An Overview of PRRS Elimination Best Practices in Breeding Herds

Similar documents
A Systematic Management Strategy for Breeding Herds Based on PRRS Herd Status

PEDV in the US: Overview, history and lessons

Economic Impact of Disease

MINNESOTA VOLUNTARY PRRS ELIMINATION PROJECT. Pork Lenders Meeting July 29, 2011 Dave Wright, D.V.M.

SWINE HEALTH INFORMATION CENTER FINAL RESEARCH GRANT REPORT FORMAT

Herd Health for Small-Scale Swine Farms Ines Rodriguez, M.S., V.M.D.

Swine Biosecurity Practices

NEW CONCEPTS FOR THE CONTROL OF PRRS: WITHIN PIG STRATEGIES

PCVAD A PRODUCER S GUIDE TO MANAGING. Porcine Circovirus Associated Diseases

SWINE PROGRAMS AT USDA APHIS VETERINARY SERVICES

PRRS Regional Elimination

PRRS CONTROL & ERADICATION STRATEGIES AT PREMIUM STANDARD FARMS

PRRS control and eradication in a production system

THE DANISH SPF SYSTEM & DIFFERENT DISEASE ELIMINATION PROCEDURES

Economic Analysis of PRRS Virus Elimination from a Herd

Update to Iowa Foot and Mouth Disease (FMD) and Livestock Emergency Management Plans

Experiences on Mycoplasma Hyopneumoniae Elimination on Farrow-to-Wean Farms. Bill Minton DVM. Four Star Veterinary Service LLC.

SWINE PROGRAM ACTIVITIES 2016

PRRSV Control and Elimination in Canada

GROW/FINISH VARIATION: COST AND CONTROL STRATEGIES

Evaluación económica de programas de control vs erradicación de enfermedades porcinas.

Locke Karriker, 2008 Iowa Pork Regional Conferences 1

Patrick L. Graham, DVM, MS

Update on PEDV. Lisa Becton, DVM, MS National Pork Board

National FMD Response Planning

Indiana State Board of Animal Health

CASE REPORT. Using vaccination and unidirectional pig flow to control PRRSV transmission. Summary. Materials and methods.

Ohio Swine Health Symposium. March 18 th, 2015 Plain City, Ohio

PRRS The Challenge Continues. Cameron Schmitt, DVM, MS Iowa Pork Congress

The Basics of Grow-Finish Biosecurity

Eliminate your profits. Air filtration for the Swine Industry.

Keeping disease off the farm.

Progress in biosecurity and risk assessment of swine diseases

OIE Situation Report for Highly Pathogenic Avian Influenza

Pseudorabies Eradication

What it feels like to have PRRS on your farm Dr. Carlo Lasagna. Martini S.p.A. Italy

Responding to PEDV Lessons Learned

Sponsors. Production Assistant Janice Storebo. Formatting Tina Smith. CD-ROM David Brown

Outbreak Terminology: Phases, Zones and Premises. Dr. Patrick Webb Director, Swine Health Programs

Swine Day 2017 Rowland Lab Research Update

PRRSV: Comparison of commercial vaccines in their ability to induce protection against current PRRSV strains of high virulence

Biosecurity: Understanding its importance when working on livestock farms

How does Air Filtration fit into Porcine Reproductive and Respiratory Virus Regional Control and Eradication Strategies?

Extension Swine Husbandry. Biosecurity Guidelines for Pork Producers

Material and methods. Challenge The pigs were challenged at 16 weeks of age when the challenge control pigs became antibody negative by the

OIE Situation Report for Highly Pathogenic Avian Influenza

Final Report for the Outbreak of Highly Pathogenic Avian Influenza (HPAI) in the United States

PCV2 and Mycoplasma Vaccine Comparison in a Midwest Commercial Swine Herd

CSF eradication strategies in Japan

Veterinary Services. Swine Health Activities

Health Protection Concepts. Health Protection Concepts. Health Protection Concepts. Health Protection Concepts. Health Protection Concepts

