PREDICTION OF GOOD FUNCTIONAL RECOVERY AFTER STROKE BASED ON COMBINED MOTOR AND SOMATOSENSORY EVOKED POTENTIAL FINDINGS

Similar documents
Activity of Daily Living and Motor Evoked Potentials in the Subacute Stroke Patients Kil Byung Lim, MD, Jeong-Ah Kim, MD

Motor evoked potentials: prognostic value in motor recovery after stroke

Original Article. Annals of Rehabilitation Medicine INTRODUCTION

CONTENTS. Foreword George H. Kraft. Henry L. Lew

Original Article. Annals of Rehabilitation Medicine

Neuro-MS/D Transcranial Magnetic Stimulator

Redgrave JN, Coutts SB, Schulz UG et al. Systematic review of associations between the presence of acute ischemic lesions on

Department of Physical Medicine and Rehabilitation, Chonbuk National University Medical School, Jeonju; 2

The Impact of Smoking on Acute Ischemic Stroke

Final Report. Title of Project: Quantifying and measuring cortical reorganisation and excitability with post-stroke Wii-based Movement Therapy

Case Report. Annals of Rehabilitation Medicine INTRODUCTION

Table 1: Nerve Conduction Studies (summarised)

Neurosoft TMS. Transcranial Magnetic Stimulator DIAGNOSTICS REHABILITATION TREATMENT STIMULATION. of motor disorders after the stroke

Motor Function Recovery in Stroke Patients with Corona Radiata Infarct: 4 Case Studies

Table 3.1: Canadian Stroke Best Practice Recommendations Screening and Assessment Tools for Acute Stroke Severity

In cerebral infarction, the prognostic value of angiographic

Letter to the Editor: test occlusion under monitoring of motor-evoked potentials for giant distal

AROC Outcome Targets Report Inpatient Pathway 3

An Electrode Configuration for Recording Muscle Motor Evoked Potentials in the Upper Extremities during Intraoperative Neurophysiological Monitoring

Canadian Stroke Best Practices Table 3.3A Screening and Assessment Tools for Acute Stroke

Mohamed Al-Khaled, MD,* Christine Matthis, MD, and J urgen Eggers, MD*

Audit and Compliance Department 1

Prognostic value of somatosensory evoked potentials, neuron-specific enolase, and S100 for short-term outcome in ischemic stroke

Research Perspectives in Clinical Neurophysiology

SEP Monitoring. Outline. Outline 1/22/2015. Development of SEPs Stimulation and recording techniques Predictive value of SEP Uses of SEP monitoring

SEP Monitoring. Andres A Gonzalez, MD Director, Surgical Neurophysiology Keck Medical Center of USC University of Southern California

Risk Factors Predicting Mortality in Spinal Cord Injury in Nigeria

Are randomised controlled trials telling us what rehabilitation interventions work?

Department of Physical Medicine and Rehabilitation, National Health Insurance Corporation Ilsan Hospital, Goyang; 2

Non-therapeutic and investigational uses of non-invasive brain stimulation

Introduction to TMS Transcranial Magnetic Stimulation

American Board of Physical Medicine & Rehabilitation. Part I Curriculum & Weights

Effects of Sub-Motor-Threshold Transcranial Magnetic Stimulation on. Event-Related Potentials and Motor-Evoked Potentials

Relationship between Structural Brain Measurements and Motor Function in Patients with Stroke

A Case of Acute Bilateral Retrocochlear Hearing Loss as an Initial Symptom of Unilateral Thalamic Hemorrhage

Patient characteristics. Intervention Comparison Length of followup. Outcome measures. Number of patients. Evidence level.

