Supporting Information

Similar documents
Nature Structural & Molecular Biology: doi: /nsmb Supplementary Figure 1

Characterizing fatty acids with advanced multinuclear NMR methods

Identification of novel endophenaside antibiotics produced by Kitasatospora sp. MBT66

Supplementary Figure 1 (previous page). EM analysis of full-length GCGR. (a) Exemplary tilt pair images of the GCGR mab23 complex acquired for Random

This exam consists of two parts. Part I is multiple choice. Each of these 25 questions is worth 2 points.

Excerpt from J. Mol. Biol. (2002) 320, :

2,6,9-Triazabicyclo[3.3.1]nonanes as overlooked. amino-modification products by acrolein

Supporting Information

Supplementary Figure 1. Structure models of the c4 variant proteins based on the structures of maltose binding protein (MBP) in red and TEM-1

Transient β-hairpin Formation in α-synuclein Monomer Revealed by Coarse-grained Molecular Dynamics Simulation

List of Figures. List of Tables

Supplementary Figure 1. ESI/MS/MS analyses of native and de-acetylated S2A Supplementary Figure 2. Partial 1D 1H NMR spectrum of S2A

BCH Graduate Survey of Biochemistry

BIOL 158: BIOLOGICAL CHEMISTRY II

Lysoquinone-TH1, a new polyphenolic tridecaketide produced by expressing the lysolipin minimal PKS II in Streptomyces albus

Porphyrins: Chemistry and Biology

Supplementary Materials: An NMR Guided Screening Method for Selective Fragment Docking and Synthesis of a Warhead Inhibitor

Insights into the Giardia intestinalis Enolase and Human Plasminogen interaction

H C. C α. Proteins perform a vast array of biological function including: Side chain

SUPPLEMENTARY INFORMATION. Computational Assay of H7N9 Influenza Neuraminidase Reveals R292K Mutation Reduces Drug Binding Affinity

Table S1. X-ray data collection and refinement statistics

Supplementary Information

Protein Secondary Structure

Chapter 8. Interaction between the phosphatidylinositol 3- kinase SH3 domain and a photocleavable cyclic peptide

Supporting Information for:

Your Name: Question 1. Spectrum Prediction I: Ethyl Acetoacetate. (15 points) ppm ppm ppm ppm. J(A,D) = 8 Hz = 0.

(B D) Three views of the final refined 2Fo-Fc electron density map of the Vpr (red)-ung2 (green) interacting region, contoured at 1.4σ.

Coenzymes, vitamins and trace elements 209. Petr Tůma Eva Samcová

Amino Acids. Review I: Protein Structure. Amino Acids: Structures. Amino Acids (contd.) Rajan Munshi

9/11/18. Cell Function & Chemistry. Molecular and Cellular Biology. 2. Bio-Chemical Foundations & Key Molecules of a Cell

CS612 - Algorithms in Bioinformatics

A pillar[2]arene[3]hydroquinone which can self-assemble to a molecular zipper in the solid state

Christoph Zuth, Alexander L. Vogel, Sara Ockenfeld, Regina Huesmann and Thorsten Hoffmann * S-1. Supporting Information for:

Supplementary Material

Lesson 5 Proteins Levels of Protein Structure

Supporting information

Electron Transfer Chain

SUPPORTING INFORMATION. Lysine Carbonylation is a Previously Unrecognized Contributor. to Peroxidase Activation of Cytochrome c by Chloramine-T

Supplemental Information. An Atlas of b-glucuronidases. in the Human Intestinal Microbiome

Self-organization of dipyridylcalix[4]pyrrole into a supramolecular cage for dicarboxylates

SUPPORTING INFORMATION FOR. A Computational Approach to Enzyme Design: Using Docking and MM- GBSA Scoring

An esterase from anaerobic Clostridium hathewayi can hydrolyze aliphatic-aromatic polyesters

FCC2 5CY7 FCC1 5CY8. Actinonin 5CVQ

Marine Streptomyces sp. derived antimycin analogues. suppress HeLa cells via depletion HPV E6/E7 mediated by

Table S1: Kinetic parameters of drug and substrate binding to wild type and HIV-1 protease variants. Data adapted from Ref. 6 in main text.

Identification of Aromatic Fatty Acid Ethyl Esters

Globular proteins Proteins globular fibrous

Supplementary Figure-1. SDS PAGE analysis of purified designed carbonic anhydrase enzymes. M1-M4 shown in lanes 1-4, respectively, with molecular

Thermal shift binding experiments were carried out using Thermofluor 384 ELS system. Protein

The mechanism of patellamide macrocyclization revealed by study of the Prochloron sp PatG macrocyclase domain

Oxidative Phosphorylation

2.1. thebiotutor. Unit F212: Molecules, Biodiversity, Food and Health. 1.1 Biological molecules. Answers

Applying Molecular Networking for the Detection of

Proteins. Amino acids, structure and function. The Nobel Prize in Chemistry 2012 Robert J. Lefkowitz Brian K. Kobilka

Detergent solubilised 5 TMD binds pregnanolone at the Q245 neurosteroid potentiation site.

Page Location Correction Correction made in this printing 7 Third paragraph

Supporting Information

Supplementary Materials for

Gade Hyldgaard, Mette; Purup, Stig; Bond, Andrew David; Frete, Xavier; Qu, Haiyan; Teglgaard Jensen, Katrine; Christensen, Lars Porskjær

SUPPLEMENTAL DATA. Cytochrome P450-type hydroxylation and epoxidation in a tyrosine-liganded hemoprotein, catalase-related allene oxide synthase

Chapter 6. X-ray structure analysis of D30N tethered HIV-1 protease. dimer/saquinavir complex

SUPPLEMENTAL MATERIAL. UNC119 is required for G protein trafficking in sensory neurons

In vitro conversion of chanoclavine-i aldehyde to the stereoisomers festuclavine and pyroclavine was controlled by the second reduction step

Synthesis of the trans-hydrindane core of dictyoxetane

Supplementary Information Janssen et al.

Preparation and Characterization of Cysteine Adducts of Deoxynivalenol

Biomimetic Chirality Sensing with Pyridoxal-5 -phosphate

Modeling holo-acp:dh and holo-acp:kr complexes of modular polyketide synthases: a docking and molecular dynamics study

Fabrication of Bio-based Polyelectrolyte Capsules and Their Application for Glucose-Triggered Insulin Delivery

Atypical Natural Killer T-cell receptor recognition of CD1d-lipid antigens supplementary Information.

Introduction to proteins and protein structure

DEPARTMENT OF CHEMISTRY AND CHEMICAL ORGANIC CHEMISTRY II 202-BZG-05 03

Supporting Information

Topic 6 Structure Determination Revision Notes

Supplementary Table 1. Data collection and refinement statistics (molecular replacement).

Protein Refinement in Discovery Studio 1.7. Presented by: Francisco Hernandez-Guzman, PhD

KDM2A. Reactions. containing. Reactions

Supporting Information

THE JOURNAL OF ANTIBIOTICS. Polyketomycin, a New Antibiotic from Streptomyces sp. MK277-AF1. II. Structure Determination

Bioinformatics for molecular biology

User Guide. Protein Clpper. Statistical scoring of protease cleavage sites. 1. Introduction Protein Clpper Analysis Procedure...

Supplementary Figure 1. Amino acid sequences of GodA and GodA*. Inserted. residues are colored red. Numbers indicate the position of each residue.

Kinetic model of the biomass hydrolysis by polysulfone. membrane with chemically linked acidic ionic liquids via.

Selective phosphatidylcholine double bond. fragmentation and localization using. Paternó-Büchi reactions and ultraviolet.

Analysis of Uncomplexed and Copper-complexed Methanobactin with UV/Visible Spectrophotometry, Mass Spectrometry and NMR Spectrometry

Review II: The Molecules of Life

Synthesis of ATP, the energy currency in metabolism

Supporting Information:

19 Oxidative Phosphorylation and Photophosphorylation W. H. Freeman and Company

Acaulins A and B, Trimeric Macrodiolides from Acaulium. Table of Contents

Methyltrioxorhenium-Catalyzed Highly Selective Dihydroxylation of 1,2-Allenylic Diphenyl Phosphine Oxides

Chemistry 5.07 Problem Set 5 (redox cofactors and oxidation reactions; carbohydrate chemistry, and introduction to metabolism)

Multiple-Choice Questions Answer ALL 20 multiple-choice questions on the Scantron Card in PENCIL

بسم هللا الرحمن الرحيم

Molecular docking analysis of UniProtKB nitrate reductase enzyme with known natural flavonoids

Supplementary Information

Metals in Redox Biology C O R Y B O O N E, C E C I L I A H A G E R T, Q I A N G MA R E D O X - C O U R S E

Colloidal metal oxide nanocrystal catalysis by sustained chemically driven ligand displacement

Ch. 9 Cell Respiration. Title: Oct 15 3:24 PM (1 of 53)

Transcription:

Supporting Information Identification, characterization and molecular adaptation of class I redox systems for the production of multi-functionalized diterpenoids Christian Görner a,, Patrick Schrepfer a,, Veronika Redai a, Frank Wallrapp b, Bernhard Loll c, Wolfgang Eisenreich e, Martin Haslbeck f and Thomas Brück a, * a Division of Industrial Biocatalysis, Technical University of Munich, Lichtenberg Str. 4, 85748 Garching, Germany b Chair of Bioinformatics, Technical University of Munich, Boltzmannstraße 3, 85748 Garching, Germany c Institute for Chemistry and Biochemistry, Division of Structural Biology, Freie Universität Berlin, Takustr. 6, 14195 Berlin, Germany d Chair of Biochemistry, Technical University of Munich, Lichtenberg Str. 4, 85748 Garching e Chair of Biotechnology, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany These authors contributed equally. * To whom correspondence should be addressed: Thomas Brück Fachgebiet für Industrielle Biokatalyse Zentrum für Weiße Biotechnologie Department für Chemie Technische Universität München Lichtenberg Str. 4, 85748 Garching, Germany E-mail: brueck@tum.de S1