How to prevent transmission to/from domestic pigs

Sponsors. w. Christopher Scruton Stephen Claas. Editors. Layout David Brown

CUSTOMIZED CONTROL. Because every herd is unique

Surviving an HPAI Outbreak

OFFLU Technical Meeting Coordinating world-wide surveillance for influenza in swine. OIE headquarters, Paris, France March 27-28, 2012

National Institute of Animal Agriculture Kansas City, 2016 Swine Health Update. Presented by Troy Bigelow

Philippines: Swine Industry Situation and Outlook Dr. Zoilo M. Lapus

EU measures for surveillance and control of ASF in feral pigs

Arkansas Livestock and Poultry Commission Agency No Effective: November 1, 2008 Jon S. Fitch, Executive Director ARKANSAS SWINE REGULATIONS

What s the Game Plan for Swine in Case of a Foreign Animal Disease Outbreak?

PORCINE EPIDEMIC DIARRHEA : A Canadian perspective

Veterinary Services Swine Activities

OIE/FAO Global Conference on foot and mouth disease. The way towards global control. Paraguay: 24 to 26 June Draft Resolution version 8

Regional PRRS eradication. Anders Elvstroem, DVM Svinepraksis.dk

Please attach a sketch of proposed quarantine facility, including acreage or square feet.

Title 7 AGRICULTURE AND ANIMALS Part XXI. Animals and Animal Health Chapter 13. Swine (Formerly Chapter 9)

FIELD STUDY. Comparison of techniques for controlling the spread of PRRSV in a large swine herd. Summary. Materials and methods.

Avian Influenza: Outbreak in Spring 2015 and Preparing for Fall

The 5 th Leman China Swine Conference October 16-18, 2016, Nanjing, China Draft Program. Sunday ( October 16)

Goals. Transboundary or. We are Here to Help. Awareness that animal biosecurity is addressed at the. Who s who during an outbreak

Poland: Present and Future Methods of Eradicating African Swine Fever

THE PENNSYLVANIA/VIRGINIA EXPERIENCE IN ERADICATION OF AVIAN INFLUENZA (H5N 2) Gerald J. Fichtner

Effect of various stocking methods and extra-label PRRS vaccination on average daily gain

Technical Bulletin. Pfizer Animal Health. RespiSure-ONE for one-day-of-age vaccination: Assessing vaccine efficacy RSP Key Points.

understood as achieving highest possible efficiency (combined pigs produced per sow per

FRA Swine Bioscwin Leman China Swine Conference

Porcine Epidemic Diarrhea virus (PEDv), Delta corona and variants

How Are We Protecting the U.S. Swine Herd?

Economic Impacts of Porcine Reproductive and Respiratory Syndrome (PRRS) Outbreak in Vietnam Pig Production

Health Interventions in Light of New Antibiotic Regulations Chris Rademacher, DVM

diseases and use of antibiotics Anne Jørgensen, Norwegian Pig Health Service,

Financial Evaluation of Disease Eradication

Global and Regional Strategies for HPAI and CSF

Allen D. Leman Swine Conference

Wisconsin Show Pig Assn. Symposium. Tammy Vaassen, WI Pork Association

Healthy Animals. Figure One Healthy Animals

The PRRS vaccine for the entire herd. H appy to. be healthy. Licensed. in breeding pigs and piglets. from weeks of age

CHAPTER 8 ESTIMATION OF THE OUTBREAK COST

Agricultural Outlook Forum Presented: February 16, 2006 THE CURRENT STATE OF SCIENCE ON AVIAN INFLUENZA

THE NEXT GENERATION CIRCUMVENT G2 GIVES YOU EVEN MORE PCV2 OPTIONS!

Derald J. Holtkamp Iowa State University, Hui Lin Iowa State University. Chong Wang Iowa State University,

Avian influenza Avian influenza ("bird flu") and the significance of its transmission to humans

General requirements of the Terrestrial Code Chapter on CSF

Methods for Inactivating PEDV in Hog Trailers

The FIRST intradermal M Hyo vaccine

University of Colorado Denver. Pandemic Preparedness and Response Plan. April 30, 2009

Effect of nursery depopulation on the seroprevalence of Mycoplasma hyopneumoniae in nursery pigs

Pauline Berton 1*, Valérie Normand 1, Guy-Pierre Martineau 2, Franck Bouchet 1, Arnaud Lebret 1 and Agnès Waret-Szkuta 2

Improving herd health by eradicating endemic diseases.