EFFECT OF REPETITIVE TRANSCRANIAL MAGNETIC STIMULATION OVER THE CEREBELLUM ON PATIENTS WITH ATAXIA AFTER POSTERIOR CIRCULATION STROKE: A PILOT STUDY

ATTENDING PHYSICIAN'S STATEMENT STROKE / BRAIN ANEURYSM SURGERY OR CEREBRAL SHUNT INSERTION / CAROTID ARTERY SURGERY

FORM ID. Patient's Personal Details. SECTION A : Medical Record of the Patient. Name. Policy Number. NRIC/Old IC/Passport/Birth Cert/Others

ANS/BSCN Guidelines for Neurophysiological Recordings of the Spinal Cord during Corrective Spinal Deformity Surgery

TMS: Full Board or Expedited?

Department of Rehabilitation Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Korea

Cédric Lenoir, Maxime Algoet, Camille Vanderclausen, André Peeters, Susana Ferrao Santos, André Mouraux

NEUROPLASTICITY. Implications for rehabilitation. Genevieve Kennedy

Magnetic stimulation and movement-related cortical activity for acute stroke with hemiparesis

Neurophysiological Basis of TMS Workshop

Case Report. Annals of Rehabilitation Medicine INTRODUCTION

Ischemic Stroke in Critically Ill Patients with Malignancy

Risk Factors for Ischemic Stroke: Electrocardiographic Findings

Naoyuki Takeuchi, MD, PhD 1, Takeo Tada, MD, PhD 2, Masahiko Toshima, MD 3, Yuichiro Matsuo, MD 1 and Katsunori Ikoma, MD, PhD 1 ORIGINAL REPORT

Electrophysiologic assessment of neurologic injury

Clinical Features and Subtypes of Ischemic Stroke Associated with Peripheral Arterial Disease

Water immersion modulates sensory and motor cortical excitability

The EVEREST Study Dr. Robert Levy, MD, PhD

MOTOR EVOKED POTENTIALS AND TRANSCUTANEOUS MAGNETO-ELECTRICAL NERVE STIMULATION

Epidemiology And Treatment Of Cerebral Aneurysms At An Australian Tertiary Level Hospital

Non-Compliance with Guidelines: Motivations and Consequences in a case study. The ischemic stroke management

C ervical spondylosis is an important and frequent cause

Trans-spinal direct current stimulation: a novel tool to promote plasticity in humans

See Policy CPT/HCPCS CODE section below for any prior authorization requirements

LATE RESPONSES IN THE ELECTRODIAGNOSIS OF CERVICAL RADICULOPATHIES

Mechanical thrombectomy in Plymouth. Will Adams. Will Adams

P1: OTA/XYZ P2: ABC c01 BLBK231-Ginsberg December 23, :43 Printer Name: Yet to Come. Part 1. The Neurological Approach COPYRIGHTED MATERIAL

Correlation between changes of contralesional cortical activity and motor function recovery in patients with hemiparetic stroke

Median-ulnar nerve communications and carpal tunnel syndrome

Supplementary Appendix

Effectiveness of a home-based rehabilitation programme on lower limb functions after stroke

Influence of bone morphology and injured ligament of the ankle on ankle stress radiographs

Neuro-MS/D DIAGNOSTICS REHABILITATION TREATMENT STIMULATION. Transcranial Magnetic Stimulator. of motor disorders after the stroke

Template 1 for summarising studies addressing prognostic questions

. 8. Pharmacological treatment in acute stroke 8.3 Antiplatelet and anticoagulant treatment in stroke due to arterial dissection

Slide 1. Slide 2. Slide 3. Intro to Physical Therapy for Neuromuscular Conditions. PT Evaluation. PT Evaluation

Electrodiagnostic approach in entrapment neuropathies of the median and ulnar nerves

Comparison of functional training and strength training in improving knee extension lag after first four weeks of total knee replacement.

The MAIN-COMPARE Study

Neuroimaging biomarkers and predictors of motor recovery: implications for PTs

Cervical radiculopathy: diagnostic aspects and non-surgical treatment Kuijper, B.

Transcranial Magnetic Stimulation and Diffusion Tensor Tractography for Evaluating Ambulation after Stroke

. 10. Hydration and nutrition 10.2 Assessment of swallowing function

Kazuyoshi Nakanishi, Nobuhiro Tanaka, Naosuke Kamei, Shinji Kotaka, Mitsuo Ochi and Nobuo Adachi

Efficient analysis of ordinal functional outcome scales

available at journal homepage:

CAN WE PREDICT SURGERY FOR SCIATICA?

