BCM 101 BIOCHEMISTRY Week 4 Practical Chemistry of proteins

Similar documents
QUALITATIVE ANALYSIS OF AMINO ACIDS AND PROTEINS

Qualitative test of protein-lab2

Qualitative chemical reaction of functional group in protein

Properties of Proteins

Experiment 9 Amino Acids and Proteins

QUALITATIVE TEST OF PROTEIN

EXPERIMENT 3 PROTEIN AND AMINO ACIDS TEST

BCH302 [Practical] 1

AMINO ACIDS. Qualitative Tests

Date: EXERCISE 4. Figure 1. Amino acid structure.

Fundamentals of Organic Chemistry CHEM 109 For Students of Health Colleges

Figure 2. Figure 1. Name: Bio AP Lab Organic Molecules

Biological Molecules B Lipids, Proteins and Enzymes. Triglycerides. Glycerol

The source of protein structures is the Protein Data Bank. The unit of classification of structure in SCOP is the protein domain.

OPTION GROUP: BIOLOGICAL MOLECULES 3 PROTEINS WORKBOOK. Tyrone R.L. John, Chartered Biologist

Separation of Main Proteins in Plasma and Serum

Chemistry 20 Chapter 14 Proteins

Separation of Plasma and Serum and Their Proteins from Whole Blood

I) Choose the best answer: 1- All of the following amino acids are neutral except: a) glycine. b) threonine. c) lysine. d) proline. e) leucine.

Course Content

Proteins. Dr. Basima Sadiq Jaff. /3 rd class of pharmacy. PhD. Clinical Biochemistry

The total protein test is a rough measure of all of the proteins in the plasma. Total protein measurements can reflect:

O C C C. Human cannot synthesize ten of the twenty common amino acids found in protein; these essential amino acids must be supplied in the diet.

Practical Course of Biochemistry-I & the Activity Notebook. Clinical pharmacy Level 2 By Staff Members of Biochemistry Department ( )

Quantitative Determination of Proteins

Lab #4: Nutrition & Assays for Detecting Biological Molecules - Introduction

COURSE BOOK OF CHEMISTRY 2. (BIOCHEMISTRY) Department of Biochemistry Benha University, Agriculture College PRACTICAL

OPTION GROUP: BIOLOGICAL MOLECULES 3 PROTEINS WORKBOOK. Tyrone R.L. John, Chartered Biologist

C 6 H 12 O 6 + 6O 2 6CO 2 + 6H 2 O

Proteins. (b) Protein Structure and Conformational Change

3. PRELIMINARY PHYTOCHEMICAL SCREENING

EXERCISE 3 Carbon Compounds

H N H H C R H R' O C O C C R'' 2H 2 O H N

2.1.1 Biological Molecules

Organic Molecules: Proteins

Organic Molecule Composition of Milk: Lab Investigation

Lab 2. The Chemistry of Life

Chemical Tests For Biologically Important Molecules Do not write on this document

Electrophoresis of Serum Proteins. Properties of Proteins

2.1. thebiotutor. Unit F212: Molecules, Biodiversity, Food and Health. 1.1 Biological molecules. Answers

AMINO ACIDS STRUCTURE, CLASSIFICATION, PROPERTIES. PRIMARY STRUCTURE OF PROTEINS

For example, monosaccharides such as glucose are polar and soluble in water, whereas lipids are nonpolar and insoluble in water.

OCR (A) Biology A-level

Name: Period: Date: Testing for Biological Macromolecules Lab

130327SCH4U_biochem April 09, 2013

Biological molecules = Biomolecules = Compounds of life

1. Which of the following contributes to the tertiary structure of proteins?

6 The chemistry of living organisms

Biology 12. Biochemistry. Water - a polar molecule Water (H 2 O) is held together by covalent bonds.

