Effect of Marine Polyunsaturated Fatty Acids on Biofilm Formation of Candida albicans and Candida dubliniensis

Similar documents
In Vitro Interactions of Antifungal agents and Tacrolimus against Aspergillus Biofilms

The effect of farnesol on amino acid incorporation by a wild-type and cell-wall variant strain of Candida albicans

VIRULENCE FACTORS AND SUSCEPTIBILITY OF CANDIDA SPP. CAUSATIVE AGENTS OF NEONATAL INFECTIONS

INFLUENCE OF ASSOCIATING NONSTEROIDAL ANTI-INFLAMMATORY DRUGS WITH ANTIFUNGAL COMPOUNDS ON VIABILITY OF SOME CANDIDA STRAINS

Sensitization of Candida albicans biofilms to various antifungal drugs by cyclosporine A

Chapter 4. Anti-bacterial studies of PUFA extracts from Sardinella longiceps and Sardinella fimbriata. 4.1 Introduction

1. Pre-emptive therapy. colonization, colonization, pre-emptive therapy. , ICU colonization. colonization. 2, C. albicans

SYNERGISTIC ACTIVITIES OF TWO PROPOLIS WITH AMPHOTERICIN B AGAINST SOME AZOLE-RESISTANT CANDIDA STRAINS. PART II

MPO-KO MPO-KO , NADPH. O 2, , MPO-KO 5. HOCl, H 2 O 2., MPO, MPO-KO. HOCl. ., MPO-KO 3., MPO MPO 1, 2. MPO, ., Candida albicans ATCC O 2, MPO-KO

Comparison of microdilution method and E-test procedure in susceptibility testing of caspofungin against Candida non-albicans species

Evaluation of in Vitro Antifungal Activity of Ketoconazole and Griseofulvin

PREVALANCE OF CANDIDIASIS IN CHILDREN IN MUMBAI

PREVALANCE OF CANDIDIASIS IN CHILDREN IN MUMBAI

Introduction. Study of fungi called mycology.

Voriconazole. Voriconazole VRCZ ITCZ

Candida dubliniensis endophthalmitis: five cases over 15 years

1* 1. Vijaya S. Rajmane, Shivaji T. Mohite

Table 1. Antifungal Breakpoints for Candida. 2,3. Agent S SDD or I R. Fluconazole < 8.0 mg/ml mg/ml. > 64 mg/ml.

Identification of Yeasts. Medical Mycology Training Network 15 November 2018 Dr Tan Ai Ling Department of Microbiology, Singapore General Hospital

International Journal of Food Nutrition and Safety, 2012, 1(2): International Journal of Food Nutrition and Safety

5-Fluorocytosine resistance in clinical isolates of cryptococcus neoformans

Oral colonization of Candida species in perinatally HIV-infected children in northern Thailand

There is more scientific evidence behind the cardiovascular benefits of fish oil than nearly any other nutritional supplement

Evaluation of Antibacterial Effect of Odor Eliminating Compounds

Candida dubliniensis at a University Hospital in Saudi Arabia

Action of Antifungal Imidazoles on Staphylococcus aureus

Oral Candida biofilm model and Candida Staph interactions

I. QUANTITATIVE OBSERVATION OF THE ACTION

Appendix A: Preparation of Media and Chemicals. Malt Extract Agar (MEA) weighing g was dissolved in 400 ml of distilled water

Conversion of green note aldehydes into alcohols by yeast alcohol dehydrogenase

Micafungin and Candida spp. Rationale for the EUCAST clinical breakpoints. Version February 2013

Antifungal activity of Histatin-5 against non-albicans Candida species.

ISSN Vol.02,Issue.19, December-2013, Pages:

Mechanistic Studies of Pentamidine Analogs on Leishmania donovani Promastigotes

SUPPLEMENTARY INFORMATION

Differentiation of Candida dubliniensis from Candida albicans on Staib Agar and Caffeic Acid-Ferric Citrate Agar

Microbiological Methods V-A- 1 SALMONELLA SPECIES PRESUMPTIVE AND CONFIRMATION TESTS

Fabio Akira Ito. Technical Services South America Pharma Ingredients & Services. Internal

Intercellular Matrix in Colonies of Candida

CHAPTER 4 IMMUNOLOGICAL TECHNIQUES

Susceptibility of Cryptococcus neoformans Biofilms to Antifungal Agents In Vitro

Total Phosphatidic Acid Assay Kit

Screening of Antimicrobials of some Medicinal Plants by TLC Bioautography

We customize individual prescriptions for the specific needs of our patients.