Content 1. In vivo assay... 7 Figure S1a. In vivo assay for the conversion of cyclooctat-9-en-7-ol by CotB3 to cyclooctat-9-en- 5,7-diol using different redox system variants. The data is illustrated as boxplot diagram (25 % to 75 % with whiskers with maximum 1.5 IQR) from five whole cell hydroxylation experiments. 100 % yield correspond to the median of the CotB3/AfR/Afx control... 7 Figure S1b. In vivo assay for the conversion of cyclooctat-9-en-5,7-diol by CotB4 to cyclooctatin using different redox system variants. The data is illustrated as boxplot diagram (25 % to 75 % with whiskers with maximum 1.5 IQR) from five whole cell hydroxylation experiments. 100 % yield correspond to the median of the CotB3/AfR/Afx control.... 7 Figure S1c. SDS Page of the whole cell proteome from the in vivo assay (24 hours). The catalytic efficiency of CotB3 was evaluated using different redox system variants.... 8 Table S1. Description of Figure S1c... 8 Figure S1d. SDS Page of the whole cell proteome from the in vivo assay (24 hours). The catalytic efficiency of CotB4 was evaluated using different redox system variants.... 9 Table S2. Description of Figure S1d... 9 2. Bioinformatics... 10 Figure S2a. Model of CotB3 harboring cyclooct-9-en-7-ol. Modelled CotB3 (gray), prosthetic heme group (magenta) and cyclooct-9-en-7-ol (blue)... 10 Figure S2b. Structural alignment of CotB3 (cyan) and P450cam (PDB-ID: 4JX1, red). The alignment has an RMSD of 0.142Å over 313 aligned residues with 19% sequence identity. Note that the RMSD value considers only atoms that are present in both structures. Not matching loops in CotB3 are not incorporated into the alignment. The interaction region of CotB3 with Afx/Pdx is part of the matched helical structures.... 11 Figure S2c. Model of CotB4 harboring cyclooct-9-en-5,7-diol. Modelled CotB4 (gray), prosthetic heme group (magenta) and cyclooct-9-en-5,7-diol (blue).... 12 Fig S2d. Structural alignment of CotB4 (cyan) and P450cam (PDB-ID: 4JX1, red). The alignment has an RMSD of 0.144Å over 339 aligned residues with 18% sequence identity. Note that the RMSD value considers only atoms that are present in both structures. Not matching loops in CotB4 are not incorporated into the alignment. The interaction region of CotB4 with Afx/Pdx is part of the matched helical structures.... 13 Figure S2e. Modelled AfR Afx complex with AfR harboring FAD (Flavin-Adenine-Dinucleotide) and Afx harboring inorganic Fe 2/S 2-cluster. AfR Afx complex (dark blue/gray). AfR with bound prosthetic FAD (magenta) and Afx bound to inorganic Fe 2/S 2-cluster (light blue). W297 of AfR proposed to be acting in electron transfer is shown in red.... 14 Figure S2f. Modelled CotB3 Afx complex harboring cyclooct-9-en-7-ol. CotB3 Afx complex (dark blue/orange). CotB3 contains prosthetic heme group (magenta) and cyclooct-9-en-7-ol (light blue). Afx bound to inorganic Fe 2/S 2-cluster (green/magenta).... 15 Figure S2g. Modelled CotB4 Afx complex harboring cyclooct-9-en-7-ol. CotB4 Afx complex (dark blue/orange). CotB4 contains prosthetic heme group (magenta) and cyclooct-9-en-5,7- diol (light blue). Afx contains inorganic Fe2/S2-cluster (green/magenta)... 16 S2

Figure S2h. Inner view of the Cotb3 Pdx complex (dark blue red). Pdx contains inorganic Fe2/S2-cluster (green/magenta). CotB3 contains prosthetic heme group (gray) and cyclooct-9- en-7-ol (red). Essential hydrogen bonds for the interaction of Pdx and CotB3 to facilitate binding and electron transport are highlighted in black. Hydrogen bond formation between CotB3 R110 and CotB3 R114 with Pdx W106 needed for efficient binding and electron transfer, is strongly impaired due to the chemical nature of participating amino acids. The Cotb4 Pdx complex exhibits the same structure and also the same interacting residues.... 17 Figure S2i. Inner view of the Cotb4 Afx complex (dark blue red). Afx contains inorganic Fe 2/S 2- cluster (green/magenta). CotB4 contains prosthetic heme group (gray) and cyclooct-9-en-5,7- diol (red). Essential hydrogen bonds for the interaction of Afx and CotB4 to facilitate binding and electron transport are highlighted in black.... 18 Figure S2j. Structural superposition of the PdR Pdx (red blue) with the modelled AfR Afx complex (ocher gray). Prosthetic FAD group of PdR and modelled AfR are shown in light blue. 2Fe 2S cluster of Pdx and modelled Afx are shown in magenta/green. The important hydrogen bridge (black) between Pdx D38 and PdR R310 needed for binding as well as PdR W330 facilitating electron transport are shown. Differing position of PdR W330 corresponding to W297 in AfR, presumably acting in electron transfer from FAD to Pdx is shown in ocher. Analogous interactions facilitating binding of AfR to Afx could not be deciphered. Substitution of Pdx D38 to E38 is suggested to impair electron transport by an alternate binding mode of Pdx D38E to native PdR.... 19 Figure S2k. Modelled CotB3 harboring (-)-casbene. CotB3 (light purple) contains prosthetic heme group (blue) and docked (-)-casbene (gray). The heme group contains the iron cation (magenta) and the dative bond to cysteine 408 (green) of the CotB3. (-)-Casbene is shown in the conformation comprising the lowest binding energy derived by cluster analysis of AutodockVina. Hydroxylated C-10 of (-)-casbene is shown in blue.... 20 Figure S2l. Modelled CotB3 harboring sinularcasbene D. CotB3 (light purple) contains prosthetic heme group (blue) and docked sinularcasbene D (gray). The heme group contains the iron cation (magenta) and the dative bond to cysteine 408 (green) of the CotB3. Sinularcasbene D is shown in the conformation comprising the lowest binding energy derived by cluster analysis of AutodockVina.... 21 Table S3. PROCHECK results of CotB3/4, AfR and Afx.... 22 QMEAN Z-scores... 22 Figure S2m. QMEAN Z-score of the AfR model (-0.31)... 22 Figure S2n. QMEAN Z-score of the Afx model (-0.10)... 23 Figure S2o. QMEAN Z-score of the CotB3 model (-1.15)... 23 Figure S2p. QMEAN Z-score of the CotB4 model (-1.33)... 24 3. NMR-Spectroscopy... 25 Figure S3a. 1H NMR (500 MHz, CDCl3) of cyclooctat-9-en-7-ol... 25 Figure S3b. 13 C NMR (125 MHz, CDCl 3) of cyclooctat-9-en-7-ol... 26 Figure S3c. 1 H NMR (500 MHz, CDCl 3) of cyclooctat-9-en-5,7-diol... 27 Figure S3d. 13 C NMR (125 MHz, CDCl 3) of cyclooctat-9-en-5,7-diol... 28 Figure S3e. 1 H NMR (500 MHz, CD 3-OD) of cyclooctatin... 29 S3

Figure S3f. 13 C NMR (125 MHz, CD 3-OD) of cyclooctatin... 30 Figure S3g. COSY (500 MHz, CD 3-OD) NMR of cyclooctatin... 31 Figure S3h. HSQC (500 MHz, CD 3-OD) NMR of cyclooctatin... 32 Figure S3i. NOESY NMR (500 MHz, CD3-OD) of cyclooctatin... 33 Figure S3j 1 H NMR (500 MHz, CDCl 3) of the C-5 R-MTPA derivative of cyclooctat-9-en-5,7-diol. 34 Figure S3k. 13 C NMR (125 MHz, CDCl 3) of the C-5 R-MTPA derivative of cyclooctat-9-en-5,7-diol... 35 Figure S3l. COSY NMR (500 MHz, CDCl 3) of the C-5 R-MTPA derivative of cyclooctat-9-en-5,7- diol... 36 Figure S3m. HSQC NMR (500 MHz, CDCl 3) of the C-5 R-MTPA derivative of cyclooctat-9-en-5,7- diol... 37 Figure S3n. NOESY NMR (500 MHz, CDCl 3) of the C-5 R-MTPA derivative of cyclooctat-9-en-5,7- diol... 38 Figure S3o. 1 H NMR (500 MHz, CDCl 3) of the C-5 S-MTPA derivative of cyclooctat-9-en-5,7-diol... 39 Figure S3p. 13 C NMR (125 MHz, CDCl 3) of the C-5 S-MTPA derivative of cyclooctat-9-en-5,7-diol... 40 Figure S3q. COSY NMR (500 MHz, CDCl 3) of the C-5 S-MTPA derivative of cyclooctat-9-en-5,7- diol... 41 Figure S3r. HSQC NMR (500 MHz, CDCl 3) of the C-5 S-MTPA derivative of cyclooctat-9-en-5,7- diol... 42 Figure S3s. NOESY NMR (500 MHz, CDCl 3) of the C-5 S-MTPA derivative of cyclooctat-9-en-5,7- diol... 43 Chiral derivatizing and analysis... 44 Figure S3t. 1 H NMR (500 MHz, CDCl 3) Overlay of the C-5 R/S-MTPA derivatives of cyclooctat-9- en-5,7-diol... 44 Table S4. Experimental 1 H (CDCl 3, 500 MHz, δ H) and 13 C (CDCl 3, 125 MHz, δ C) NMR data of the C- 5 R-MTPA derivatives of cyclooctat-9-en-5,7-diol... 45 Table S5. Experimental 1 H (CDCl 3, 500 MHz, δ H) and 13 C (CDCl 3, 125 MHz, δ C) NMR data of the C- 5 S-MTPA derivatives of cyclooctat-9-en-5,7-diol... 46 Figure S4. Δδ (S R) values (ppm) for the C-5 MTPA derivatives of cyclooctat-9-en-5,7-diol... 47 Figure S5a. 1 H NMR (500 MHz, CDCl 3) of (-)-Casbene... 48 Figure S5b. 13 C NMR (125 MHz, CDCl 3) of (-)-Casbene... 49 Table S6. Experimental 1 H (CDCl 3, 500 MHz, δ H, J in Hz) and 13 C (CDCl 3, 125 MHz, δ C) NMR data of sinularcasbane D... 50 Figure S6. COSY and HMBC correlations of sinularcasbane D... 51 Figure S7. Illustrated NOESY correlations of sinularcasbane D. Modelling was done using molecular mechanics (MM2) calculations with ChemDraw Ultra Ver. 13.0 (CambridgeSoft).... 51 Figure S8a. 1 H NMR (500 MHz, CDCl 3) of sinularcasbane D... 52 S4