Macromolecules Materials

Identification and qualitative Analysis. of Renal Calculi

Organic Chemistry Worksheet

Chapter 5 Structure and Function Of Large Biomolecules

of Life Chemical Aspects OBJ ECTIVESshould be able to: ENCOUNTERS WITH LIFE H" ~ ~O N-C-C H R OH After completing this exercise, the student

Amino Acids and Proteins Hamad Ali Yaseen, PhD MLS Department, FAHS, HSC, KU Biochemistry 210 Chapter 22

UNIT 2 Amino acids and Proteins

PRACTICAL 5 AMINO ACIDS AND PROTEINS

Practical Note General Biochemistry (BCH 302)

Molecular Biology. general transfer: occurs normally in cells. special transfer: occurs only in the laboratory in specific conditions.

AP Biology Macromolecules

Practice Questions for Biochemistry Test A. 1 B. 2 C. 3 D. 4

Lecture 11 AMINO ACIDS AND PROTEINS

Human Biochemistry Option B

The Structure and Function of Macromolecules

Aim: To study the effect of ph on the action of salivary amylase. NCERT

LAB 4 Macromolecules

For questions 1-4, match the carbohydrate with its size/functional group name:

1.4. Lipids - Advanced

Lab 3 MACROMOLECULES INTRODUCTION I. IDENTIFICATION OF MACROMOLECULES. A. Carbohydrates

BIOB111 - Tutorial activity for Session 14

Lecture 5. Secondary Structure of Proteins. "-Pleated Sheet. !-Helix. Examples of Protein Structures

3150:112 SAMPLE TEST 2. Print out a copy Answer the questions on your own. Check the answers at GOBC Ans.pdf. Good Luck!

Amino acids. (Foundation Block) Dr. Essa Sabi

So where were we? But what does the order mean? OK, so what's a protein? 4/1/11

» Croscarmellose Sodium is a cross linked polymer of carboxymethylcellulose sodium.

Microbiology Activity #6 Metabolism of Small Molecules.

Properties of Alcohols and Phenols Experiment #3

I. Polymers & Macromolecules Figure 1: Polymers. Polymer: Macromolecule: Figure 2: Polymerization via Dehydration Synthesis

! Proteins are involved functionally in almost everything: " Receptor Proteins - Respond to external stimuli. " Storage Proteins - Storing amino acids

1-To know what is protein 2-To identify Types of protein 3- To Know amino acids 4- To be differentiate between essential and nonessential amino acids

Chemistry 107 Exam 3 Study Guide

Practical Note General Biochemistry 2 (BCH 302)

The Structure and Function of Large Biological Molecules Part 4: Proteins Chapter 5

(Writing model for laboratory note book)

AQA Biology A-level Topic 1: Biological Molecules

Name... Class... Date...

LAB 3: Biomolecules and Digestion

Macromolecules. Polymer Overview: The 4 major classes of macromolecules also called are: 1) 2) 3) 4)

Proteins. Student Activity Guide

Testing for the Presence of Macromolecules

GENERAL TESTS FOR CARBOHYDRATE. By Sandip Kanazariya

Ch5: Macromolecules. Proteins

Lecture 3: 8/24. CHAPTER 3 Amino Acids

Biomolecule: Carbohydrate

Objective: You will be able to explain how the subcomponents of

Amino acids. You are required to know and identify the 20 amino acids : their names, 3 letter abbreviations and their structures.

Determination of Calcium in Milk

Lecture Estimation of protein

Paper No. 01. Paper Title: Food Chemistry. Module-16: Protein Structure & Denaturation

Organic Chemistry - Problem Drill 23: Amino Acids, Peptides, and Proteins

Transcription:

BCM 101 BIOCHEMISTRY Week 4 Practical Chemistry of proteins The word protein is derived from the Greek word proteios, which means of primary importance. In fact, proteins plays an important role in all biochemical and physiological body processes; they act as enzymes, hormones, receptors, antibodies and are required for the structural integrity of cells. The aim of this practical session is to: 1. Obtain a simplified knowledge about protein structure. 2. Practically apply this knowledge by performing some protein color and precipitation reactions. Protein structure Proteins are organic compounds made of amino acids joined together by peptide linkages. 1