Transcription:

An Overview of PRRS Elimination Best Practices in Breeding Herds Rodney B. Baker, DVM, MS, Senior Clinician College of Veterinary Medicine, Iowa State University, Ames, IA Introduction Since 1987, porcine reproductive and respiratory syndrome virus (PRRS) has emerged as a global drain on pig productivity, profitability, and producer morale. The origin of PRRS has been debated for more than 20 years, but its ancestry remains unknown. Apparently only the pig is involved. 1,2,3,4 How it made an almost simultaneous entry into global pig populations exhibiting significant genetic diversity remains one of the many compelling mysteries. One thing that remains certain is PRRS virus continually finds ways to circumvent our best biosecurity and management efforts. PRRS marches on in a ceaseless continuum of antigenic change rendering current vaccines and other control techniques of temporary and marginal value. After the discovery of the causative agent in 1991, it was hoped that control measures would soon follow, but now, after 18 years of exhaustive research and vaccine use, the industry has gained little management ground over the Mystery Swine Disease. Control methodologies of many colors have found favor only to be dispossessed as the next seasonal isolates roared through hog belts. Oftentimes when management strategies fail to contain and control a disease agent, numerous experimental schemes evolve. This has been witnessed repeatedly over the years with attempted PRRS control as the commercial pig industry toyed with various vaccine schemes commercial and autogenous serum inoculations, natural exposure, feedback, and a host of genetic introduction vaccination and novel exposure plans. As with many other viral disease agents, there is a natural passage to broad population immunity, which, in the case of PRRS, often eliminates the virus from small, batch-farrowing herds even when the growing pigs remain on site. This same immunologic progression after a new isolate has entered a farm or system often confuses us into believing that the management interventions were successful when actually the population response to naturally occurring immunity is responsible for the observed improvement. Even as our best management control schemes met with failure, the biosecurity toolbox has steadily improved, and likewise, farm, system, and now area eradication programs have found success. PRRS elimination strategies have evolved along with scientific knowledge and field experience and to date, appear as the best alternative over control. Many improvements in biosecurity systems have evolved over the past 20 years, and the breeding stock industry has established free herds and proven that they can remain free from PRRS when strict standards are applied and when the farms are isolated from other pig production facilities. The magic separation distance is unknown but more miles between pig sites is advantageous. From documented experience, it appears airborne PRRS introduction may occasionally occur from distances up to 2.5 miles. In areas where pig density is concentrated, this distance may often be exceeded. Certainly large populations of PRRS positive growing pigs are a significant risk to any breeding herd whether that herd is currently PRRS positive or negative. The filtration option has gained ground with many successful testimonies coming from the field and from trial research. 5 Regional eliminations have been successful as well as a number of large- and medium-sized multi-site operations. Many isolated, single site breed-to-wean and continuous flow operations, which have been closed to outside genetic introductions, have remained PRRS negative for years. Studies of feral, wild, and transitional swine indicate that they do not serve as a PRRS reservoir and should not impede national eradication ambitions. 6 24

