Case Report High-Flow Nasal Cannula Therapy in a Patient with Reperfusion Pulmonary Edema following Percutaneous Transluminal Pulmonary Angioplasty

Similar documents
Pulmonary Artery Diameter Predicts Lung Injury After Balloon Pulmonary Angioplasty in Patients With Chronic Thromboembolic Pulmonary Hypertension

Emergency Medicine High Velocity Nasal Insufflation (Hi-VNI) VAPOTHERM POCKET GUIDE

Ann Vasc Dis Vol. 6, No. 3; 2013; pp Online August 12, Annals of Vascular Diseases doi: /avd.oa Original Article

Percutaneous Transluminal Pulmonary Angioplasty for the Treatment of Chronic Thromboembolic Pulmonary Hypertension

Επεμβατικές στρατηγικές στην πνευμονική υπέρταση

Keeping Patients Off the Vent: Bilevel, HFNC, Neither?

Systems differ in their ability to deliver optimal humidification

Sample Case Study. The patient was a 77-year-old female who arrived to the emergency room on

High Flow Humidification Therapy, Updates.

Αγγειοπλαστική των πνευμονικών αρτηριών στην χρόνια θρομβοεμβολική πνευμονική υπέρταση. Παρόν και μέλλον

Disclosure. Learning Objectives. Bernadette Zelaya, RRT. Area Clinical Manager

The Case of Lucia Nazzareno Galiè, M.D.

Effectiveness of high-flow nasal cannula oxygen therapy for acute respiratory failure with hypercapnia

Part I Study Questions

What is the next best step?

ACUTE RESPIRATORY DISTRESS SYNDROME (ARDS) Rv

Riociguat for chronic thromboembolic pulmonary hypertension

Oxygenation. Chapter 45. Re'eda Almashagba 1

The use of high-flow nasal cannula in acute decompensated heart failure: ready for prime time yet?

High Flow Oxygen Therapy in Acute Respiratory Failure. Laurent Brochard Toronto

Fariba Rezaeetalab Associate Professor,Pulmonologist

Patient Case. Patient Case 6/1/2013. Treatment of Pulmonary Hypertension in a Community

Acute Respiratory Distress Syndrome (ARDS) An Update

Prepared by : Bayan Kaddourah RN,MHM. GICU Clinical Instructor

Noninvasive Mechanical Ventilation in Children ศ.พญ.อร ณวรรณ พฤทธ พ นธ หน วยโรคระบบหายใจเด ก ภาคว ชาก มารเวชศาสตร คณะแพทยศาสตร โรงพยาบาลรามาธ บด

Tissue is the Issue. PEEP CPAP FiO2 HFNC PSV HFNC. DO 2 = CO [(Hb x 1.34) SaO PaO 2 ] perfusione

FAILURE OF NONINVASIVE VENTILATION FOR DE NOVO ACUTE HYPOXEMIC RESPIRATORY FAILURE: ROLE OF TIDAL VOLUME

Pulmonary Hypertension: Evolution and

Chronic Obstructive Pulmonary Disease (COPD) Copyright 2014 by Mosby, an imprint of Elsevier Inc.

Respiratory insufficiency in bariatric patients

DISTAL PULMONARY THROMBOENDARTERECTOMY: IS IT WORTH IT?

PULMONARY HYPERTENSION

CTEPH. surgical treatment. Ph. Dartevelle, E. Fadel, S. Mussot, D. Fabre, O. Mercier and G. Simonneau PARIS-SUD UNIVERSITY

DAILY SCREENING FORM

Trial protocol - NIVAS Study

ORIGINAL ARTICLE. Editorial p 320. Methods. Pulmonary Circulation. 476 YAMAKI S et al.