International Journal of Health Sciences and Research ISSN:

Management of fungal infection

WHICH ANTIFUNGAL AGENT IS THE CHOICE FOR SUSPECTED FUNGAL INFECTIONS?

Rapid Identification and Antifungal Susceptibility Pattern of Candida Isolates from Critically Ill Patients with Candiduria

Potential of Different Light Intensities on the Productivity of Spirulina maxima

ab65336 Triglyceride Quantification Assay Kit (Colorimetric/ Fluorometric)

FLAXSEED Health Benefits and Functionality. Kelley C. Fitzpatrick Director of Health FLAX COUNCIL OF CANADA

Forages, fat, fitness and flavour

Differentiating omega-3 fatty acids from SPMs (specialized pro-resolving lipid mediators)

ROS Activity Assay Kit

PATHOGENIC CHARACTERISTICS OF Candida albicans ISOLATED FROM ORAL

FACTORS AFFECTING THE GROWTH OF MICRO-ORGANISMS IN FOODS

Oral Distribution of Genera, Species and Biotypes of Yeasts in Patients with Marginal Periodontitis

A CASE REPORT OF: PSEUDOMEMBRANOUS CANDIDIASIS INDUCED BY LONG TERM SYSTEMIC CORTICOSTEROIDS THERAPY

dida tropicalis, Candida parapsilosis, Candida krusei, Cr. neoformans

Itraconazole vs. fluconazole for antifungal prophylaxis in allogeneic stem-cell transplant patients D. J. Winston

Nationwide survey of treatment for pediatric patients with invasive fungal infections in Japan

Anti-fungal and anti-mitochondrial effect of essential oils against Guignardia citricarpa B.T. Magunga, N.J. Malebo and D.M.

Candida albicans and non-candida albicans Candida species on acrylic substrate

TRACP & ALP double-stain Kit

UCLA Nutrition Noteworthy

Fungi GUIDE TO INFECTION CONTROL IN THE HOSPITAL CHAPTER NUMBER 53: Author Moi Lin Ling, MBBS, FRCPA, CPHQ, MBA

IN VITRO ANTICANCER ACTIVITY OF FLOWER EXTRACTS OF COUROUPITA GUIANENSIS

MALDI-TOF Mass Spectrometry: A New Rapid ID Method in Clinical Microbiology

Urea Nitrogen (BUN) detection Kit

Speciation of Candida Isolated from Various Clinical Samples and their Antifungal Susceptibility Profile in a Tertiary Care Hospital

GB Translated English of Chinese Standard: GB NATIONAL STANDARD OF THE

Supplementary Information. Sonorensin: A new bacteriocin with potential of an anti-biofilm agent and a food

Improving the fatty acid composition of ruminant products. Michael R. F. Lee

Int.J.Curr.Microbiol.App.Sci (2014) 3(10)

Candida albicans 426 (64.0 ) C. albicans non-albicans

Microbiology products. Liofilchem Chromatic

The textile material is goods carrier of various types

TEST REPORT & SPECIFIC INFORMATION

U. SAMARAJEEWA AND T. V. GAMAGE Departments of Microbiology and Food Science & Technology, University of Peradeniya, Peradeniya, Sri Lanka.

Inhibitory effects of several saturated fatty acids and their related fatty alcohols on the growth of Candida albicans

Lipid Peroxidation Assay

Widespread Geographic Distribution of Oral Candida dubliniensis Strains in Human Immunodeficiency Virus-Infected Individuals

Laboratorios CONDA, S.A. Distributed by Separations

Norovirus Report. Can copper and silver ionisation kill norovirus? A Study Report

Preservative Evaluation of Novel 2,4-Hexadienoic Acid Derivatives in Aluminium Hydroxide Gel USP

CHAPTER 28 LIPIDS SOLUTIONS TO REVIEW QUESTIONS

Ph. Eur. Reference Standard - LEAFLET

Fusarium and Candida albicans Biofilms on Soft Contact Lenses: Model Development, Influence of Lens Type, and Susceptibility to Lens Care Solutions

In vitro antimicrobial activity of leaves and bark extracts of Ficus religiosa (Linn.)