The following updated table suggests that the value of eradicating PRRS from the United States and North America has significant value compared to the eradication of pseudorabies virus (PRV) and to the bacteria Mycoplasma hyopneumoniae. The significant difference when comparing the three economically important swine agents is that PRV had widespread support for eradication by the swine commodity organizations, state and local associations, and the federal government. The direct cost to the producer at the time of final eradication was a very small $40 million annually compared to nearly one billion dollars direct producer cost associated with PRRS. PRV vaccines were highly effective, and the allure of significant increases in exports facilitated much of the eradication support. Although vaccination as an eradication tool is not currently feasible for PRRS, economic hardships and a desire for improved global competitiveness, productivity, well-being, and lower production costs has rekindled the interest in PRRS eradication in the United States, Mexico, and Canada. A comparison of PRRS and Mycoplasma to PRV, exploring potential justification for a national PRRS eradication effort. Criteria for Targeting a Disease for Eradication Mycoplasma PRRS PRV Biologic and Technical Feasibility Etiologic agent Bacteria RNA Virus DNA Virus Other species affected No No Yes Effective intervention tools Yes Yes Yes Effective vaccines Yes Marginal Yes Simple and practical diagnostics Yes Yes Yes Sensitive surveillance Facility based Area and facility based National/differential Field-proven strategies Marginal Yes Yes Understood area transmission Yes Incomplete/yes Yes Costs and Benefits Estimated annual industry benefit $200,000,000 $1,000,000,000 $40,000,000 Accompanying benefits Chronic disease Chronic/mortality Facilitated exports Intangible benefits Pig welfare Welfare/morale Other species External financing None None/research and National program producer funding Biosecurity enhancements Isolation/ Isolation/semen/ Isolation/breeding stock breeding stock transport/breeding stock/filtration Industry and Political Considerations Swine industry commitment None Rapidly developing Strong Political interest None Weak Strong National program No Developing Yes Indemnity provisions None None Yes Industry/government support None None Strong Core partnerships and advocates None AASV, NPB, breeding- AASV, NPB, NPPC, stock industry, key state and federal universities/state government, state associations/cap associations 25

To summarize, what is needed for a successful national eradication can be listed within a few bullet points even though the details of a national program will require significant thought and planning. First and foremost is a majority commitment by producers and their representative organizations. After commitment, they must own and drive the program. PRRS negative boar/semen and sow replacement stock, which is now widely available. Development of individual herd and system elimination plans and timelines followed by coordinated area efforts. An organized national plan and program run by producers, which recognize zones (areas, states, split state, etc.) based on PRRS status and activity. The terminology needed is in the final stages of development. Communication between the stakeholders. National recognition of eradication by USDA and eventual program funding. Eventual pig movement restrictions based on the PRRS status of the states, provinces, and zones. Continual development of biosecurity barriers, monitoring tools, and perhaps a universal vaccine. Breeding Herd Elimination Techniques Elimination of PRRS from multi-site production has become a standard process, especially in the standalone breed-to-wean unit. Farms with same site nurseries or growing pigs have significant track records of elimination when the growing pigs are moved off site. Nonclinical farms that have a good history and diagnostic monitoring can fast track through rollover eliminations. In this situation, the PRRS negative replacement stock can be placed into the site as sentinels after a 60- to 90-day closure to all additions. Once sentinels remain negative for 60 days, the farm is re-opened to normal replacement stocking rates with negative gilts and boars. Other variations of this basic plan have been successful and each depends on specific farm knowledge and producer commitment level. Farms with active outbreaks must be closed to all introductions for longer periods before successful addition of sentinels. The exact closure time for success is dependent on the population size, piglet fostering strategy, parity distribution, management commitment, and perhaps the nebulous characteristics of the specific virus present. Closure for 200 days from last clinical signs to first sentinel addition has been a good benchmark or target for rollover elimination in active farms. Many variations of the rollover PRRS elimination have been successfully applied and are best contrived by those who know the farm and its limitations. PRRS virus has been eliminated by any of the following or by a variety of hybridizations of these methods. 1. Depopulation, site cleanup, followed by repopulation with PRRS negative replacements and semen. 2. Partial depopulation in which all growing pigs leave the premise at weaning for the duration of the rollover as described in the examples below. 3. Rollover breeding herd closure for 200 days post last clinical signs before introducing negative gilts. 4. Breeding herd closure for 200 days with an offsite breeding project commencing approximately 85 days after last clinical PRRS signs. 26