Lecture Notes. Chapter 3: Asthma

POLICY. Number: Title: APPLICATION OF NON INVASIVE VENTILATION FOR ACUTE RESPIRATORY FAILURE. Authorization

Concerns and Controversial Issues in NPPV. Concerns and Controversial Issues in Noninvasive Positive Pressure Ventilation

Analgesia for chest trauma - RVI

Lecture Notes. Chapter 9: Smoke Inhalation Injury and Burns

Information Often Given to the Nurse at the Time of Admission to the Postanesthesia Care Unit

Capnography Connections Guide

Chronic Thromboembolic Pulmonary Hypertention CTEPH

PREOPERATIVE CARDIOPULMONARY ASSESSMENT FOR LIVER TRANSPLANTATION James Y. Findlay Mayo Clinic College of Medicine, Rochester, MN, USA.

Postoperative Respiratory failure( PRF) Dr.Ahmad farooq

County of Santa Clara Emergency Medical Services System

Specific Basic Standards for Osteopathic Fellowship Training in Pulmonary / Critical Care Medicine

5. What is the cause of this patient s metabolic acidosis? LACTIC ACIDOSIS SECONDARY TO ANEMIC HYPOXIA (HIGH CO LEVEL)

Case Report Alveolar proteinosis in extremis: a critical case treated with whole lung lavage without extracorporeal membrane oxygenation

INDICATIONS FOR RESPIRATORY ASSISTANCE A C U T E M E D I C I N E U N I T P - Y E A R M B B S 4

Nasal High Flow Humidification with or without Oxygen for COPD Management. Shereen Bailey, RCP, RRT, NPS

Oxygenation Failure. Increase FiO2. Titrate end-expiratory pressure. Adjust duty cycle to increase MAP. Patient Positioning. Inhaled Vasodilators

I. Subject: Continuous Positive Airway Pressure CPAP by Continuous Flow Device

PULMONARY ARTERIAL HYPERTENSION AGENTS

Capnography. Capnography. Oxygenation. Pulmonary Physiology 4/15/2018. non invasive monitor for ventilation. Edward C. Adlesic, DMD.

Case discussion Acute severe asthma during pregnancy. J.G. van der Hoeven

Case Presentation : Pulmonary Hypertension: Diagnosis and Imaging

Management of Acute Exacerbations

Pulmonary arterial hypertension. Pulmonary arterial hypertension: newer therapies. Definition of PH 12/18/16. WHO Group classification of PH

Títle: Efficacy of high-flow oxygen and active humidification in a patient with acute respiratory failure of neuromuscular origin.

BiLevel Pressure Device

Index. Note: Page numbers of article titles are in boldface type

Navigating the identification, diagnosis and management of pulmonary hypertension using the updated ESC/ERS guidelines

Pharmacy Management Drug Policy

NON-INVASIVE VENTILATION. Lijun Ding 23 Jan 2018

Screening for CETPH after acute pulmonary embolism: is it needed? Menno V. Huisman Department of Vascular Medicine LUMC Leiden

Objectives. Health care significance of ARF 9/10/15 TREATMENT OF ACUTE RESPIRATORY FAILURE OF VARIABLE CAUSES: INVASIVE VS. NON- INVASIVE VENTILATION

What you need to know about: High flow nasal oxygen therapy

COMMISSION ON ACCREDITATION FOR RESPIRATORY CARE TMC DETAILED CONTENT OUTLINE COMPARISON

Protocol Identifier Subject Identifier Visit Description. [Y] Yes [N] No. [Y] Yes [N] N. If Yes, admission date and time: Day Month Year

ADVANCED THERAPIES FOR PHARMACOLOGICAL TREATMENT OF PULMONARY HYPERTENSION

I. Subject: Pressure Support Ventilation (PSV) with BiPAP Device/Nasal CPAP

COPD is a syndrome of chronic limitation in expiratory airflow encompassing emphysema or chronic bronchitis.

Supplementary appendix

High-Flow Nasal Cannula in a Mixed Adult ICU

Plasma Brain Natriuretic Peptide as a Noninvasive Marker for Efficacy of Pulmonary Thromboendarterectomy

Landmark articles on ventilation

Bi-Level Therapy: Boosting Comfort & Compliance in Apnea Patients

November 2012 Critical Care Case of the Month: I Just Can t Do It Captain! I Can t Get the Sats Up!