Figure S8b. 1 H NMR (500 MHz, CDCl 3) of sinularcasbane D... 53 Figure S8c. 13 C NMR (125 MHz, CDCl 3) of sinularcasbane D... 54 Figure S8d. COSY NMR (500 MHz, CDCl 3) of sinularcasbane D... 55 Figure S8e. HSQC NMR (500 MHz, CDCl 3) of sinularcasbane D... 56 Figure S8f. HMBC NMR (500 MHz, CDCl 3) of sinularcasbane D... 57 Figure S8g. NOESY NMR (500 MHz, CDCl 3) of sinularcasbane D... 58 4. CD-Spectroscopy... 59 Figure S9. Circular dichroism spectroscopy of cyclooctat-9-en-7-ol (a), cyclooctat-9-en-5-7-diol (b), cyclooctatin (c)... 59 5. Mass spectrometry... 60 Figure S10a. Mass spectrum of silylated cyclooctat-9-en-7-ol (RT: 21:16), recorded on a Trace GC Ultra with DSQII (Thermo Scientific), m/z was analyzed from [50-650]. m/z C 23H 42OSi calculated. 362.30.... 60 Figure S10b. Mass spectrum of silylated cyclooctat-9-en-5,7-diol (RT: 22:94), recorded on a Trace GC Ultra with DSQII (Thermo Scientific), m/z was analyzed from [50-650]. m/z C 26H 50O 2Si 2 calculated 450.33.... 60 Figure S10c. Mass spectrum of silylated cyclooctatin (RT: 24:40), recorded on a Trace GC Ultra with DSQII (Thermo Scientific), m/z was analyzed from [50-650]. m/z C 28H 56O 3Si 3 calculated 524.35.... 61 Figure S10f. Mass spectrum of sinularcasbane D (RT: 21:89), recorded on a Trace GC Ultra with DSQII (Thermo Scientific), m/z was analyzed from [50-650]. m/z C 20H 32O calculated 288.24.... 61 Figure S11. High resolution electron spray ionization of cyclooctat-9-en-7-ol (a) m/z ([M H 2O] + 272.2568 calculated C 20H 32 272.2504, cyclooctat-9-en-5-7-diol (b) m/z ([M H 2O] + 272.2450 calculated C 20H 32O 288.2453, cyclooctatin (c) m/z ([M H 2O] + 304.2415 calculated C 20H 32O 2 304.2402.... 62 Figure S12. GC-MS spectra from cell pellet extract of a 72h shake flask culture of (-)-casbene and hydroxylation to sinularcasbene D by CotB3 on a Trace GC Ultra with DSQII (Thermo Scientific).... 63 6. Genes... 64 Figure S13. Gene of 1-deoxy-D-xylulose 5-phosphate synthase (dxs)... 64 Figure S14. Gene of 1-deoxy-D-xylulose 5-phosphate reductoisomerase (dxp)... 65 Figure S15. Bi-cistronic operon of 2-C-methyl-D-erythriol 4-phosphate cytidyltransferase synthase (ispd) 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase (ispf)... 66 Figure S16. Gene of Isopentenyl-diphosphate delta isomerase (Idi)... 66 Figure S17. Gene of cotb2... 67 Figure S18. Bi-cistronic cotb3/cotb4 operon... 68 Figure S19. Bi-cistronic afr/afx operon... 69 Figure S20. Bi-cistronic pdr/pdx operon... 70 Figure S21.(-)-casbene synthase (cs) from Jatropha curcas... 71 S5

Figure S22. Taxadiene synthase (txs) from Taxus brevifolia... 72 S6

1. In vivo assay Figure S1a. In vivo assay for the conversion of cyclooctat-9-en-7-ol by CotB3 to cyclooctat- 9-en-5,7-diol using different redox system variants. The data is illustrated as boxplot diagram (25% to 75% with whiskers with maximum 1.5 IQR) from five whole cell hydroxylation experiments. 100% yield correspond to the median of the CotB3/AfR/Afx control. Figure S1b. In vivo assay for the conversion of cyclooctat-9-en-5,7-diol by CotB4 to cyclooctatin using different redox system variants. The data is illustrated as boxplot diagram (25% to 75% with whiskers with maximum 1.5 IQR) from five whole cell hydroxylation experiments. 100% yield correspond to the median of the CotB3/AfR/Afx control. S7

Figure S1c. SDS-Page of the whole cell proteome from the in vivo assay (24 hours). The catalytic efficiency of CotB3 was evaluated using different redox system variants. Table S1. Description of Figure S1c Lane # Lane Description Protein Band # Protein Identified 1 Marker 1 CotB3 2 pacyc-duet-1 (afr/afx, cotb3) 2 Pdx 3 pacyc-duet-1 (pdr/pdx, cotb3) 4 pacyc-duet-1 (pdr/pdx-d38e, cotb3) 5 pacyc-duet-1 (pdr/pdx-d38e, cotb3) 6 pacyc-duet-1 (pdr/pdx-d38e/w106e, cotb3) 7 pacyc-duet-1 (empty) S8

Figure S1d. SDS-Page of the whole cell proteome from the in vivo assay (24 hours). The catalytic efficiency of CotB4 was evaluated using different redox system variants. Table S2. Description of Figure S1d Lane # Lane Description Protein Band # Protein Identified 1 Marker 1 CotB4 2 pacyc-duet-1 (afr/afx, cotb4) 2 Pdx 3 pacyc-duet-1 (pdr/pdx, cotb4) 4 pacyc-duet-1 (pdr/pdx-d38e, cotb4) 5 pacyc-duet-1 (pdr/pdx-d38e, cotb4) 6 pacyc-duet-1 (pdr/pdx-d38e/w106e, cotb4) 7 pacyc-duet-1 (empty) S9

2. Bioinformatics Figure S2a. Model of CotB3 harboring cyclooct-9-en-7-ol. Modelled CotB3 (gray), prosthetic heme group (magenta) and cyclooct-9-en-7-ol (blue). S10

Figure S2b. Structural alignment of CotB3 (cyan) and P450cam (PDB-ID: 4JX1, red). The alignment has an RMSD of 0.142 Å over 313 aligned residues with 19% sequence identity. Note that the RMSD value considers only atoms that are present in both structures. Not matching loops in CotB3 are not incorporated into the alignment. The interaction region of CotB3 with Afx/Pdx is part of the matched helical structures. S11

Figure S2c. Model of CotB4 harboring cyclooct-9-en-5,7-diol. Modelled CotB4 (gray), prosthetic heme group (magenta) and cyclooct-9-en-5,7-diol (blue). S12

Fig S2d. Structural alignment of CotB4 (cyan) and P450cam (PDB-ID: 4JX1, red). The alignment has an RMSD of 0.144 Å over 339 aligned residues with 18% sequence identity. Note that the RMSD value considers only atoms that are present in both structures. Not matching loops in CotB4 are not incorporated into the alignment. The interaction region of CotB4 with Afx/Pdx is part of the matched helical structures. S13

Figure S2e. Modelled AfR Afx complex with AfR harboring FAD (Flavin-Adenine- Dinucleotide) and Afx harboring inorganic Fe 2/S 2-cluster. AfR Afx complex (dark blue/gray). AfR with bound prosthetic FAD (magenta) and Afx bound to inorganic Fe 2/S 2-cluster (light blue). W297 of AfR proposed to be acting in electron transfer is shown in red. S14

Figure S2f. Modelled CotB3 Afx complex harboring cyclooct-9-en-7-ol. CotB3 Afx complex (dark blue/orange). CotB3 contains prosthetic heme group (magenta) and cyclooct-9-en-7-ol (light blue). Afx bound to inorganic Fe 2/S 2-cluster (green/magenta). S15

Figure S2g. Modelled CotB4 Afx complex harboring cyclooct-9-en-7-ol. CotB4 Afx complex (dark blue/orange). CotB4 contains prosthetic heme group (magenta) and cyclooct-9-en-5,7- diol (light blue). Afx contains inorganic Fe2/S2-cluster (green/magenta). S16

Figure S2h. Inner view of the Cotb3 Pdx complex (dark blue red). Pdx contains inorganic Fe2/S2-cluster (green/magenta). CotB3 contains prosthetic heme group (gray) and cyclooct- 9-en-7-ol (red). Essential hydrogen bonds for the interaction of Pdx and CotB3 to facilitate binding and electron transport are highlighted in black. Hydrogen bond formation between CotB3 R110 and CotB3 R114 with Pdx W106 needed for efficient binding and electron transfer, is strongly impaired due to the chemical nature of participating amino acids. The Cotb4 Pdx complex exhibits the same structure and also the same interacting residues. S17