5. Serum inoculation and tissue feedback 7 of all sows during an outbreak followed by one of the herd closure methods commencing after last clinical signs (200-day benchmark). 6. Whole herd and gilt replacement MLV vaccination followed by negative replacements after a period (200 days) of farm closure. This method eliminates vaccine virus introduced by the vaccine or a closely related wild isolate. 7. Continuous inoculation of gilts with the farm strain prior to entry. Although most would argue this does not eliminate PRRS, in many cases, the weaned pigs will remain negative to market age providing the gilt replacements are inoculated a minimum of 200 days prior to farrowing. This can easily be transitioned to rollover by negative gilt introduction. 8. Parity segregation can be used to drive multiple farms to negative pig flow status in a relatively short time (20 weeks in some situations). The 200-day benchmark still applies, but this can easily be accomplished in the gilt pool and P1 farm. Pig flow from the P2 and greater sites will achieve negative status quickly. 9. Continuous quarterly or semiannual addition of negative gilts to small herds, especially batch farrowing operations, which tend to go negative without other interventions other than biosecurity. 10. Three-breed rotational herds that add genetic stock only occasionally and especially those that batchfarrow tend to go negative without intervention. This is effective when all outside introductions are negative and providing functional biosecurity efforts aimed at blocking reintroduction are implemented. Undoubtedly, there are other opportunities to eliminate PRRS, but successful implementation of any of these methods depends on many factors including the ability to monitor, effectively isolate, and apply a functional biosecurity strategy. These are necessities for any hope of lasting success and value creation. Two hundred days is only a benchmark, but it is a useful rule of thumb when planning PRRS eliminations. Adhering to this timeline greatly enhances success rates. Starting an elimination project in a herd that already appears stable without a good history may require significant monitoring to arrive at a project start date, but the closure time can be significantly reduced with a good history and visual observations. Monitoring also is recommended when following a 200-day closure. Specific testing protocols are varied but generally focus on statistical evaluation of newborn piglets. Moving negative gilts, especially those from an offsite breeding project, into a farm that is in the early stages of unrecognized PRRS incubation is not the best scenario. Test-quarantine-removal is a valid method for agents of low prevalence and that are not highly infectious/ contagious and in which carrier or persistent infections may exist. Pseudorabies and brucellosis are good examples in which test and removal eradication programs have been effective. Test and removal is not a valid method of PRRS elimination. All elimination projects must include certain key ingredients for success. Careful planning, along with accurate assessments of expected costs, cash flow disruption, and value creation potential (payback period), should be developed. Biosecurity is important, but distance to growing pig sites can greatly improve durations of negativity. 27

Summary The success of close and rollover PRRS elimination methods is well recognized. Growing pig populations are generally believed to be the primary source of virus change resulting in area spread. The significant movement of weaned pigs and feeder pigs, and proximity of growing pigs to sow production sites has curtailed widespread eradication success. This issue must eventually be addressed if a national eradication attempt is to be successful. References 1. Raizman EA, Dharmarajan G, Beasley JC, et al. 2009. Serologic survey for selected infectious diseases in raccoons (Procyon lotor) in Indiana, USA. J Wildlife Dis 45(2):531 6. 2. Baker RB, Yu W, Fuentes M, et al. 2007. Prairie dog (Cynomys ludovicianus) is not a host for porcine reproductive and respiratory syndrome virus. J Swine Health Prod 15(1):22 9. 3. Hooper CC, Vanalstine WG, Stevenson GW, et al. 1994. Mice and rats (laboratory and feral) are not a reservoir for PRRS virus. J Vet Diag Invest 6(1):13 5. 4. Trincado C, Dee S, Rossow K, et al. 2004. Evaluation of the role of mallard ducks as vectors of porcine reproductive and respiratory syndrome virus. Vet Rec 154(8):233 7. 5. Dee S, Pitkin A, and Deen J. 2009. Evaluation of alternative strategies to MERV 16-based air filtration systems for reduction of the risk of airborne spread of porcine reproductive and respiratory syndrome virus. Vet Micro 138(1 2):106 13. 6. Corn JL, Cumbee JC, Barefoot R, and Erickson GA. 2009. Pathogen exposure in feral swine populations geographically associated with high densities of transitional swine premises and commercial swine production. J Wildlife Dis 45(3):713 21. 7. Desrosiers R and Boutin M. 2002. An attempt to eradicate porcine reproductive and respiratory syndrome virus (PRRSV) after an outbreak in a breeding herd: eradication strategy and persistence of antibody titers in sows. J Swine Health Prod 10(1):23 5. 28