Sleep Apnea and ifficulty in Extubation. Jean Louis BOURGAIN May 15, 2016

High-Flow Nasal Cannula in a Mixed Adult ICU

Evolution of Surgical Therapies for End-Stage Cardiopulmonary Failure. Heart Failure at the Shoe XI October 5, 2012

Describe regional differences in pulmonary blood flow in an upright person. Describe the major functions of the bronchial circulation

Facilitating EndotracheaL Intubation by Laryngoscopy technique and Apneic Oxygenation Within the Intensive Care Unit (FELLOW)

Oral Therapies for Pulmonary Arterial Hypertension

Exclusion Criteria 1. Operator or supervisor feels specific intra- procedural laryngoscopy device will be required.

RESPIRATORY FAILURE - CAUSES, CLINICAL INFORMATION, TREATMENT AND CODING CONVENTIONS

NIV - BI-LEVEL POSITIVE AIRWAY PRESSURE (BIPAP)

Case Report Complete Obstruction of Endotracheal Tube in an Infant with a Retropharyngeal and Anterior Mediastinal Abscess

Charisma High-flow CPAP solution

Keiko Nakazato 1,2*, Shinhiro Takeda 1,2, Keiji Tanaka 2 and Atsuhiro Sakamoto 1. Abstract

ARF, Mechaical Ventilation and PFTs: ACOI Board Review 2018

1. When a patient fails to ventilate or oxygenate adequately, the problem is caused by pathophysiological factors such as hyperventilation.

a. Describe the physiological consequences of intermittent positive pressure ventilation and positive end-expiratory pressure.

Test Bank Pilbeam's Mechanical Ventilation Physiological and Clinical Applications 6th Edition Cairo

Severe pulmonary embolism: surgical aspects. Oliver Reuthebuch Clinic for Cardiac Surgery University Hospital Basel Switzerland

NHS England. Evidence review: Balloon pulmonary angioplasty for inoperable chronic thromboembolic pulmonary hypertension (CTEPH)

Disclosures. Objectives. Defining Adult Obesity. Body Mass Index vs. Central Obesity 9/6/2017

Transcription:

Hindawi Publishing Corporation Case Reports in Pulmonology Volume 2014, Article ID 837612, 5 pages http://dx.doi.org/10.1155/2014/837612 Case Report High-Flow Nasal Cannula Therapy in a Patient with Reperfusion Pulmonary Edema following Percutaneous Transluminal Pulmonary Angioplasty Kiyoshi Moriyama, 1 Toru Satoh, 2 Akira Motoyasu, 1 Tomoki Kohyama, 1 Mariko Kotani, 1 Riichiro Kanai, 1 Tadao Ando, 1 and Tomoko Yorozu 1 1 Department of Anesthesiology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo 181-8611, Japan 2 Second Department of Internal Medicine, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo 181-8611, Japan Correspondence should be addressed to Kiyoshi Moriyama; mokiyokeio@gmail.com Received 11 April 2014; Revised 20 June 2014; Accepted 25 June 2014; Published 15 July 2014 Academic Editor: Reda E. Girgis Copyright 2014 Kiyoshi Moriyama et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. A 62-year-old woman with Wolff-Parkinson-White syndrome was with recent worsening of dyspnea to New York Heart Association functional status Class III. The patient was diagnosed as having central type chronic thromboembolic pulmonary hypertension. By cardiac catheterization, her mean pulmonary artery pressure was 53 mmhg with total pulmonary resistance 2238 dynes sec cm 5. After medical therapies with tadalafil, furosemide, ambrisentan, beraprost, and warfarin were initiated, percutaneous transluminal pulmonary angioplasty (PTPA) was performed. Following PTPA, life-threating hypoxemia resulting from postoperative reperfusion pulmonary edema developed. High-flow nasal cannula therapy (HFNC) was applied, and 100% oxygen at 50 L/min of flow was required to keep oxygenation. HFNC was continued for 3 days, and the patient was discharged on 8th postoperative day with SpO 2 of 97% on 3 L/min of oxygen inhalation. Because of the simplicity of the technique, the lower cost of equipment, and remarkable patient tolerance to the treatment, we speculate that HFNC can take over the post of noninvasive ventilation as first-line therapy for patients with acute respiratory failure. 1. Introduction For patients with chronic thromboembolic pulmonary hypertension (CTEPH), percutaneous transluminal pulmonary angioplasty (PTPA) was originally reported in 2001 in USA [1] and now developing in Japan [2, 3]. A troublesome complication associated with PTPA is reperfusion pulmonary edema, which almost always occurs within 48 h after vessel dilation [4]. We experienced a patient suffering from postoperative reperfusion pulmonary edema that was successfully managed with high-flow nasal cannula therapy (HFNC). 2. Case Presentation A woman with Wolff-Parkinson-White syndrome noticed exercise intolerance and dyspnea at 61 years old. Her symptoms developed from New York Heart Association (NYHA) functional status Class II to III in 3 months. She was diagnosed to have CTEPH by lung perfusion scintigraphy and contrast CT image. Cardiac catheterization was performed and her mean pulmonary arterial pressure (mpap) was 53 mmhg with total pulmonary resistance 2238 dynes sec cm 5. Her brain natriuretic peptide (BNP) level was 306.5 pg/dl, and she started to take tadalafil, furosemide, ambrisentan, beraprost, and warfarin. Because her symptoms worsened on supine position, ambulatory oxygen inhalation therapy while sleeping was started, and PTPA was scheduled. On admission to our hospital, the patient s NYHA functional status was Class III. Preoperative cardiac catheterization showed that medical therapies decreased her mpap from 53 to 42 mmhg, total pulmonary resistance from 2238 to 1223 dynes sec cm 5,andBNPlevelfrom306.5to48.0pg/dL.Her SaO 2 was 93.7% and cardiothoracic ratio on chest X-ray was 56% (Figure 1).

2 Case Reports in Pulmonology (c) (d) Figure 1: Chest X-ray obtained before percutaneous transluminal pulmonary angioplasty, on the first postoperative day (POD1), POD4 (c), and POD8 (d). The patient had localized consolidation and atelectasis on her right lower lobe on POD1, 4, and 8, designating postsurgical pulmonary edema in the dilated segment. Initial PTPA was performed for her right pulmonary artery. The A8 region of her right pulmonary artery was dilated by the balloon (Figure 2). On admission to the ICU (day 0), her mpap was 37 mmhg and her SpO 2 was 99% with 3 L/min of oxygen inhalation through a nasal cannula with no complaint of dyspnea. Twelve hours after admission to the ICU, her SpO 2 decreased to 77% with 5 L/min of oxygen inhalation, and pink frothy sputum was noticed with increases in mpap up to 49 mmhg. To avoid hypoxemia and increases in PAP, HFNC was applied simultaneously with the administration of methylprednisolone (1000 mg/day) and furosemide (10 mg/day). The initial setting of HFNC was 90% oxygen at 35 L/min of flow. Immediately after applying HFNC, her SpO 2 rose up to 93% and her mpap decreased to 30 mmhg. On day 1, her chest X-ray revealed localized consolidation on her right lower lobe with atelectasis (Figure 1). To avoid the development of pulmonary edema, the flow of HFNC was arisen up to 50 L/min. Figure 3 shows CT scan images obtained on day 3. On day 3, with 50 L/min of flow unchanged, oxygen concentration was decreased to 50%. HFNC was finally discontinued on day 4 with her mpap 34 mmhg (Figure 1(c)). The patient was discharged on the 8th postoperative day with SpO 2 of 97% on 3 L/min of oxygen inhalation (Figure 1(d)). 3. Discussion PTPA is a catheterization-based interventional management strategy for patients compromised with CTEPH, who are deemed nonsurgical or high-risk surgical candidates of pulmonary thromboendarterectomy [5]. Sugimura et al.