Figure S2i. Inner view of the Cotb4 Afx complex (dark blue red). Afx contains inorganic Fe 2/S 2-cluster (green/magenta). CotB4 contains prosthetic heme group (gray) and cyclooct- 9-en-5,7-diol (red). Essential hydrogen bonds for the interaction of Afx and CotB4 to facilitate binding and electron transport are highlighted in black. S18

Figure S2j. Structural superposition of the PdR Pdx (red blue) with the modelled AfR Afx complex (ocher gray). Prosthetic FAD group of PdR and modelled AfR are shown in light blue. 2Fe 2S cluster of Pdx and modelled Afx are shown in magenta/green. The important hydrogen bridge (black) between Pdx D38 and PdR R310 needed for binding as well as PdR W330 facilitating electron transport are shown. Differing position of PdR W330 corresponding to W297 in AfR, presumably acting in electron transfer from FAD to Pdx is shown in ocher. Analogous interactions facilitating binding of AfR to Afx could not be deciphered. Substitution of Pdx D38 to E38 is suggested to impair electron transport by an alternate binding mode of Pdx D38E to native PdR. S19

Figure S2k. Modelled CotB3 harboring (-)-casbene. CotB3 (light purple) contains prosthetic heme group (blue) and docked (-)-casbene (gray). The heme group contains the iron cation (magenta) and the dative bond to cysteine 408 (green) of the CotB3. (-)-Casbene is shown in the conformation comprising the lowest binding energy derived by cluster analysis of AutodockVina. Hydroxylated C-10 of (-)-casbene is shown in blue. S20

Figure S2l. Modelled CotB3 harboring sinularcasbane D. CotB3 (light purple) contains prosthetic heme group (blue) and docked sinularcasbane D (gray). The heme group contains the iron cation (magenta) and the dative bond to cysteine 408 (green) of the CotB3. Sinularcasbane D is shown in the conformation comprising the lowest binding energy derived by cluster analysis of AutodockVina. S21

Table S3. PROCHECK results of CotB3/4, AfR and Afx. Most favored regions in RAMACHANDRAN Plot [%] G-factor/ dihedral angles [average score] G-factor/Main-chain covalent forces [average score] CotB3 92.5-0.20-0.29 CotB4 90.4-0.27-0.32 AfR 92.8-0.01-0.13 Afx 94.1-0.02-0.09 Our models exceed the demanded 90% of the RAMACHANDRAN Plot factoring, which indicates that these are excellent models. Also the G-factors are all above the -0.5 threshold indicating that no unusual folding patterns occur. QMEAN Z-scores Figure S2m. QMEAN Z-score of the AfR model (-0.31). S22

Figure S2n. QMEAN Z-score of the Afx model (-0.10). Figure S2o. QMEAN Z-score of the CotB3 model (-1.15). S23

Figure S2p. QMEAN Z-score of the CotB4 model (-1.33). The QMEAN Z-score of the aforementioned modeled proteins suggest that these models are of comparable quality to high resolution experimental structures. The reference structures are a nonredundant subset of the PDB sharing less than 30% sequence identity among each other and are solved at a resolution below than 2 Å. The structural overlap of the PdR Pdx and AfR Afx complexes displayed high agreement and were therefore not subjected to further adjustments. In contrast, the hydroxylases CotB3/4 showed extended secondary structure motifs compared to the P450cam template. Both CotB3/4 display additional loop regions which are missing in P450cam. Consequently, the extra protein loops could not be aligned with the P450cam template (Figure S2b, d). Hence the extra loops will also complicate the quality assessments as ab initio loop modelling of unknown proteins are a typical source of error during modelling approaches. Therefore, we have excluded the extra loop regions in CotB3/4 in our PROCHECK and QMEAN Z-score quality assessments. As the excluded loops are neither in the vicinity of the active site, heme group or the ferredoxin interaction domain, an effect on identification of essential amino acid interactions can be excluded. In the absence of x-ray crystal structures, our modelling methodology provides the best insights into the essential protein interactions that drive the observed catalytic processes. S24

3. NMR-Spectroscopy Figure S3a. 1H NMR (500 MHz, CDCl3) of cyclooctat-9-en-7-ol. S25

Figure S3b. 13 C NMR (125 MHz, CDCl 3) of cyclooctat-9-en-7-ol. S26

Figure S3c. 1 H NMR (500 MHz, CDCl 3) of cyclooctat-9-en-5,7-diol. S27

Figure S3d. 13 C NMR (125 MHz, CDCl 3) of cyclooctat-9-en-5,7-diol. S28

Figure S3e. 1 H NMR (500 MHz, CD 3-OD) of cyclooctatin. S29

Figure S3f. 13 C NMR (125 MHz, CD 3-OD) of cyclooctatin. S30

Figure S3g. COSY (500 MHz, CD 3-OD) NMR of cyclooctatin. S31

Figure S3h. HSQC (500 MHz, CD 3-OD) NMR of cyclooctatin. S32

Figure S3i. NOESY NMR (500 MHz, CD3-OD) of cyclooctatin. S33

Figure S3j 1 H NMR (500 MHz, CDCl 3) of the C-5 R-MTPA derivative of cyclooctat-9-en-5,7- diol. S34

Figure S3k. 13 C NMR (125 MHz, CDCl 3) of the C-5 R-MTPA derivative of cyclooctat-9-en- 5,7-diol. S35

Figure S3l. COSY NMR (500 MHz, CDCl 3) of the C-5 R-MTPA derivative of cyclooctat-9-en- 5,7-diol. S36

Figure S3m. HSQC NMR (500 MHz, CDCl 3) of the C-5 R-MTPA derivative of cyclooctat-9- en-5,7-diol. S37

Figure S3n. NOESY NMR (500 MHz, CDCl 3) of the C-5 R-MTPA derivative of cyclooctat-9- en-5,7-diol. S38

Figure S3o. 1 H NMR (500 MHz, CDCl 3) of the C-5 S-MTPA derivative of cyclooctat-9-en-5,7- diol. S39

Figure S3p. 13 C NMR (125 MHz, CDCl 3) of the C-5 S-MTPA derivative of cyclooctat-9-en- 5,7-diol. S40

Figure S3q. COSY NMR (500 MHz, CDCl 3) of the C-5 S-MTPA derivative of cyclooctat-9-en- 5,7-diol. S41

Figure S3r. HSQC NMR (500 MHz, CDCl 3) of the C-5 S-MTPA derivative of cyclooctat-9-en- 5,7-diol. S42

Figure S3s. NOESY NMR (500 MHz, CDCl 3) of the C-5 S-MTPA derivative of cyclooctat-9- en-5,7-diol. S43

Chiral derivatizing and analysis Figure S3t. 1 H NMR (500 MHz, CDCl 3) Overlay of the C-5 R/S-MTPA derivatives of cyclooctat-9-en-5,7-diol. Figure S23. Δδ (S R) values (ppm) for the C-5 MTPA derivatives of of Cyclooctat-9-en-5,7-diol S44

Table S4. Experimental 1 H (CDCl 3, 500 MHz, δ H) and 13 C (CDCl 3, 125 MHz, δ C) NMR data of the C-5 R-MTPA derivatives of cyclooctat-9-en-5,7-diol. Position δ C δ H 1 43.82 1.04, 1.52 2 36.61 2.39 3 36.06 1.97 4 40.20 1.49, 1.78 5 82.58 5.43 6 56.45 2.24 7 75.51 8 40.86 1.94, 2.64 9 118.25 5.24 10 153.63 11 44.70 12 45.58 1.38, 1.60 13 23.34 1.36, 1.51 14 53.91 2.27 15 29.09 1.26 16 17.42 0.77 17 22.28 0.95 18 15.05 0.84 19 26.31 1.14 20 24.92 1.19 S45

Table S5. Experimental 1 H (CDCl 3, 500 MHz, δ H) and 13 C (CDCl 3, 125 MHz, δ C) NMR data of the C-5 S-MTPA derivatives of cyclooctat-9-en-5,7-diol. Position δ C δ H 1 43.75 1.04, 1.55 2 36.82 2.48 3 36.35 2.35 4 40.66 1.56, 1.93 5 82.82 5.36 6 56.57 2.19 7 75.31 8 40.79 1.83, 2.60 9 118.26 5.17 10 153.57 11 44.7 12 45.57 1.37, 1.60 13 23.35 1.35, 1.51 14 53.89 2.25 15 29.10 1.26 16 17.44 0.75 17 22.27 0.93 18 15.18 0.95 19 25.72 0.75 20 24.9 1.21 S46

Figure S4. Δδ (S R) values (ppm) for the C-5 MTPA derivatives of cyclooctat-9-en-5,7-diol. 13 C-NMR Δδ (S R) values (ppm) 1 H-NMR Δδ (S R) values (ppm) S47

Figure S5a. 1 H NMR (500 MHz, CDCl 3) of (-)-Casbene. S48

Figure S5b. 13 C NMR (125 MHz, CDCl 3) of (-)-Casbene. S49

Table S6. Experimental 1 H (CDCl 3, 500 MHz, δ H, J in Hz) and 13 C (CDCl 3, 125 MHz, δ C) NMR data of sinularcasbane D. Position δ C δ H 1 30.80 (CH) 0.65 ddd (10.5, 8.7, 1.7) 2 25.97 (CH) 1.21 t (8.5) 3 121.41 (CH) 4.84 d (8.3) 4 135.89 (C) 5 39.57 (CH 2) 2.19 (m) 2.06 (m) 6 25.09 (CH 2) 2.19 (m) 2.05 (m) 7 127.09 (CH) 4.87 ddd (6.7, 4.4, 1.2) 8 130.95 (C) 9 48.15 (CH 2) 2.35 (m) 2.08 (m) 10 67.00 (CH) 4.52 ddd (10.7, 9.1, 3.2) 11 127.01 (CH) 4.98 dq (9.2, 1.4) 12 140.31 (C) 13 39.70 (CH 2) 2.24 (m) 1.81 (m) 14 24.03 (CH 2) 1.68 (m) 1.13 (m) 15 20.16 (C) 16 29.06 (CH 3) 1.07 (s) 17 15.74 (CH 3) 0.96 (s) 18 16.08 (CH 3) 1.62 (s) 19 17.25 (CH 3) 1.59 (s) 20 18.72 (CH 3) 1.66 (s) S50