L6 GLUT4myc Cell Growth Protocol

In vitro study of antibacterial activity of Carissa carandas leaf extracts

Prevalence of Candida infection in HIV seropositive patients in Karur district of Tamil Nadu, India

An Automated Membrane Filtration System for Direct Gram Staining

Modulating Glucose Uptake in Skeletal Myotubes: Insulin Induction with Bioluminescent Glucose Uptake Analysis

Terapia della candidiasi addomaniale

Isolates from a Phase 3 Clinical Trial. of Medicine and College of Public Health, Iowa City, Iowa 52242, Wayne, Pennsylvania ,

Tween 40-based precipitate production observed on modified chromogenic agar and development of biological identification kit for Malassezia species

Available online at

Improvement of Intracellular Glutathione Content. in Baker s Yeast. for Nutraceutical Application

Transcription:

Mar. Drugs 2010, 8, 2597-2604; doi:10.3390/md8102597 Article OPEN ACCESS Marine Drugs ISSN 1660-3397 www.mdpi.com/journal/marinedrugs Effect of Marine Polyunsaturated Fatty Acids on Biofilm Formation of Candida albicans and Candida dubliniensis Vuyisile S. Thibane 1, Johan L. F. Kock 1, Ruan Ells 1, Pieter W. J. van Wyk 2 and Carolina H. Pohl 1, * 1 2 Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, P.O. Box 339, Bloemfontein, 9301, South Africa; E-Mails: ThibaneV@ufs.ac.za (V.S.T.); KockJL@ufs.ac.za (J.L.F.K.); EllsR@ufs.ac.za (R.E.) Center for Microscopy, University of the Free State, P.O. Box 339, Bloemfontein, 9301, South Africa; E-Mail: vanwykpw@ufs.ac.za * Author to whom correspondence should be addressed; E-Mail: PohlCH@ufs.ac.za; Tel.: +27-51-401-9197; Fax: +27-51-444-3219. Received: 2 September 2010; in revised form: 27 September 2010 / Accepted: 28 September 2010 / Published: 8 October 2010 Abstract: The effect of marine polyunsaturated fatty acids on biofilm formation by the human pathogens Candida albicans and Candida dubliniensis was investigated. It was found that stearidonic acid (18:4 n-3), eicosapentaenoic acid (20:5 n-3), docosapentaenoic acid (22:5 n-3) and docosahexaenoic acid (22:6 n-3) have an inhibitory effect on mitochondrial metabolism of both C. albicans and C. dubliniensis and that the production of biofilm biomass by C. dubliniensis was more susceptible to these fatty acids than C. albicans. Ultrastructural differences, which may be due to increased oxidative stress, were observed between treated and untreated cells of C. albicans and C. dubliniensis with formation of rough cell walls by both species and fibrillar structures in C. dubliniensis. These results indicate that marine polyunsaturated fatty acids may be useful in the treatment and/or prevention of biofilms formed by these pathogenic yeasts. Keywords: Candida albicans; Candida dubliniensis; polyunsaturated fatty acids 1. Introduction Candida albicans and Candida dubliniensis are dimorphic yeasts, able to grow both as yeasts and mycelia. Several members of the genus Candida exist as commensals of the human gastrointestinal and