Case Reports in Pulmonology 3 Figure 2: Initial percutaneous transluminal pulmonary angioplasty was performed for the right pulmonary artery. The A8 region of her right pulmonary artery was dilated by the balloon (plain old balloon atherectomy, b). (c) Figure 3: CT scan images obtained on the third postoperative day (POD3). The patient had localized consolidation on her right lower lobe with atelectasis, designating postsurgical pulmonary edema in the dilated segment.

4 Case Reports in Pulmonology reported that PTPA combined with conventional vasodilator treatment was effective in improving pulmonary hemodynamics in patients with distal-type CTEPH [6]. Feinstein et al. reported [1] that the reperfusion pulmonary edema was the most life-threatening postoperative complication following PTPA, and 3/18 patients required mechanical ventilation and 1patientdied1weekafterPTPA. Typical management of reperfusion pulmonary edema includes diuretics and oxygen. In cases with worsening hypoxemia, noninvasive ventilation has been a first-line intervention to avoid endotracheal intubation [7]. Noninvasive ventilation is a technique to augment alveolar ventilation deliveredbyfacemask,withoutendotrachealintubation.we previously reported a patient with postsurgical reperfusion pulmonary edema following PTPA [8]. This patient accepted a long duration of 16 days of noninvasive ventilation. However, because of mask tolerance, a long duration of noninvasive ventilation with an almost full-day dependence on ventilatory support is not applicable to all patients, even with slight sedative administration. Díaz-Lobato et al. reported a patient with acute respiratory failure of neuromuscular origin, who did not tolerate noninvasive ventilation but was treated successfully with HFNC [9]. HFNC oxygen therapy is a new alternative to conventional oxygen therapy [10]. HFNC delivers consistent and accurate oxygen concentrations and generates flows up to 60 L/min with optimal heat and humidity (37 Cand44mg H 2 O/L) through a nasal cannula. The therapeutic advantages of HFNC are (1) preventing air dilution, (2) minimizing CO 2 rebreathing, (3) generating moderate positive airway pressure [11], (4) increasing end-expiratory lung volumes and tidal volumes, and (5) maintaining the function of the mucociliary transport system, as well as (6) the simplicity of the technique, the lower cost of equipment, and remarkable patient tolerance to the treatment compared with endotracheal intubation or noninvasive ventilation [9]. These advantages benefited critical care patients with acute respiratory failure [12]. In this case, (1) preventing air dilution was necessary as the patient was severely hypoxemic. (2) Although hypercapnia was absent, decreasing PaCO 2 was preferable to decrease mpap, (3) generating moderate positive airway pressure was helpful to reduce pink frothy sputum due to reperfusion pulmonary edema. (4) Increasing end-expiratory lung volumes and tidal volumes was also helpful because the patient was also compromised with atelectasis. The patient was able to take medications and meals without hypoxemia andhadnocomplaintofhfncduring4days. Because of the simplicity of the technique, the lower cost of equipment, and remarkable patient tolerance to the treatment, we speculate that HFNC can take over the post of noninvasive ventilation as first-line therapy for patients with acute respiratory failure. Parke et al. compared HFNC with conventional high-flow face mask (HFFM) oxygen therapy [13] in 60 patients with hypoxic respiratory failure. TheyshowedthatHFNCsignificantlyreduceddesaturations and the rate of noninvasive ventilation. In their study, 10% of patients on HFNC required noninvasive ventilation due to worsening respiratory failure. When