These pepetide linkages are obtained by condensation reactions (removal of water) between carboxylic & amino groups of two adjacent amino acids. + + 2 H 2 O Peptide linkages Esential and non-essential amino acids: There are 20 standard amino acids which differ in their side chain (R). Some of them are considered essential since they cannot be synthesized in our body and must be therefore provided in the diet (e.g. tryptophan & phenylalanine), while others are non-esential and can be synthesized in the body (e.g. alanine & cysteine). Functions of dietary proteins: Proteins are necessary components in our diet. Through the process of digestion, proteins are hydrolyzed into amino acids that can be used for the synthesis of different body proteins (enzymes, hormones, antibodies, etc), tissue repair and growth. Deficiency of proteins can cause general weakness, protein malnutrition diseases, and decreased resistance to infection. 2

Amphoteric nature of amino acids: As amino acids have both an amino gp and a carboxylic gp, they are considered as both base and acid, i.e. they are amphoteric. At a certain ph, the amino group can become protonated gaining a positive charge, and the acid group can become deprotonated gaining a negative charge. The resulting doubly charged ion is known as zwitterion. Zwitterion Aspects of protein structure: There are 4 aspects to describe a protein structure: 1 ry, 2 ry, 3 ry & 4 ry structures. Amino acid sequence Hydrogen bonding to give alpha helical or beta pleaded structures Overall shape (globular or fibrous) Assembly of protein subunits 3

Practical Using the provided solutions of albumin (egg white), casein (milk protein) and gelatin (animal collagenous material), perform the following: A. General tests B. Color reactions C. Precipitation reactions A. General tests for proteins 1. Ninhydrin reaction: Ninhydrin reacts with amino acids in proteins at high temperature giving a purple colored complex. amino acid ninhydrin purple colored complex Ninhydrin is most commonly used as a forensic chemical to detect fingerprints, as amines left over from proteins sloughed off in fingerprints react with ninhydrin giving a characteristic purple color. To 1 ml amino acid solution in a test tube, add 1 drop of ninhydrin. Put in a boiling water bath and observe the formation of a purple color. 4

2. Biuret test: The biuret reagent (copper sulfate in a strong base) reacts with peptide bonds in proteins to form a blue to violet complex known as the biuret complex. N.B. Two peptide bonds at least are required for the formation of this complex. Biuret complex To 2 ml of protein solution in a test tube, add 3 drops of 10% sodium hydroxide solution and 3-6 drops of 0.5% copper sulfate solution. Mix well; a blue to violet color is obtained with albumin, casein & gelatin. 1. Reduced sulfur test: B. Color reactions of proteins Proteins containing sulfur (in cysteine and cystine) give a black deposit of lead sulfide (PbS) when heated with lead acetate in alkaline medium. To 1 ml of protein solution in a test tube, add 2 drops of 10% sodium hydroxide solution and 2 drops of lead acetate. Mix well and put in a boiling water bath for few minutes; a black deposit is formed with albumin, while a slight black turbidity is obtained with casein due to its lower content of sulfur. Gelatin gives negative result. 5

2. Xanthoproteic acid test: Nitric acid gives a color when heated with proteins containing tyrosine (yellow color) or tryptophan (orange color); the color is due to nitration. To 2 ml of protein solution in a test tube, add 2 drops of concentrated nitric acid. A white precipitate is formed and upon heating in a boiling water bath, it turns yellow with tyrosine and orange with the essential amino acid tryptophan indicating a high nutritive value. 3. Millon s test: Millon's reagent (Hg/HNO 3 ) gives positive results with proteins containing the phenolic amino acid tyrosine. To 2 ml of protein solution in a test tube, add 3 drops of Millon s reagent. Mix well and heat directly on a small flame. A white ppt is formed with albumin and casein (but not gelatin); the ppt gradually turns into brick red. 4. Hopkins-Colé test: Hopkins-Colé reagent (magnesium salt of oxalic acid) gives positive results with proteins containing the essential amino acid tryptophan indicating a high nutritive value. To 1 ml of protein solution in a test tube, add 1 ml of Hopkins-Colé reagent and mix well. Incline the test tube and slowly add 1 ml of concentrated H 2 SO 4 on the inner wall of the test tube to form 2 layers. Put the test tube in a boiling water bath for 2 minutes. A reddish violet ring is formed at the junction between the 2 layers with albumin and casein; gelatin gives negative results. 6