Mar. Drugs 2010, 8 2598 genitourinary tract in healthy individuals [1 3]. However, in individuals whose immune system is compromised, such as those that are HIV positive, C. albicans can cause diseases ranging from superficial infections to deep seated mycoses [4,5]. Candida dubliniensis is a species closely related to C. albicans and a causative agent of oropharyngeal candidiasis in immunocompromised humans [5,6]. Biofilm formation is a major virulence factor in the pathogenicity of Candida species, partly due to their increased resistance to antifungal treatment [7,8]. Since biofilm associated infections have many clinical and economic consequences, recent research into the pathogenicity of Candida species has focused on the prevention and management of these biofilms. Fatty acids have been known to have antibacterial [9] and antifungal properties and especially capric acid (10:0) and lauric acid (12:0) are known to have anti-candida effects by inhibiting growth of planktonic cells [10] and butyric acid (4:0) was shown to inhibit hyphal formation by C. albicans [11]. Marine lipids, such as fish oils, are well known sources of medium to long chain polyunsaturated fatty acids (PUFAs) and are enriched in n-3 PUFAs [i.e., stearidonic acid (18:4 n-3), eicosapentaenoic acid (20:5 n-3), docosapentaenoic acid (22:5 n-3) and docosahexaenoic acid (22:6 n-3)] [12]. In addition, marine algae provide alternative sources of these n-3 PUFAs [13]. The lipid compositions and quantity of marine lipids vary depending on species and climatic conditions, with lipids from organisms in colder regions having a higher PUFA content than those in warmer regions [14,15]. Although some marine PUFAs have beneficial effects in several human diseases [16 18], the effectiveness of marine PUFAs against Candida biofilms have not been assessed previously. Therefore, the aim of this study was to determine the effect of long chain marine PUFAs [18:4 n-3, arachidonic acid (20:4 n-6), 20:5 n-3, 22:5 n-3 and 22:6 n-3] on biofilm formation by C. albicans and C. dubliniensis. 2. Results and Discussion 2.1. Inhibition of mitochondrial metabolism Figure 1. Effect of marine fatty acids (18:4 n-3, 20:4 n-3, 20:5 n-3, 22:5 n-3, 22:6 n-3) on mitochondrial metabolism of C. albicans and C. dubliniensis biofilms. Biofilms were grown in the presence of 1 mm of the fatty acids and mitochondrial activity was monitored using the XTT assay. The percentage inhibition values were determined compared to untreated controls. n = 8; * significantly different from control (P 0.01). * * * * * * * *

Percentage Inhibition Mar. Drugs 2010, 8 2599 As indicated in Figure 1 the mitochondrial metabolism of biofilms of C. albicans and C. dubliniensis, assessed by XTT assay, was significantly inhibited by 1 mm 18:4 n-3, 20:5 n-3 and 22:5 n-3. In addition, biofilms of C. albicans were also sensitive to 20:4 n-6, while biofilms of C. dubliniensis were not significantly inhibited. Interestingly, 22:6 n-3 did not significantly inhibit mitochondrial metabolism of C. albicans or C. dubliniensis biofilms. As a result 20:4 n-6 and 22:6 n-3 were not used in further experiments. 2.2. Inhibition of biomass production Although several authors use the XTT reduction assay as an indicator of biofilm biomass, Kuhn and co-workers [19] has cautioned against this approach. Therefore, the effect of the marine PUFAs on biofilm biomass production was determined by dry weight. As indicated in Figure 2, biofilm biomass production by C. dubliniensis was susceptible to the three tested PUFAs, with 18:4 n-3 and 20:5 n-3 resulting in a reduction of circa 82% and 71%, respectively. C. dubliniensis biofilm biomass was less susceptible to 22:5 n-3, which produced an inhibition of circa 19%. Similar results were obtained between the two species for the XTT reduction assay, however, the biofilm biomass of C. albicans was generally less susceptible to the tested PUFAs and a reduction of only circa 25% and 22% was seen for 18:4 n-3 and 22:5 n-3, respectively. Although a circa 16% reduction in C. albicans biofilm biomass was observed with 20:5 n-3, this was not statistically significant. These results may indicate the increased ability of the C. albicans strain to obtain energy through pathways that do not require mitochondrial metabolism. Figure 2. Inhibition of biofilm biomass of C. albicans and C. dubliniensis compared to untreated controls. Biofilms were grown in the presence of 1 mm of the marine PUFAs (18:4 n-3, 20:5 n-3, 22:5 n-3) and biofilm dry weight was determined on pre-weighed filters. n = 2. 100 90 80 70 60 50 40 30 20 10 0 C. albicans C. dubliniensis 18:4 n-3 20:5 n-3 22:5 n-3 2.3. Morphology of cells in biofilms Figure 3 depicts biofilms of C. albicans grown in the presence and absence of 1 mm 18:4 n-3, 20:5 n-3 and 22:5 n-3. In the absence of the PUFAs, the cell surface appeared smooth (Figure 3a) and when grown in the presence of PUFAs, cells had a rough appearance with protuberances (Figure 3b, c, d). Similar results were also observed for biofilms of C. dubliniensis when grown in the absence (Figure 4a),

