertiary hospital clinic. Asia Pac J Public Health 2007;19:43 9. 15. McCarthy M, Menzel S. The genetics of type 2 diabetes. Br J Clin Pharmacol 2001;51:195 9. 16. Oki JC, Isley WL. Diabetes Mellitus. In: Dipro JT, Talbert RL, Yee GC, et.al., eds. Pharmacotherapy: A Pathophysiological Approach. New York, NY: McGraw-Hill; 2002: 1335-58. 17. Goldstein BJ, Feinglos MN, Lunceford JK, Johnson J, Williams-Herman DE. Effect of initial combination therapy with sitagliptin, a dipeptidyl peptidase-4 inhibitor, and metformin on glycemic control in patients with type 2 diabetes. Diabetes Care 2007;30:1979 87. 18. Hermansen K, Kipnes M, Luo E, Fanurik D, Khatami H, Stein P. Efficacy and safety of the dipeptidyl peptidase-4 inhibitor, sitagliptin, in patients with type 2 diabetes mellitus inadequately controlled on glimepiride alone or on glimepiride and metformin. Diabetes Obes Metab 2007;9:733 45. 19. Raz I, Hanefeld M, Xu L, Caria C, Williams-Herman D, Khatami H. Efficacy and safety of the dipeptidyl peptidase-4 inhibitor sitagliptin as monotherapy in patients with type 2 diabetes mellitus. Diabetologia 2006;49:2564 71. 20. Bennett WL, Maruthur NM, Singh S, Segal JB, Wilson LM, Chatterjee R, et al. Comparative effectiveness and safety of medications for type 2 diabetes: an update including new drugs and 2-drug combinations. Ann Intern Med 2011; 154:602 13. 21. Reasner C, Olansky L, Seck TL, Williams-Herman DE, Chen M, Terranella L, et al. The effect of initial therapy with fixed dose combination of sitagliptin and metformin compared with metformin monotherapy in patients with type 2 diabetes mellitus. Diabetes Obes Metab 2011;13:644 52. 22. Pérez-Monteverde A, Seck T, Xu L, Sisk CM, Williams-Herman DE, Engel SS, et al. Efficacy and safety of sitagliptin and the fixed-dose combination of sitagliptin and metformin vs. pioglitazone in drug-naïve patients with type 2 diabetes. Int J Clin Pract 2011;65(9):930 8. 23. Wainstein J, Katz L, Engel SS, Xu L, Golm GT, Hussain S, et al. Initial therapy with the fixed-dose combination of sitagliptin and metformin results in greater improvement in glycaemia control compared with pioglitazone monotherapy in patients with type 2 diabetes. Diabetes Obes Metab 2012;14:409 18. 24. Nauck MA, Meininger G, Sheng D, Terranella L, Stein PP. Efficacy and safety of the dipeptidyl peptidase-4 inhibitor, sitagliptin, compared with the sulfonylurea, glipizide, in patients with type 2 diabetes inadequately controlled on metformin alone: a randomized, double-blind, non-inferiority trial. Diabetes Obes Metab 2007;9:194 205. 25. Amori RE, Lau J, Pittas AG. Efficacy and safety of incretin therapy in type 2 diabetes: systematic review and meta-analysis. JAMA 2007;298:194 206. 26. Kahn SE, haffner SM, Heise MA, Herman WH, Holman RR, Jones NP, Kravitz BG, Lachin JM, O Neil MC, Zinman B, Viberti G;ADOPT Study Group. Glycemic durability of rosiglitazone, metofrmin, or glyburide monotherapy. N Engl J Med 2006; 355:2427-43. 27. Cryer PE. Severe iatrogenic hypoglycemia in type 2 diabetes mellitus. Nat Clin Pract Endocrinol Metab. 2007;3:4 5. 28. Deacon CF, Ahren B, Holst JJ. Inhibitors of dipeptidyl peptidase IV: a novel approach for the prevention and treatment of type 2 diabetes? Expert Opin Investig Drugs 2004;13:1091 102. How to cite this article: Anjoom M, Dutta S, Beg MA, Varma A, Bawa S, Kant R. Comparative evaluation of combination of metformin and glimepiride with that of metformin and sitagliptin in type 2 diabetes mellitus with respect to glycemic targets. Int J Med Sci Public Health 2015;4:476-480 Source of Support: Nil, Conflict of Interest: None declared. 480