applying HFNC to patients with respiratory failure, we always need to consider noninvasive ventilation or endotracheal intubation in cases when increased dyspnea, respiratory fatigue, worsening gas exchange, or intolerance of allocated therapy continues. In summary, we experienced a patient with postsurgical, reperfusion pulmonary edema following PTPA. Severe hypoxemia was successfully treated with HFNC. We speculate that HFNC can take over the post of noninvasive ventilation as first-line therapy for patients with acute respiratory failure. Conflict of Interests The authors declare that there is no conflict of interests regarding the publication of this paper. References [1] J. A. Feinstein, S. Z. Goldhaber, J. E. Lock, S. M. Ferndandes, and M. J. Landzberg, Balloon pulmonary angioplasty for treatment of chronic thromboembolic pulmonary hypertension, Circulation,vol.103,no.1,pp.10 13,2001. [2] H. Mizoguchi, A. Ogawa, M. Munemasa, H. Mikouchi, H. Ito, and H. Matsubara, Refined balloon pulmonary angioplasty for inoperable patients with chronic thromb oembolic pulmonary hypertension, Circulation: Cardiovascular Interventions,vol.5, no. 6, pp. 748 755, 2012. [3] M.Kataoka,T.Inami,K.Hayashidaetal., Percutaneoustransluminal pulmonary angioplasty for the treatment of chronic thromboembolic pulmonary hypertension, Circulation: Cardiovascular Interventions,vol.5,no.6,pp.756 762,2012. [4] N. Yamada, Percutaneous transluminal pulmonary angioplasty for distal-type chronic thromboembolic pulmonary hypertension, Circulation Journal,vol.76,no.2,pp.307 308,2012. [5] N. Galiè, M. M. Hoeper, M. Humbert et al., ESC Committee for Practice Guidelines (CPG). Guidelines for the diagnosis and treatment of pulmonary hypertension: the Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS), endorsed by the International Society of Heart and Lung Transplantation (ISHLT), European Heart Journal,vol.30,pp.2493 2537,2009. [6] K. Sugimura, Y. Fukumoto, K. Satoh et al., Percutaneous transluminal pulmonary angioplasty markedly improves pulmonary hemodynamics and long-term prognosis in patients with chronic thromboembolic pulmonary hypertension, Circulation Journal, vol. 76, no. 2, pp. 485 488, 2012. [7] C. C. Koutsogiannidis, F. C. Ampatzidou, O. G. Ananiadou, T. E. Karaiskos, and G. E. Drossos, Noninvasive ventilation for post-pneumonectomy severe hypoxemia, Respiratory Care, vol. 57, no. 9, pp. 1514 1516, 2012. [8] K. Moriyama, S. Sugiyama, K. Uzawa, M. Kotani, T. Satoh, and T. Yorozu, Noninvasive positive pressure ventilation against reperfusion pulmonary edema following percutaneous transluminal pulmonary angioplasty, Case Reports in Anesthesiology, vol. 2011, Article ID 204538, 3 pages, 2011. [9] S. Díaz-Lobato,M.A.Folgado,A.Chapa,andS.Mayoralas Alises, Efficacy of high-flow oxygen by nasal cannula with active humidification in a patient with acute respiratory failure of neuromuscular origin, Respir Care, vol. 58, pp. e164 e167, 2013.

Case Reports in Pulmonology 5 [10] M. F. El-Khatib, High-flow nasal cannula oxygen therapy during hypoxemic respiratory failure, Respiratory Care, vol. 57, no. 10, pp. 1696 1698, 2012. [11] R. Parke, S. McGuinness, and M. Eccleston, Nasal high-flow therapy delivers low level positive airway pressure, British Journal of Anaesthesia,vol.103,no.6,pp.886 890,2009. [12] B. Sztrymf, J. Messika, F. Bertrand et al., Beneficial effects of humidified high flow nasal oxygen in critical care patients: a prospective pilot study, Intensive Care Medicine, vol.37,no.11, pp.1780 1786,2011. [13] R. L. Parke, S. P. McGuinness, and M. L. Eccleston, A preliminary randomized controlled trial to assess effectiveness of nasal high-flow oxygen in intensive care patients, Respiratory Care, vol. 56, no. 3, pp. 265 270, 2011.