Mar. Drugs 2010, 8 2600 and the presence (Figure 4b, c, d), of the PUFAs with protuberances and fibrillar structures visible on the cell surface. Similar rough cell surfaces were observed when C. albicans was exposed to miconazole [20], which is known to cause an increase in reactive oxygen species in Candida biofilm cells [21]. Lemar et al. [22] also found that C. albicans cells were not smooth in the presence of alyl alcohol, which increases oxidative stress. Furthermore, in a study by Leeuw et al. [23] on the yeast Cryptococcus curvatus grown on oxidised lipids, protuberances were observed on the cell surface. We therefore speculate that the changes in cell surface in the presence of PUFAs might be due to increased lipid peroxidation and resultant oxidative stress. This will be studied in future. Figure 3. SEM micrograps showing cells of C. albicans control biofilms (a) and biofilms treated with 1 mm 18:4 n-3 (b), 20:5 n-3 (c) and 22:5 n-3 (d). Figure 4. SEM micrographs showing cells of C. dubliniensis control biofilms (a) and biofilms treated with 1mM 18:4 n-3 (b), 20:5 n-3 (c) and 22:5 n-3 (d).

Mar. Drugs 2010, 8 2601 3. Experimental 3.1. Strains used Candida albicans CBS 562T and Candida dubliniensis NRRL Y-17841T were used in this study and were maintained on yeast malt extract (YM) agar plates (10 g/l glucose, 3 g/l yeast extract, 3 g/l malt extract, 5 g/l peptone, 16 g/l agar) at room temperature. The strains were stored on agar slants at 4 C. 3.2. XTT assay of biofilms Cells of C. albicans and C. dubliniensis were grown separately on YM agar plates and incubated at 30 C for 24 hours. After incubation, a loop-full of the cells was inoculated into 20 ml of yeast nitrogen base (YNB) glucose medium (10 g/l glucose, 6.7 g/l YNB) and incubated for 48 hours at 30 C. Cells were washed three times with phosphate buffered saline (PBS) and diluted in RPMI-1640 medium (Sigma-Aldrich, UK) to an initial cell concentration of 1 10 6 cells/ml. A volume of 100 µl of the standardized cell suspension was dispensed into a 96-well microtiter plate (Corning Incorporated, Costar, U.S.) and incubated for 1 hour at 37 C to allow adherence of cells to the surface [24]. Wells were washed twice with PBS to remove non-adherent cells. Mature biofilms were formed at 37 C for 47 hours in the presence and absence of 1 mm of the marine fatty acids (18:4 n-3, 20:4 n-3, 20:5 n-3, 22:5 n-3, 22:6 n-3) (Sigma-Aldrich, UK). The reduction of (2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino)carbonyl]-2H-tetrazolium hydroxide) (XTT) (Sigma Aldrich) was used to examine the yeast viability by measuring the mitochondrial metabolic activity of the biofilms, according to the method of Kuhn et al. [19]. XTT is converted to the diffusible, water soluble formazan that is colored and is easily measured in cellular supernatants in terms of optical density at 492 nm. This experiment was done in duplicate on two different days and four values obtained for each repetition (n = 8). The average and standard deviations were calculated and the student s t-test was used to determine the significance of data sets. 3.3. Biomass determination Twenty milliliters of a standardized cell suspension (1 10 6 cells/ml), prepared as before, was inoculated into Petri dishes containing RPMI-1640 medium and allowed to adhere to the surface for 1 hour at 37 C. Non-adherent cells were removed with PBS and mature biofilms were formed in the presence of 1 mm of the marine fatty acids (18:4 n-3, 20:5 n-3, 22:5 n-3) for 47 hours at 37 C. Untreated biofilms served as controls. Mature biofilms were washed to remove non-adherent cells, scraped off and resuspended in PBS. Cells were filtered on pre-weighed 0.2 µm cellulose acetate filters (Lasec, SA). The filters were dried to constant weight for 48 hours at 37 C and the biomass determined. This experiment was done in duplicate and the mean and range calculated. 3.4. Morphological examination The standardized cell suspension (1 10 6 cells/ml), prepared as before, was added to chamber slides (Lab-Tek Chamber Slide System 177372) containing silicone rubber disks (diam 5.5 mm)