Original Article. Japanese Journal of Comprehensive Rehabilitation Science (2011)

NEURO-MS TMS. Diagnostic Monophasic Magnetic Stimulator

It is possible to stimulate the human brain through the intact

Intraoperative spinal cord monitoring with Tce-MEP for cervical laminoplasty

Definition พ.ญ.ส ธ ดา เย นจ นทร. Epidemiology. Definition 5/25/2016. Seizures after stroke Can we predict? Poststroke seizure

Functional Independent Recovery among Stroke Patients at King Hussein Medical Center

Medical Policy Manual

Why can t we get good baseline motor evoked potentials in this. patient? Laura Hemmer, M.D. Antoun Koht, M.D.

mean age, 57.8 years [range, 36 to 71 years]) suffering from their first stroke (cerebral infarction) in the dominant

Revascularization after Drug-Eluting Stent Implantation or Coronary Artery Bypass Surgery for Multivessel Coronary Disease

CLINICAL GOVERNANCE UPDATED ANS/BSCN GUIDELINES FOR NEUROPHYSIOLOGICAL RECORDINGS OF THE SPINAL CORD DURING CORRECTIVE SPINAL DEFORMITY SURGERY

The Effect of Constraint-Induced Movement Therapy on Upper Extremity Function and Unilateral Neglect in Person with Stroke

TAAA / Spinal Cord Protection

The Relationship between Clinical Outcome in Subarachnoidal Hemorrhage Patients with Emergency Medical Service Usage and Interhospital Transfer

Resting-State Functional Connectivity in Stroke Patients After Upper Limb Robot-Assisted Therapy: A Pilot Study

Somatosenory Evoked Potentials. Ronald Emerson, MD Cornell University Hospital for Special Surgery New York

Transcription:

J Rehabil Med 2010; 42: 16 20 ORIGINAL REPORT PREDICTION OF GOOD FUNCTIONAL RECOVERY AFTER STROKE BASED ON COMBINED MOTOR AND SOMATOSENSORY EVOKED POTENTIAL FINDINGS Sang Yoon Lee, MD 1, Jong Youb Lim, MD 1, 2, Eun Kyoung Kang, MD 1, Moon-Ku Han, MD, PhD 2, Hee-Joon Bae, MD, PhD 2 and Nam-Jong Paik, MD, PhD 1, 2 From the 1 Department of Rehabilitation Medicine and 2 Department of Neurology, Seoul National University College of Medicine, Stroke Center, Seoul National University Bundang Hospital, Seongnam, South Korea Objective: To delineate whether functional recovery after stroke, determined by the modified Rankin Scale during the neurologically stable chronic stage, is associated with the presence or absence of motor evoked potential or somatosensory evoked potential measured during the sub-acute stage at the commencement of rehabilitation. Design: Retrospective medical records review. Patients: Consecutive 105 first-ever unilateral patients after stroke. Methods: Patients underwent motor evoked potential and somatosensory evoked potential studies at the commencement of rehabilitation (i.e. approximately 1 month post-onset), and functional recovery was measured using the modified Rankin Scale at 3 months post-onset. The independent abilities of motor evoked potentials and somatosensory evoked potentials for predicting good functional recovery (modified Rankin Scale 2) were determined by multivariable logistic regression analysis adjusted for age, laterality of lesion, and National Institute of Health Stroke Scale scores at onset of rehabilitation. Results: The adjusted logistic regression model revealed that patients with negative motor evoked potential or somatosensory evoked potential responses in the lower limb were less likely to achieve good functional recovery (odds ratio = 0.057~0.099, p < 0.05) relative to positive motor evoked potential and somatosensory evoked potential responses in the lower limb. Conclusion: Evoked potential studies measured at the commencement of rehabilitation could be used in a complementary manner to predict functional recovery after stroke. Key words: stroke; recovery; function; somatosensory evoked potential; motor evoked potential. J Rehabil Med 2010; 42: 16 20 Correspondence address: Nam-Jong Paik, Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital 166 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 463-707, South Korea. E-mail: njpaik@snu.ac.kr Submitted December 28, 2008; accepted September 9, 2009 INTRODUCTION The prediction of post-stroke functional recovery is important in stroke rehabilitation. Several clinical and demographic factors have been suggested previously as predictors of functional recovery after stroke (1). Evoked potential (EP) studies provide a useful, objective means of assessing the integrities of cortico-spinal and somatosensory pathways, and therefore, EP findings have prognostic value in terms of predicting post-stroke functional recovery (2, 3). However, previous reports either involved small number of subjects or did not evaluate motor EP (MEP) and somatosensory EP (SEP) simultaneously. In the present study, we studied whether functional recovery after stroke, determined by the modified Rankin Scale (mrs) during the neurologically stable chronic stage, is associated with the presence or absence of MEP or SEP measured during the sub-acute stage at the commencement of rehabilitation. PATIENTS AND METHODS Patients We reviewed the medical records of 191 consecutive patients with first-ever unilateral stroke who commenced rehabilitative training approximately one month (mean 25.9 standard deviation (SD) 14.3 days) post-onset onset at a university hospital during the 14-month period from January 2007 to February 2008. Stroke was diagnosed based on clinical history, a physical examination (by neurologists), and confirmation by brain magnetic resonance imaging (MRI). The exclusion criteria applied were: (i) a recurrent stroke history; (ii) the presence of nonvascular brain lesions, such as, lesions due to traumatic injury, a brain tumour, or Parkinsonism; (iii) no functional deficit (mrs = 0); (iv) a bed-ridden status and an inability to tolerate rehabilitative training (mrs = 5); (v) a co-morbidity, such as peripheral polyneuropathy; (vi) a concomitant severe medical illness that could affect the prognosis; and (vii) those in whom an MEP study was contraindicated, for example, those with an implanted metallic device, such as aneurysmal clip or cardiac pacemaker, and those with a history of epilepsy or craniotomy. Measurement of functional recovery after stroke Motor function was measured at the commencement of rehabilitation at mean 25.9 (SD 14.3) days post-onset and during the neurologically stable chronic stage (mean 96.0 (SD 18.1) days post-onset) using the mrs. Rehabilitative training was routinely administered during admission to the rehabilitation unit, consisting of 1 1.5 h of physical therapy (mobility and gait training), 1 1.5 h of occupational therapy (task-oriented training and activities of daily living training), and/ or 1 h of speech therapy on each therapy day, which was divided into 2 daily sessions, 5 days a week, according to the individual patient s needs. 2010 The Authors. doi: 10.2340/16501977-0475 Journal Compilation 2010 Foundation of Rehabilitation Information. ISSN 1650-1977