Figure S6. COSY and HMBC correlations of sinularcasbane D. Figure S7. Illustrated NOESY correlations of sinularcasbane D. Modelling was done using molecular mechanics (MM2) calculations with ChemDraw Ultra Ver. 13.0 (CambridgeSoft). 17 6 5 4 3 15 5 9 18 2 16 14 1 19 10 11 12 13 20 S51

Figure S8a. 1 H NMR (500 MHz, CDCl 3) of sinularcasbane D. S52

Figure S8b. 1 H NMR (500 MHz, CDCl 3) of sinularcasbane D. S53

Figure S8c. 13 C NMR (125 MHz, CDCl 3) of sinularcasbane D. S54

Figure S8d. COSY NMR (500 MHz, CDCl 3) of sinularcasbane D. S55

Figure S8e. HSQC NMR (500 MHz, CDCl 3) of sinularcasbane D. S56

Figure S8f. HMBC NMR (500 MHz, CDCl 3) of sinularcasbane D. S57

Figure S8g. NOESY NMR (500 MHz, CDCl 3) of sinularcasbane D. S58

4. CD-Spectroscopy Figure S9. Circular dichroism spectroscopy of cyclooctat-9-en-7-ol (a), cyclooctat-9-en-5-7- diol (b), cyclooctatin (c). S59

5. Mass spectrometry Figure S10a. Mass spectrum of silylated cyclooctat-9-en-7-ol (RT: 21:16), recorded on a Trace GC Ultra with DSQII (Thermo Scientific), m/z was analyzed from [50-650]. m/z C 23H 42OSi calculated. 362.30. Figure S10b. Mass spectrum of silylated cyclooctat-9-en-5,7-diol (RT: 22:94), recorded on a Trace GC Ultra with DSQII (Thermo Scientific), m/z was analyzed from [50-650]. m/z C 26H 50O 2Si 2 calculated 450.33. S60

Figure S10c. Mass spectrum of silylated cyclooctatin (RT: 24:40), recorded on a Trace GC Ultra with DSQII (Thermo Scientific), m/z was analyzed from [50-650]. m/z C 28H 56O 3Si 3 calculated 524.35. Figure S10f. Mass spectrum of sinularcasbane D (RT: 21:89), recorded on a Trace GC Ultra with DSQII (Thermo Scientific), m/z was analyzed from [50-650]. m/z C 20H 32O calculated 288.24. S61

Figure S11. High resolution electron spray ionization of cyclooctat-9-en-7-ol (a) m/z ([M H 2O] + 272.2568 calculated C 20H 32 272.2504, cyclooctat-9-en-5-7-diol (b) m/z ([M H 2O] + 272.2450 calculated C 20H 32O 288.2453, cyclooctatin (c) m/z ([M H 2O] + 304.2415 calculated C 20H 32O 2 304.2402. S62

Figure S12. GC-MS spectra of a 72h shake flask culture of (-)-casbene and hydroxylation to sinularcasbane D by CotB3 on a Trace GC Ultra with DSQII (Thermo Scientific). 20 % of (-)- casbene were hydroxylated to sinularcasbane D. S63

6. Genes Figure S13. Gene of 1-deoxy-D-xylulose 5-phosphate synthase (dxs). CCATGGATGAGTTTTGATATTGCCAAATACCCGACCCTGGCACTGGTCGACTCCACCCAGGAGTT ACGACTGTTGCCGAAAGAGAGTTTACCGAAACTCTGCGACGAACTGCGCCGCTATTTACTCGACA GCGTGAGCCGTTCCAGCGGGCACTTCGCCTCCGGGCTGGGCACGGTCGAACTGACCGTGGCGC TGCACTATGTCTACAACACCCCGTTTGACCAATTGATTTGGGATGTGGGGCATCAGGCTTATCCG CATAAAATTTTGACCGGACGCCGCGACAAAATCGGCACCATCCGTCAGAAAGGCGGCCTGCACC CGTTCCCGTGGCGCGGCGAAAGCGAATATGACGTATTAAGCGTCGGGCATTCATCAACCTCCAT CAGTGCCGGAATTGGTATTGCGGTTGCTGCCGAGAAAGAAGGCAAAAATCGCCGCACCGTCTGT GTCATTGGCGATGGCGCGATTACCGCTGGCATGGCGTTTGAAGCGATGAATCACGCGGGCGATA TCCGTCCTGATATGCTGGTGGTCCTCAACGACAATGAAATGTCGATTTCCGAAAATGTCGGCGCG CTCAATAACCATCTGGCACAGCTGCTTTCCGGTAAGCTTTACTCTTCGCTGCGCGAAGGCGGGAA AAAAGTTTTCTCTGGCGTTCCGCCAATTAAAGAGCTGCTCAAACGTACCGAAGAACATATTAAAGG CATGGTAGTGCCTGGCACGTTGTTTGAAGAGCTGGGCTTTAACTACATCGGCCCGGTTGACGGT CACGATGTGCTGGGGCTTATCACCACGCTGAAGAACATGCGCGACCTGAAAGGCCCGCAGTTCC TGCATATCATGACCAAAAAAGGTCGTGGTTATGAACCGGCAGAAAAAGACCCCATCACTTTCCAC GCCGTGCCTAAATTTGATCCCTCCAGCGGTTGTTTGCCGAAAAGTAGCGGCGGTTTGCCGAGCT ATTCAAAAATCTTTGGCGACTGGTTGTGCGAAACGGCAGCGAAAGACAACAAGCTGATGGCGATT ACTCCGGCGATGCGTGAAGGTTCCGGCATGGTCGAGTTTTCACGTAAATTCCCGGATCGTTACTT CGACGTGGCAATCGCCGAGCAACACGCGGTGACCTTTGCCGCCGGTCTGGCGATTGGTGGGTA CAAACCCATTGTCGCGATTTACTCCACTTTCCTGCAACGCGCCTATGATCAGGTGCTGCATGACG TGGCGATTCAAAAGCTCCCGGTCCTGTTCGCCATCGACCGCGCGGGCATTGTTGGTGCTGACGG TCAAACCCATCAGGGCGCTTTTGACCTCTCTTACCTGCGCTGTATACCGGAAATGGTCATTATGA CCCCGAGCGATGAAAACGAATGTCGCCAGATGCTCTATACCGGCTATCACTATAACGACGGCCC GTCCGCGGTGCGCTACCCGCGCGGTAACGCGGTTGGCGTGGAACTGACGCCGCTGGAAAAACT GCCAATTGGCAAAGGCATTGTGAAGCGTCGTGGCGAGAAACTGGCGATCCTTAACTTTGGTACG CTGATGCCAGACGCGGCGAAAGTCGCTGAATCGCTGAACGCTACGCTGGTCGATATGCGTTTTG TGAAACCGCTTGATGAAGCGTTAATTCTGGAAATGGCCGCCAGCCATGAAGCGCTGGTCACCGT AGAAGAAAACGCCATTATGGGCGGCGCAGGCAGCGGCGTGAACGAAGTGCTAATGGCCCATCG TAAACCAGTACCCGTGCTGAACATTGGCCTGCCTGACTTCTTTATTCCACAAGGAACTCAGGAAG AAATGCGCGCCGAACTCGGCCTCGATGCCGCCGGTATGGAAGCCAAAATCAAGGCCTGGCTGG CATAAGAATTC S64

Figure S14. Gene of 1-deoxy-D-xylulose 5-phosphate reductoisomerase (dxp). CATATGAAGCAACTCACCATTCTGGGCTCGACCGGCTCGATTGGTTGCAGCACGCTGGACGTGG TGCGCCATAATCCCGAACACTTCCGCGTAGTTGCGCTGGTGGCAGGCAAAAATGTCACTCGCAT GGTAGAACAGTGCCTGGAATTCTCTCCCCGCTATGCCGTAATGGACGATGAAGCGAGTGCGAAA CTTCTTAAAACGATGCTACAGCAACAGGGTAGCCGCACCGAAGTCTTAAGTGGGCAACAAGCCG CTTGCGATATGGCAGCGCTTGAGGATGTTGATCAGGTGATGGCAGCCATTGTTGGCGCTGCTGG GCTGTTACCTACGCTTGCTGCGATCCGCGCGGGTAAAACCATTTTGCTGGCCAATAAAGAATCAC TGGTTACCTGCGGACGTCTGTTTATGGACGCCGTAAAGCAGAGCAAAGCGCAATTGTTACCGGT CGATAGCGAACATAACGCCATTTTTCAGAGTTTACCGCAACCTATCCAGCATAATCTGGGATACG CTGACCTTGAGCAAAATGGCGTGGTGTCCATTTTACTTACCGGGTCTGGTGGCCCTTTCCGTGAG ACGCCATTGCGCGATTTGGCAACAATGACGCCGGATCAAGCCTGCCGTCATCCGAACTGGTCGA TGGGGCGTAAAATTTCTGTCGATTCGGCTACCATGATGAACAAAGGTCTGGAATACATTGAAGCG CGTTGGCTGTTTAACGCCAGCGCCAGCCAGATGGAAGTGCTGATTCACCCGCAGTCAGTGATTC ACTCAATGGTGCGCTATCAGGACGGCAGTGTTCTGGCGCAGCTGGGGGAACCGGATATGCGTAC GCCAATTGCCCACACCATGGCATGGCCGAATCGCGTGAACTCTGGCGTGAAGCCGCTCGATTTT TGCAAACTAAGTGCGTTGACATTTGCCGCACCGGATTATGATCGTTATCCATGCCTGAAACTGGC GATGGAGGCGTTCGAACAAGGCCAGGCAGCGACGACAGCATTGAATGCCGCAAACGAAATCACC GTTGCTGCTTTTCTTGCGCAACAAATCCGCTTTACGGATATCGCTGCGTTGAATTTATCCGTACTG GAAAAAATGGATATGCGCGAACCACAATGTGTGGACGATGTGTTATCTGTTGATGCGAACGCGCG TGAAGTCGCCAGAAAAGAGGTGATGCGTCTCGCAAGCTGACTCGAG S65