Mar. Drugs 2010, 8 2602 and 4 ml RPMI-1640 medium. Cells were allowed to adhere for 1 hour at 37 C. Non-adherent cells were removed with PBS and mature biofilms were formed in the presence of 1 mm of the marine fatty acids (18:4 n-3, 20:5 n-3, 22:5 n-3) for 47 hours at 37 C, with appropriate controls. The silicone rubber disks were removed and fixed for 2 hours using 3% (v/v; 1.0 M) sodium phosphate buffered glutardialdehyde, followed by fixing for 1 hour with a similarly buffered solution of osmium tetroxide (1% m/v). The disks were dehydrated in a graded series of ethanol solutions (50%, 70% and 95%) for 20 minutes and absolute ethanol for 1 hour. They were then critical-point dried, mounted and coated with gold to make them electrically conductive and finally visualized on a Shimadzu SSX550 SEM (Japan) microscope according to the method of van Wyk and Wingfield [25]. 4. Conclusions Certain marine PUFAs, especially 18:4 n-3, 20:5 n-3 and 22:5 n-3, have an inhibitory effect on the mitochondrial activity of both C. albicans and C. dubliniensis biofilms and significantly inhibited biofilm biomass of C. dubliniensis. These marine PUFAs also affected cellular morphology of biofilms of both species. This may be due to increased oxidative stress as a result of incorporation of PUFAs into the cellular lipids. These findings suggest that marine PUFAs may be useful in the treatment and/or prevention of Candida biofilms, which are known to have increased antifungal resistance compared to free-living cells. Acknowledgements The authors would like to thank the National Research Foundation, South Africa, for funding under the Thuthuka programme (Grant number TTK2007041000014) and the Blue Skies Research programme (Grant number BS2008092300002). References 1. Molero, G.; Díez-Orejas, R.; Navarro-García, F.; Monteoliva, L.; Pla, J.; Gil, C.; Sánchez-Pérez, M.; Nombela, C. Candida albicans: genetics, dimorphism and pathogenicity. Int. Microbiol. 1998, 1, 95 106. 2. Ramage, G.; Vande Walle, K.; Wickes, B.L.; Lopez-Ribot, J.L. Biofilm formation by Candida dubliniensis. J. Clin. Microbiol. 2001, 39, 3234 3240. 3. Berman, J.; Sudbery, P.E. Candida albicans: a molecular revolution built on lessons from budding yeast. Nat. Rev. Genet. 2002, 3, 918 930. 4. Neofytos, D.; Fishman, J.A.; Horn, D.; Anaissie, E.; Chang, C.-H.; Olyaei, A.; Pfaller, M.; Steinbach, W.J.; Webster, K.M.; Marr, K.A. Epidemiology and outcome of invasive fungal infections in solid organ transplant recipients. Transpl. Infect. Dis. 2010, 12, 220 229. 5. Coleman, D.; Sullivan, D.; Harrington, B.; Haynes, K.; Henman, M.; Shanley, D.; Bennett, D.; Moran, G.; McCreary, C.; O Neill, L. Molecular and phenotypic analysis of Candida dubliniensis: a recently identified species linked with oral candidasis in HIV-infected and AIDS patients. Oral Dis. 1997, 36 (Suppl. 1), S96 S101.