Evoked potentials in stroke 17 The mrs is a clinician-reported measure of global disability with high validity and reliability (4) and is widely applied for evaluating stroke outcomes, degree of disability, and dependence with respect to the daily activities (5). We defined a good functional recovery as mrs 1 or 2 (6) out of 6 grades (0 5), where 0 corresponds to no symptoms and 5 to severe disability or a bedridden status (7). The protocol used was approved by the institutional review board of (our) institution. Evoked potential studies Neurophysiological measurements were carried out bilaterally on upper and lower limbs on the same day as mrs measurements. MEPs were measured in all 4 extremities (abductor pollicis brevis in upper limbs and the adductor hallucis in lower limbs) using a standard protocol (8). Reproducible responses with minimal peak to peak amplitude of 200 µv in at least 5 of 10 consecutive trials using a figure-of-eight coil were defined as a positive response ( MEP(+) ). SEPs were measured by stimulating median nerves at wrists and tibial nerves at ankles using a standard protocol (9). In cases with an amplitude (N1 to P1) difference of < 50% and a latency (N1) difference of < 10% compared with unaffected sides, the response was regarded as positive ( SEP(+) ). Statistical analysis Baseline demographics, stroke factors, and the presence of an EP response were compared with respect to functional recovery status at 3 months post-onset (good recovery mrs 2 and poor recovery mrs > 3). The independent effects of MEP and SEP on functional recovery were assessed using a multivariate logistic regression model, unadjusted or adjusted for 8 key prognostic factors, namely, sex, age, lesion location, lesion laterality, stroke type (ischaemic or haemorrhagic), the presence of diabetes mellitus, National Institute of Health Stroke Scale (NIHSS) at onset of rehabilitation, and for MEP and SEP responses. The adjusted model was developed by backward elimination using a significance level of 0.2 to enter and 0.05 to stay. Sex, lesion location, stroke type, and presence of diabetes mellitus were eliminated from the final adjusted regression model. The sensitivities and specificities of MEP and SEP for predicting a good functional recovery (mrs 2) were calculated. In addition, we also calculated the positive and negative predictive values of MEP and SEP. All analyses were performed using SPSS 15.0 for Windows. Significance was accepted for < 0.05, and 95% confidence intervals (CI) are provided. RESULTS Table I. Baseline characteristics of subjects Characteristics Mean age, years, n (SD) 65.7 (14.3) Sex, male/female, n 59/46 Stroke localization, n Cortical 7 Cortico-subcortical 16 Subcortical 44 Brain stem 19 Cerebellum 3 Multiple 16 Stroke type, n Ischaemic 85 Haemorrhagic 20 Stroke laterality, n Right hemisphere 54 Left hemisphere 51 mrs at onset of rehabilitation, mean (SD) NIHSS at onset of rehabilitation, mean (SD) 3.32 ( 0.88) 6.16 (4.95) mrs: modified Rankin Scale; NIHSS: National Institute of Health Stroke Scale; SD: standard deviation. Of the 191 patients considered initially, 86 were excluded due to; recurrent stroke (n = 38), no or a severe functional deficit (n = 28), non-vascular brain lesions (n = 13), and diabetes mellitus requiring insulin therapy (n = 7). Thus, 105 patients constituted the study cohort. Baseline characteristics of the 105 subjects are shown in Table I. The mean mrs (from 3.32 (SD 0.88) to 2.47 (SD 1.19), p < 0.001 by paired t-test) and mean NIHSS (from 6.16 (SD 4.95) to 3.05 (SD 3.47), p < 0.001) significantly improved 3 months post-stroke from the rehabilitation start. Of the 105 patients, 53 patients (50.5%) achieved a good functional state at 3 months post-onset. By unadjusted analysis, patients older than 80 years were found to have a significantly lower odds ratio of achieving a good functional recovery than those younger than 50 years (unadjusted OR = 0.21, 95% CI = 0.05 0.93; p = 0.024). An NIHSS at onset of rehabilitation of 5 was found to be a significant predictor of a poor functional recovery (unadjusted OR = 0.11, 95% CI = 0.04 0.29; p < 0.001). Adjusted analysis also showed that age 80 years and an NIHSS at onset of rehabilitation 5 were significant predictors of a poor functional recovery (adjusted OR = 0.04, 0.06; p = 0.020, p < 0.001, respectively). Other demographic and stroke variables were not found to be significantly associated with recovery. By unadjusted EP analysis, MEP(+) in a lower limb, SEP(+) in an upper and in a lower limb were found to be significantly associated with a better recovery than the corresponding negative responses (unadjusted OR = 0.34, 0.23, 0.17; p = 0.008, p = 0.001, p < 0.001, respectively). However, the presence of MEP and SEP responses were not found to be significantly associated with better recovery when the adjusted model was used. We then applied cross-matched EP analysis. By unadjusted cross-matched EP analysis, the upper limb MEP( )SEP( ) group had a significantly lower OR for a good recovery (unadjusted OR = 0.20, 95% CI 0.07 0.56; p = 0.002) than the MEP(+)SEP(+) group. Furthermore, the lower limb MEP(+) SEP( ), MEP( )SEP(+), and MEP( )SEP( ) groups had significant lower OR for a good recovery than the MEP(+)SEP(+) group (unadjusted OR = 0.19, 0.07, 0.07; p = 0.016, p = 0.001, p < 0.001, respectively). By adjusted EP analysis, only cross-matched EP findings in a lower limb were found to be significantly associated with a good recovery. The lower limb MEP(+)SEP( ), MEP( ) SEP(+), MEP( )SEP( ) groups had significantly lower OR than the MEP(+)SEP(+) group (adjusted OR = 0.09, 0.06, 0.10; p = 0.033, p = 0.013, p = 0.040, respectively) (Table II). The relationship between a good functional recovery at 3 months post-onset and the results of EP studies at rehabilitation commencement are shown in Table III. Sensitivity and specificity for predicting a good functional recovery were 39.6% and 75.0% for upper limb MEP, 56.6% and 69.2% for lower limb MEP, 73.6% and 61.2% for upper limb SEP, and 71.2% and 70.8% for lower limb SEP, respectively. DISCUSSION The main finding of this study is that patients with a negative lower limb MEP or SEP response, and patients with negative