Figure S15. Bi-cistronic operon of 2-C-methyl-D-erythriol 4-phosphate cytidyltransferase synthase (ispd) 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase (ispf). CCATGGATGGCAACCACTCATTTGGATGTTTGCGCCGTGGTTCCGGCGGCCGGATTTGGCCGTC GAATGCAAACGGAATGTCCTAAGCAATATCTCTCAATCGGTAATCAAACCATTCTTGAACACTCGG TGCATGCGCTGCTGGCGCATCCCCGGGTGAAACGTGTCGTCATTGCCATAAGTCCTGGCGATAG CCGTTTTGCACAACTTCCTCTGGCGAATCATCCGCAAATCACCGTTGTAGATGGCGGTGATGAGC GTGCCGATTCCGTGCTGGCAGGTTTGAAAGCCGCTGGCGACGCGCAGTGGGTATTGGTGCATG ACGCCGCTCGTCCTTGTCTGCATCAGGATGACCTCGCGCGATTGTTGGCGTTGAGCGAAACCAG CCGCACGGGAGGGATCCTAGCCGCACCAGTGCGCGATACGATGAAACGTGCCGAACCGGGCAA AAATGCCATTGCTCATACCGTTGATCGCAACGGCTTATGGCACGCGCTGACGCCGCAATTTTTCC CTCGTGAGCTGTTACATGACTGTCTGACGCGCGCTCTAAATGAAGGCGCGACTATTACCGACGAA GCCTCGGCGCTGGAATATTGCGGATTCCATCCTCAGTTGGTCGAAGGCCGTGCGGATAACATTA AAGTCACGCGCCCGGAAGATTTGGCACTGGCCGAGTTTTACCTCACCCGAACCATCCATCAGGA GAATACATAAGCAGGAGCAGGAGCAGAAGGAGGAGCAGGAATGCGAATTGGACACGGTTTTGAC GTACATGCCTTTGGCGGTGAAGGCCCAATTATCATTGGTGGCGTACGCATTCCTTACGAAAAAGG ATTGCTGGCGCATTCTGATGGCGACGTGGCGCTCCATGCGTTGACCGATGCATTGCTTGGCGCG GCGGCGCTGGGGGATATCGGCAAGCTGTTCCCGGATACCGATCCGGCATTTAAAGGTGCCGAC AGCCGCGAGCTGCTACGCGAAGCCTGGCGTCGTATTCAGGCGAAGGGTTATACCCTGGGCAAC GTCGATGTCACTATCATCGCTCAGGCACCGAAGATGTTGCCGCACATTCCACAAATGCGCGTATT TATTGCCGAAGATCTCGGCTGCCATATGGATGATGTTAACGTGAAAGCCACTACTACGGAAAAAC TTGGATTTACCGGACGTGGGGAAGGGATTGCCTGTGAAGCGGTGGCGCTACTCATTAAGGCAAC AAAATGAGAATTC Figure S16. Gene of Isopentenyl-diphosphate delta isomerase (Idi). CATATGCAAACGGAACACGTCATTTTATTGAATGCACAGGGAGTTCCCACGGGTACGCTGGAAAA GTATGCCGCACACACGGCAGACACCCGCTTACATCTCGCGTTCTCCAGTTGGCTGTTTAATGCCA AAGGACAATTATTAGTTACCCGCCGCGCACTGAGCAAAAAAGCATGGCCTGGCGTGTGGACTAA CTCGGTTTGTGGGCACCCACAACTGGGAGAAAGCAACGAAGACGCAGTGATCCGCCGTTGCCGT TATGAGCTTGGCGTGGAAATTACGCCTCCTGAATCTATCTATCCTGACTTTCGCTACCGCGCCAC CGATCCGAGTGGCATTGTGGAAAATGAAGTGTGTCCGGTATTTGCCGCACGCACCACTAGTGCG TTACAGATCAATGATGATGAAGTGATGGATTATCAATGGTGTGATTTAGCAGATGTATTACACGGT ATTGATGCCACGCCGTGGGCGTTCAGTCCGTGGATGGTGATGCAGGCGACAAATCGCGAAGCCA GAAAACGATTATCTGCATTTACCCAGCTTAAATAACTCGAG S66

Figure S17. Gene of cotb2. CATATGACCACCGGTCTGAGCACCGCAGGCGCACAGGATATTGGTCGTAGCAGCGTTCGT CCGTATCTGGAAGAATGTACCCGTCGTTTTCAAGAAATGTTTGATCGTCATGTTGTTACC CGTCCGACCAAAGTTGAACTGACCGATGCAGAACTGCGTGAAGTTATTGATGATTGTAAT GCAGCAGTTGCACCGCTGGGTAAAACCGTTAGTGATGAACGTTGGATTAGCTATGTTGGT GTTGTTCTGTGGTCACAGAGTCCGCGTCATATTAAAGATATGGAAGCATTTAAAGCCGTG TGCGTTCTGAATTGTGTTACCTTTGTTTGGGATGATATGGACCCTGCACTGCATGATTTT GGTCTGTTTCTGCCTCAGCTGCGTAAAATTTGCGAAAAATACTATGGTCCGGAAGATGCC GAAGTTGCCTATGAAGCAGCACGTGCATTTGTTACCAGCGATCACATGTTTCGTGATAGC CCGATTAAAGCAGCACTGTGTACCACCAGTCCGGAACAGTATTTTCGTTTTCGTGTTACC GATATTGGCGTGGATTTTTGGATGAAAATGAGCTATCCGATTTATCGCCATCCGGAATTT ACCGAACATGCAAAAACCAGCCTGGCAGCACGTATGACCACCCGTGGTCTGACCATTGTT AATGATTTCTATAGCTATGATCGCGAAGTTAGCCTGGGTCAGATTACCAATTGTTTTCGT CTGTGTGATGTGAGTGATGAAACCGCCTTTAAAGAATTTTTTCAGGCACGTCTGGATGAC ATGATCGAAGATATTGAATGCATCAAAGCGTTTGATCAGCTGACACAGGATGTTTTTCTG GATCTGATTTATGGCAATTTTGTGTGGACCACCTCCAACAAACGTTATAAAACCGCAGTG AATGATGTGAACAGCCGTATTCAATAACTCGAG S67