Mar. Drugs 2010, 8 2603 6. Jabra-Rizk, M.A.; Falkler, W.A., Jr.; Merz, W.G.; Baqui, A.A.; Kelley, J.I.; Meiller, T.F. Retrospective identification and characterization of Candida dubliniensis isolates among Candida albicans clinical laboratory isolates from human immunodeficiency virus (HIV)-infected and non-hiv-infected individuals. J. Clin. Microbiol. 2000, 38, 2423 2426. 7. Coleman, D.C.; Rinaldi, M.G.; Haynes, K.A.; Rex, J.H.; Summerbel, R.C.; Anaissie, E.J.; Li, A.; Sullivan, D.J. Importance of Candida species other than Candida albicans as opportunistic pathogens. Med. Mycol. 1998, 36 (Suppl. 1), 156 165. 8. Ballie, G.S.; Douglas, L.J. Candida biofilms and their susceptibility to antifungal agents. Meth. Enzymol. 1999, 310, 644 656. 9. Sylvain, L.S.; Lucia, V.M.; Elisabetta, G. Effect of α-linolenic, capric and lauric acid on the fatty acid biosynthesis in Staphylococcus aureus. Int. J. Food Microbiol. 2009, 129, 288 294. 10. Bergusson, G.; Arnfinnsson, J.; Steingrimsson, O.; Thormar, H. In vitro killing of Candida albicans by fatty acids and monoglycerides. Antimicrob. Agents Chemother. 2001, 45, 3209 3212. 11. Noverr, M.C.; Huffnagle, G.B. Regulation of Candida albicans morphogenesis by fatty acid metabolites. Infect. Immun. 2004, 72, 6206 6210. 12. Sahena, F.; Zaidul, I.S.M.; Jinap, S.; Yazid, A.M.; Khatib, A.; Norulaini, N.A.N. Fatty acid composition of fish oil extracted from different parts of Indian mackerel (Rastrelliger kanagurta) using various techniques of supercritical CO 2 extraction. Food Chem. 2010, 120, 879 885. 13. Saito, H.; Xue, C.; Yamashiro, R.; Moromizato, S.; Itabashi, Y. High polyunsaturated fatty acid levels in two subtropical macroalgae, Cladosiphon okamuranus and Caulerpa lentillifera. J. Phycol. 2010, 46, 665 673, DOI:10.1111/j.1529-8817.2010.00848.x. 14. Çelik, M.; Diler, A.; Küçükgülmez, A. A comparison of the proximate compositions and fatty acid profiles of zander (Sander lucioperca) from two different regions and climatic conditions. Food Chem. 2005, 92, 637 641. 15. De Angelis, L.; Risè, P.; Giavarini, F.; Galli, C.; Bolis, C.L.; Colombo, M.L. Marine macroalgae analyzed by mass spectrometry are rich sources of polyunsaturated fatty acids. J. Mass Spectrom. 2005, 40, 1605 1608. 16. Kris-Etherton, P.M.; Harris, W.S.; Appel, L.J. Fish oil. Omega-3 fatty acids and cardiovasicular disease. Circulation 2002, 103, 2747 2757. 17. Singh, R.B.; Niaz, M.A.; Sharma, J.P.; Kumar, R.; Rastogi, V.; Moshiri, M. Randomised double-blind, placebo-controlled trial of fish and mustard oil in patients with suspected acute mycordial infarction: The Indian experiment of infarct survival. Cardiovasc. Drugs Ther. 1997, 11, 485 491. 18. Von Schacky, C.; Angerer, P.; Kothny, W.; Mudra, H. The effect of dietary omega-3 fatty acids on coronary atherosclerosis. A randomized double-blind, placebo-controlled trial. Ann. Intern. Med. 1999, 130, 554 562. 19. Kuhn, D.M.; Balkis, M.; Chandra, J.; Mukherjee, P.K.; Ghannoum, M.A. Uses and limitations of the XTT in the studies of Candida growth and metabolism. J. Clin. Microbiol. 2003, 41, 506 508. 20. Nollin, S.D.; Borgers, M. Scanning electron microscopy of Candida albicans after in vitro treatment with miconazole. Antimicrob. Agents Chemother. 1975, 7, 704 711.

Mar. Drugs 2010, 8 2604 21. Vandenbosch, D.; Braeckmans, K.; Nelis, H.J.; Coenye, T. Fungicidal activity of miconazole against Candida spp. biofilms. J. Antimicrob. Chemother. 2010, 65, 694 700. 22. Lemar, K.M.; Passa, O.; Aon, M.A.; Cortassa, S.; Müller, C.T.; Plummer, S.; O Rourke, B.; Lloyd, D. Allyl alcohol and garlic (Allium sativum) extract produce oxidative stress in Candida albicans. Microbiology 2005, 151, 3257 3265. 23. Leeuw, N.J. The influence of oxidized oils on fungal growth and lipid utilization. Ph.D. Thesis, University of the Free State, Bloemfontein, South Africa, 2010. 24. Samaranayake, Y.M.; Wu, P.C.; Samaranayake, L.P. Relationship between the cell surface hydrophobicity and adherence of Candida krusei and Candida albicans to epithelial and denture acrylic surfaces. APMIS 1995, 103, 707 713. 25. Van Wyk, P.W.J.; Wingfield, M.J. Ascospores ultrastructure and development in Ophiostoma cucullatum. Mycologia 1991, 83, 698 707. Samples Availability: Available from the authors. 2010 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).