C. Precipitation reactions of proteins 1. Precipitation by heavy metals: Heavy metals (e.g. Hg 2+, Pb 2+, Cu 2+ ) are high molecular weight cations. The positive charge of these cations counteracts the negative charge of the carboxylate group in proteins giving a precipitate. To 1 ml of protein solution in a test tube, add 1 drop of lead acetate; a white ppt is obtained. To 1 ml of protein solution in a test tube, add 1 drop of 10% copper sulfate; a blue ppt is obtained. 2. Precipitation by alkaloidal reagents: Alkaloidal reagents (e.g. tannate & trichloroacetate) are high molecular weight anions. The negative charge of these anions counteracts the positive charge of the amino group in proteins giving a precipitate. To 1 ml of protein solution in a test tube, add tannic acid drop wise until a buff ppt is obtained. To 1 ml of protein solution in a test tube, add 1 ml of trichloroacetic acid (TCA); a white ppt is obtained. N.B. Precipitation of proteins by heavy metals and alkaloidal reagents indicates the presence of both negative and positive charges and hence the amphoteric nature of proteins. 7

3. Precipitation by denaturation: a. Denaturation by heat (heat coagulation test): Heat disrupts hydrogen bonds of secondary and tertiary protein structure while the primary structure remains unaffected. The protein increases in size due to denaturation and coagulation occurs. Put 2 ml of protein solution in a test tube, incline it and heat to boiling. A permanent clotting and coagulation is obtained with albumin only. b. Denaturation by acids (Heller s test): Nitric acid causes denaturation of proteins with the formation of a white ppt (this differs from the nitration reaction in xanthoproteic acid test ). Put 2 ml of concentrated nitric acid in a test tube. Incline the tube and slowly add 1 ml protein solution drop wise to form a layer above the nitric acid layer. A white ring is formed at the interface between the 2 layers. 4. Fractional precipitation by ammonium sulfate (salting out): Protein molecules contain both hydrophilic and hydrophobic amino acids. In aqueous medium, hydrophobic amino acids form protected areas while hydrophilic amino acids form hydrogen bonds with surrounding water molecules (solvation layer). When proteins are present in salt solutions (e.g. ammonium sulfate), some of the water molecules in the solvation layer are attracted by salt ions. When salt concentration gradually increases, the number of water molecules in the solvation layer gradually decreases until protein molecules coagulate forming a precipitate; this is known as salting out. As different proteins have different compositions of amino acids, different proteins precipitate at different concentrations of salt solution. 8

To 2 ml of egg-white solution (containing both albumin & globulin), add an equal volume of saturated ammonium sulfate solution; globulin is precipitated in the resulting half saturated solution of ammonium sulfate. Separate globulin by centrifugation and recover the clear supernatant. Add ammonium sulfate crystals gradually to the clear supernatant until full saturation occurs; another precipitate (albumin) is obtained. Separate albumin by centrifugation. N.B. The reason for the precipitation of globulin and albumin at different ammonium sulfate concentration could be that the solvation layer around globulin is looser and thinner than that around albumin. Therefore, globulin needs only half-saturated ammonium sulfate to loose its solvation layer while albumin looses its solvation layer in a fully saturated ammonium sulfate solution. 9

BCM 101 BIOCHEMISTRY Week 4 Practical Chemistry of proteins Student Name:. Student number: Laboratory exercise: 1. Using the provided solutions of albumin, casein and gelatin perform the tests in the table below and write down your observations. Albumin Casein Gelatin Biuret test Reduced sulfur test Xanthoproteic acid test Heavy metal pptn Alkaloidal reagent pptn Heat coagulation test Heller s test 2. Is gelatin of high nutritive value? Why?....... 3. Observe the demonstration of fractional separation of albumin and globulin from egg white using ammonium sulfate (salting out). 10