S68 Figure S18. Bi-cistronic cotb3/cotb4 operon. CATATGCGTGAACGTGGTCCGGTTACACCGGCAAAAAGCAGCGCACCGCCTGAACGTCCG TGGACCACCGGTACAGCACCGGGTAGCGTTCCGCTGCTGGGTCATACAATGGCACTGTGG CGTCGTCCGCTGCAATTTCTGGCAAGCCTGCCTGCACATGGTGATCTGGTTGAAGTTCGT CTGGGTCCGAGCCGTGCATATCTGGCATGTCATCCGGAACTGGTTCGTCAGGTTCTGCTG AATCCGCGTGTTTTTGATAAAGGTGGCGTTTTCGATAAAGCACGTCAGCTGCTGGGCAAT AGCCTGAGCGTTAGCCGTGGTGAAGATCATCGTTATCAGCGTCGTATGATTCAGCCTGCA TTTCATACCCCGAAAATTGCCGCATATACCGCAGCAGTTGCAGATGATACCCGTGCAGCA ATTGGTAGCTGGGAACCGGGTCGTACCCTGGATATTAGCGATACCATGCATGCACTGCTG ATGCGTGTTGCAGCACGTACCCTGTTTAGCACCGGTATTGATGAAGCAACCATCGATGAA GCCCGTCATTGTCTGCGTATTGTTAGTGATGGTATCTATAAACGTACGATGGCACCGCTG GGTATTATGGAAAAACTGCCGACACCGGGTAATCGTCGTTATGATCGTGCAAATGCACGT CTGCGTCAGATTGTTGATGAAATGATTCGTGAACGTCGTCGTAGCGGTGCAGATCATGGC GATCTGCTGAGCACCCTGCTGCGTGCAGAACATCCGGAAACCGGTAAAGGTCTGGATGAT GGTGAAGTTCTGGATCAGGTTGTTACCTTTCTGGTTGCAGGTAGCGAAACCACCGCAAGC ACCCTGGCATTTGTTTTTCATCTGCTGGGTGCCCATCCGGAAGTTGAAAAACGTGTTCAT GCAGAAATCGATGAAATTCTGGAAGGTCGTAGCCCGACCTTTGAAGATCTGCCGAGCCTG GAATATACCCGTGGTGTTATTACCGAAAGCCTGCGTCTGTATCCGCCTAGCTGGATGGCA ATGCGTGTTACCGCAGCCGAAACCGAACTGGGTGGTCGTACCGTTCCGGCAGGCACCATG ATTCTGTATAGCGCACAGGCACTGCATCATAACCCGGAACTGTTTCCAGATCCGGAACGT TTTGATCCTGAACGTTGGCTGGGTGATCGTGCCAAAGAAGTTGAACGCGGAGCACTGCTG CCGTTTGGTGCCGGTAGCCATAAATGTATTGGTGATGTGCTGGCACTGACCGAAACAGCA CTGATTGTTGCAACCATTGCAAGCCGTTGGCGTCTGCGTCCGGTTCCGGGTACAACCCTG CGTCCTGAACCGAAAGCAACCCTGGAACCTGGTCCGCTGCCGATGGTTTGTGAACCGCGT TAACTAGTAGGAGGAAAACATCATGAAAGATTTTTTTCGTATGCGCACCGCACAGCAGCC TGCCACACGTCATTGGCGTCATACCGTTGCACCGGGTGGTCTGCCGCTGGCAGGTCACGC TCTGCTGATGGCACGTAAACCTCTGCAATTCCTGGCCTCACTGCCAGCCCACGGCGATCT GGTGGAACTGCGCCTGGGACCGCGTCCGGTGTATCTGCCGTGCCACCCTGAACTGGTGCA GCAGGTACTGGTTAATGCACGTGTTTATGATACAGGCGGTCCGGTGAAAGAAAAAGCAAA ACCGATTCTGGGTAATGGTCTGATTACCAGCGATTGGGCTGATCATCGTCGCCAGCGTCG CCTGGTTCAGCCAGCCTTTCACACCGCACGTATTGCAAAGTATGCCGAAGTTATGGAACG TGAATGTGAAGCAGAAAGCACCGCATGGACCGCACGTCGTCCGATTGATGTTAGCCATGA AATGCTGGCCCTGACAGCACGCGTTACCGCACGTGCACTGTTTTCAACCGATATGGCTCC GCATGCCGTTGCAGAAATTCAGCATTGCCTGCCGATTGTTGTTGAAGGTGCATATCGTCA GGCAATTGATCCGACCGGTCTGCTGGCCAAACTGCCTCTGGCAGCAAATCGTCGCTTTGA TGATGCACTGGCACGTCTGAACCAGCTGATTGATCGCATGATTGATGATTACAAAGCCAG TGATGATGGCGATCGTGGTGATGTTCTGAGCGCACTGTTTGCAGCACAGGATGATGAAAC CGGTGGTACAATGAGCGATCAAGAAATTCATGATCAGGTTATGACACTGCTGCTGGCTGG TATTGAAACCACAGCCAGCGCACTGACCTGGGCATGGTTTCTGCTGGGACGTAATCCGGG TGCGGAAGCAGCACTGCATGCGGAAGTGGATGAAGTGCTGGGTGGCCGTGCACCGCGTTA TGCAGATGTTCCGCGTCTGGCATATACACAGCGTGTGTTTAGCGAAGCCCTGCGCCTGTT TCCTCCGGCATGGCTGTTTACCCGTACCACCACCGAAACCACGGAACTGGGAGGCCGTCG TCTGCCTCCGGCTTCAGATGTGCTGATTAGCCCGTATGTGCTGCATCGTGATCCAGCACT GTTTCCGCGTCCTGATAGCTTTGACCCGGATCGTTGGCTGCCAGAACGCGCAAAAGAAGT AACACGCGGTAGCTATCTGCCTTTTGGTGGTGGTTCACGTAAATGCATTGGCGACGTTTT TGGTATGACCGAAGCAACACTGGCACTGGCAGCGATTGCCGGTCGTTGGCGGATGCGTCC TATTCCTGGCACCAAAATTCGTCCGCGTCCGCAGATGAGCCTGACCGCAGGTCCTCTGCG CATGATTCCGGAACCTCGTTAACTCGAG

Figure S19. Bi-cistronic afr/afx operon. CCATGGGCCCTGCAAATGATGCCTGTGTTATTGTTGGTGCAGGTCTGGCAGGCGCAAAAG CAGCACAGGCACTGCGTGAAGAGGGTTTTGATGGTCCGCTGGTTCTGATTGGTGATGAAC GTGAACGTCCGTATGAACGTCCTCCGCTGAGCAAAGGTTATCTGACCGGTAAAGATGCAC GTGAGCAGATTTATGTTCATCCGCCTCAGTGGTATGCAGAACATAATGTTGATATGCGTC TGGGTATGGCAGTTACCGCAGTTGATCCGGCAGCACGTGAAATGACCCTGGATGATGGTA GCCGTGTTGGTTATGGTAAACTGCTGCTGACCACCGGTAGCGCACCGCGTCGTCTGCCGG TTCCTGGTGCTGGCCTGGAACGTGTTCTGTATCTGCGTCGTGTTGAAGATAGCGATCAGA TTAAAGAAGCATTTCAGAGCGCAAGCCGTGCAGTTGTTATTGGTGCCGGTTGGATTGGTC TGGAAACCACCGCAGCAGCACGTACCGCAGGCGTTGAAGTTACCGTTCTGGAAATGGCAG AACTGCCGCTGCTGCGTGTTCTGGGTCGTGAAGTTGCACAGCTGTTTGCAAATCTGCATC GTGATCATGGTGTTGATCTGCGTTTTGGTGCACAGGTTGCAGAAATTACCGGTAGTGGTG GTGCAGTTGATGGTGTTCGTCTGAGTGATGGCACCCGTATTGATGCAGATGTTGTGATTG TGGGTGTTGGCATTAAACCGAATATTGGCCTGGCACAAGAAGCCGGTCTGGAAGTTGATA ATGGTATTCGTGTGGATGAACGTCTGCGTACCAGCTATCCTGATATTTATGCAGCCGGTG ATGTTGCACATGCATTTCATCCGCTGCTGGGTAAACATATTCGCGTTGAACATTGGGCAA ATGCACTGAATCAGCCGCAGATTGCAGCAAAAGCAATGCTGGGTCGCGAAGATGCCGTTT ATGATCGTATTCCGTATTTTTTCACCGATCAGTATGATCTGGGCATGGAATATGCAGGTT ATGTTGAACCGGGTGGTTATGATCAGGTTGTTTTTCGTGGTGATGTGGCAGGTCGTGAAT TTATTGCATTTTGGCTGGCAGGCAATCGTGTGCTGGCAGGTATGAATGTGAATATTTGGG ATGTTAATGATCAGCTGCAGACCCTGGTTCGTACCGCACAGACCGTTGATATTCCGATGC TGACCGATCCGCAGGTTCCGCTGGGTAGCCTGCTGCCTGATCCTCAGCATCGTTAATATA TTAGTTAAGTATAAGAAGGAGATATAATGCCGAAAGTTACCTATGTTAGTGATGCCGGTG AAGTTCGTGTTGTTGATGGTCTGGTTGGTGATAGCGTTATGCAGACCGCAGTTCGTAATG GTGTTCCGGGTATTACCGGTGAATGTGGTGGTGTTCTGAGCTGTGCAACCTGTCATGTTT TTGTTGATGAAGCAGATCTGGATCGTCTGGAACCGGTTAGCGGTCTGGAAGATGAAATGC TGGATGGCACCGTTGTTGATCGTTGTCCGAATAGCCGTCTGAGCTGCCAGATTAAACTGA GCGAAGAACTGGGTGATCTGCGTGTTACCACACCGGAAGCACAAGAATAAGCGGCCGC S69

Figure S20. Bi-cistronic pdr/pdx operon. CCATGGGCAACGCCAATGATAATGTTGTTATTGTTGGCACCGGTCTGGCAGGCGTTGAAGTTGCA TTTGGTCTGCGTGCAAGCGGTTGGGAAGGTAATATTCGTCTGGTTGGTGATGCAACCGTTATTCC GCATCATCTGCCTCCGCTGAGCAAAGCATATCTGGCAGGTAAAGCAACCGCAGAAAGCCTGTAT CTGCGTACACCGGATGCCTATGCAGCACAGAATATTCAGCTGCTGGGTGGTACACAGGTTACCG CAATTAATCGTGATCGTCAGCAGGTTATTCTGAGTGATGGTCGTGCACTGGATTATGATCGTCTG GTGCTGGCAACCGGTGGTCGTCCGCGTCCGCTGCCGGTTGCAAGTGGTGCAGTTGGTAAAGCC AATAACTTTCGTTATCTGCGCACCCTGGAAGATGCAGAATGTATTCGTCGTCAGCTGATTGCAGAT AATCGCCTGGTTGTGATTGGTGGTGGTTATATTGGTCTGGAAGTTGCAGCAACCGCCATTAAAGC AAATATGCATGTTACCCTGCTGGATACCGCAGCACGTGTTCTGGAACGTGTTACCGCACCGCCTG TTAGCGCCTTTTATGAACATCTGCATCGTGAAGCCGGTGTTGATATTCGTACCGGCACCCAGGTT TGTGGTTTTGAAATGAGCACCGATCAGCAGAAAGTTACCGCAGTTCTGTGTGAAGATGGCACCCG TCTGCCTGCAGATCTGGTTATTGCAGGTATTGGCCTGATTCCGAATTGTGAACTGGCAAGCGCAG CAGGTCTGCAGGTTGATAATGGTATTGTTATTAACGAACACATGCAGACCAGCGATCCGCTGATT ATGGCAGTTGGTGATTGTGCACGTTTTCATAGCCAGCTGTATGATCGTTGGGTTCGTATTGAAAG CGTTCCGAATGCACTGGAACAGGCACGTAAAATTGCAGCAATTCTGTGTGGTAAAGTTCCGCGTG ATGAAGCAGCACCGTGGTTTTGGAGCGATCAGTATGAAATTGGTCTGAAAATGGTTGGTCTGAGC GAAGGTTATGATCGCATTATTGTTCGTGGTAGCCTGGCACAGCCGGATTTTTCAGTTTTTTATCTG CAGGGTGATCGTGTGCTGGCAGTTGATACCGTTAATCGTCCGGTTGAATTTAACCAGAGCAAACA AATTATCACCGATCGTCTGCCGGTGGAACCGAATCTGCTGGGAGATGAAAGCGTGCCGCTGAAA GAAATTATTGCAGCAGCAAAAGCAGAACTGAGCAGCGCATAATATATTAGTTAAGTATAAGAAGGA GATATAATGAGCAAAGTTGTGTATGTTAGCCATGATGGCACCCGTCGTGAACTGGATGTTGCAGA TGGTGTGAGCCTGATGCAGGCAGCAGTTAGCAATGGTATTTATGATATTGTTGGTGATTGTGGTG GTAGCGCAAGCTGTGCAACCTGTCATGTTTATGTTAATGAAGCCTTCACCGATAAAGTTCCGGCA GCAAATGAACGTGAAATTGGTATGCTGGAATGTGTTACCGCAGAACTGAAACCGAATAGCCGTCT GTGTTGTCAGATTATTATGACACCGGAACTGGACGGTATTGTTGTTGATGTTCCGGATCGTCAGT GGTAAGCGGCCGC S70

Figure S21.(-)-casbene synthase (cs) from Jatropha curcas. CATATGGCAAGCACCAAAAGCGAAACCGAAGCACGTCCGCTGGCATATTTTCCGCCTACCGTTTG GGGTGATCGTCTGGCAAGCCTGACCTTTAATCAGCCTGCATTTGAACTGCTGAGTAAACAGGTTG AGCTGCTGAACGAGAAAATCAAAAAAGAAATGCTGAATGTGAGCACCAGCGATCTGGCAGAAAAA ATCATTCTGATTGATAGCCTGTGTCGTCTGGGTGTTAGCTATCATTTTGAAGAAGAAATCCAAGAA AACCTGACCCGCATCTTTAATACCCAGCCGAATTTTCTGAACGAAAAAGATTATGATTTATTCACC GTGGCCGTGATCTTTCGTGTTTTTCGTCAGCATGGCTTTAAAATCAGCAGCGACGTTTTTAACAAA TTCAAAGATAGCGACGGGAAATTCAAAGAAAGCCTGCTGAATGATATTAAAGGCATCCTGAGCCT GTTTGAAGCAACCCATGTTAGCATGCCGAATGAACCGATTCTGGATGAAGCACTGGCATTTACCA AAGCATTTCTGGAAAGCAGCGCAGTTAAATCCTTTCCGAATTTTGCCAAACATATTAGCAGCGCAC TGGAACAGCCGGTTCATAAAGGTATTCCGCGTCTGGAAGCACGCAAATATATCGATCTGTATGAA GTTGATGAAAGCCGCAATGAAACCGTGCTGGAACTGGCGAAACTGGATTTTAATCGTGTTCAGCT GCTGCATCAAGAAGAACTGAGCCAGTTTAGCAAATGGTGGAAAAGCCTGAATATTAGTGCCGAAG TTCCGTATGCACGTAATCGTATGGCAGAAATCTTTTTTTGGGCAGTGAGCATGTATTTTGAACCGC AGTATGCAAAAGCCCGTATGATTGTTAGCAAAGTGGTTCTGCTGATTAGCCTGATTGATGATACCA TTGATGCCTATGCCACCATCGATGAAATCCATCGTGTTGCAGATGCAATTGAACGTTGGGATATG CGTCTGGTTGATCAGCTGCCGAATTATATGAAAGTGATTTATCGCCTGATCATCAACACCTTTGAT GAGTTTGAAAAAGATCTGGAAGCCGAGGGTAAAAGCTATAGCGTTAAATATGGTCGTGAAGCCTA TCAAGAACTGGTGCGTGGTTATTACCTGGAAGCAATTTGGAAAGCGGATGGTAAAGTTCCGAGCT TCGATGAGTATATCTATAATGGTGGTGTTACCACCGGTCTGCCGCTGGTTGCCACCGTTAGCTTT ATGGGTGTTAAAGAAATCAAAGGCACCAAAGCCTTTCAGTGGCTGAAAACCTATCCGAAACTGAA TCAGGCAGGCGGTGAATTTATTCGTCTGGTTAATGATGTTATGAGCCATGAAACCGAACAGGATC GTGGTCATGTTGCAAGCTGTATTGATTGCTATATGAAACAGTATGGCGTGAGCAAAGAAGAAGCC GTTGAAGAGATCCAGAAAATGGCAACCAATGAGTGGAAAAAACTGAACGAACAGCTGATTGTTCG TAGCACCGAAGTTGTTCCGGTTAATCTGCTGATGCGTATTGTTAATCTGGTTCGTCTGACCGATGT GAGCTATAAATACGGTGATGGTTATACCGATAGCTCCCAGCTGAAAGAATATGTGAAAGGCCTGT TTATTGAACCGATCGCAACCGGTACCTCTTAACTCGAG S71

Figure S22. Taxadiene synthase (txs) from Taxus brevifolia. CATATGGCAATGAGCAGCAGCACCGGCACCAGCAAAGTTGTTAGCGAAACCAGCAGTACCATTG TTGATGATATTCCGCGTCTGAGCGCAAATTATCATGGTGATCTGTGGCATCATAATGTGATTCAGA CCCTGGAAACCCCGTTTCGTGAAAGCAGCACCTATCAAGAACGTGCAGATGAACTGGTTGTGAAA ATCAAAGATATGTTTAACGCACTGGGTGATGGTGATATTAGCCCGAGCGCCTATGATACCGCATG GGTTGCACGTCTGGCAACCATTAGCAGTGATGGTAGCGAAAAACCGCGTTTTCCGCAGGCACTG AATTGGGTTTTTAACAATCAGCTGCAGGATGGTAGTTGGGGTATTGAAAGCCATTTTAGCCTGTGT GATCGTCTGCTGAATACCACCAATAGCGTTATTGCACTGAGCGTTTGGAAAACCGGTCATAGCCA GGTTCAGCAGGGTGCAGAATTTATTGCAGAAAATCTGCGCCTGCTGAATGAAGAAGATGAGCTGA GTCCGGATTTTCAGATTATCTTTCCGGCACTGCTGCAGAAAGCAAAAGCACTGGGTATTAATCTG CCGTATGATCTGCCGTTTATCAAATATCTGAGCACCACCCGTGAAGCACGTCTGACCGATGTTAG CGCAGCAGCAGATAATATTCCGGCAAATATGCTGAATGCACTGGAAGGTCTGGAAGAAGTTATTG ACTGGAACAAAATTATGCGCTTCCAGAGCAAAGATGGTAGCTTTCTGAGTAGTCCGGCAAGCACC GCATGTGTTCTGATGAATACCGGTGATGAAAAATGCTTTACCTTCCTGAATAACCTGCTGGATAAA TTTGGTGGTTGTGTTCCGTGTATGTATAGCATTGATCTGCTGGAACGTCTGAGCCTGGTTGATAAT ATTGAACATCTGGGTATTGGTCGCCACTTCAAACAAGAAATTAAAGGTGCACTGGATTACGTGTAT CGTCATTGGAGCGAACGTGGTATTGGTTGGGGTCGTGATAGCCTGGTTCCGGATCTGAATACAA CCGCACTGGGCCTGCGTACCCTGCGTATGCATGGTTATAATGTTAGCTCAGATGTGCTGAACAAC TTTAAAGATGAAAACGGTCGCTTTTTTAGCAGCGCAGGTCAGACCCATGTTGAACTGCGTAGCGT TGTTAACCTGTTTCGTGCAAGCGATCTGGCATTTCCGGATGAACGTGCAATGGATGATGCACGTA AATTTGCAGAACCGTATCTGCGTGAAGCCCTGGCCACCAAAATTAGCACCAATACAAAACTGTTTA AAGAAATCGAATATGTGGTCGAGTATCCGTGGCACATGAGCATTCCTCGTCTGGAAGCACGTAGC TATATTGATAGCTATGATGATAACTATGTGTGGCAGCGTAAAACCCTGTATCGTATGCCGAGCCTG AGCAATAGCAAATGTCTGGAACTGGCAAAACTGGATTTTAACATTGTTCAGAGCCTGCACCAAGA AGAACTGAAACTGCTGACCCGTTGGTGGAAAGAAAGCGGTATGGCAGATATTAACTTTACCCGTC ATCGTGTTGCCGAAGTGTATTTTAGCAGTGCAACCTTTGAACCGGAATATAGCGCAACCCGTATT GCCTTTACCAAAATTGGTTGTCTGCAGGTCCTGTTCGATGATATGGCCGATATTTTTGCAACCCTG GATGAACTGAAAAGTTTTACCGAAGGTGTTAAACGTTGGGATACCAGTCTGCTGCATGAAATCCC GGAATGTATGCAGACCTGTTTTAAAGTGTGGTTTAAACTGATGGAAGAGGTGAATAACGATGTGG TTAAAGTTCAGGGTCGCGATATGCTGGCCCATATTCGTAAACCGTGGGAACTGTATTTCAACTGC TATGTTCAAGAACGCGAATGGCTGGAAGCCGGTTATATTCCGACCTTTGAAGAATATCTGAAAAC CTATGCAATTAGCGTTGGTCTGGGTCCGTGTACCCTGCAGCCGATTCTGCTGATGGGTGAACTG GTGAAAGATGATGTTGTTGAGAAAGTTCATTACCCGAGCAACATGTTTGAACTGGTAAGCCTGAG CTGGCGTCTGACCAATGATACCAAAACCTATCAGGCAGAAAAAGCACGTGGTCAGCAGGCAAGC GGTATTGCATGTTATATGAAAGACAATCCGGGTGCAACCGAAGAGGATGCAATCAAACATATTTG TCGTGTTGTTGATCGTGCACTGAAAGAAGCCAGCTTTGAATATTTCAAACCGAGCAACGATATTCC GATGGGCTGTAAATCCTTTATCTTTAATCTGCGTCTGTGCGTGCAGATCTTCTATAAATTCATTGAT GGTTACGGCATTGCCAACGAAGAGATCAAAGATTATATCCGCAAAGTGTATATCGATCCGATTCA GGTTTAACTCGAG S72