18 S. Y. Lee et al. Table II. Unadjusted and adjusted odds ratios (OR) of good functional recovery (mrs 2) at 3 months after stroke in 105 patients n Unadjusted OR* (95% CI) p-value Adjusted OR (95% CI) p-value Sex Male 56 1.000 ni Female 49 0.657 (0.304 1.421) 0.286 Age, years < 50 15 1.000 1.000 50 59 11 1.333 (0.242 7.348) 0.741 0.683 (0.067 6.973) 0.748 60 69 29 0.818 (0.221 3.031) 0.764 0.458 (0.050 4.158) 0.487 70 79 33 0.286 (0.079 1.034) 0.056 0.239 (0.035 1.613) 0.142 80 17 0.208 (0.047 0.931) 0.024 0.039 (0.030 0.603) 0.020 Lesion Cortical 7 1.000 Cortico-subcortical 16 0.341 (0.055 2.131) 0.250 Subcortical 44 0.750 (0.150 3.750) 0.726 ni Brain stem 19 2.812 (0.438 18.056) 0.276 Cerebellum 3 0.375 (0.022 6.348) 0.497 Multiple 16 0.450 (0.074 2.741) 0.386 Laterality of lesion Right 54 1.000 1.000 Left 51 1.718 (0.769 3.839) 0.187 2.179 (0.574 8.269) 0.252 Stroke type Ischaemic 85 1.000 ni Haemorrhagic 20 0.977 (0.369 2.587) 0.962 DM ( ) 77 1.000 ni (+) 28 1.184 (0.498 2.817) 0.702 NIHSS at onset of rehabilitation < 5 42 1.000 1.000 5 49 0.109 (0.042 0.286) < 0.001 0.058 (0.012 0.287) < 0.001 MEP Upper (+) 34 1.000 1.000 ( ) 71 0.508 (0.220 1.171) 0.112 2.411 (0.517 11.246) 0.263 MEP Lower (+) 46 1.000 1.000 ( ) 59 0.341 (0.153 0.759) 0.008 0.366 (0.076 1.767) 0.211 SEP Upper (+) 58 1.000 1.000 ( ) 44 0.227 (0.098 0.526) 0.001 0.584 (0.133 2.576) 0.478 SEP Lower (+) 51 1.000 1.000 ( ) 49 0.167 (0.070 0.396) < 0.001 0.329 (0.094 1.159) 0.084 EP Upper MEP (+) SEP (+) 28 1.000 1.000 MEP (+) SEP ( ) 3 0.947 (0.316 2.840) 0.923 2.755 (0.392 19.375) 0.309 MEP ( ) SEP (+) 30 0.947 (0.076 11.870) 0.967 0.377 (0.007 20.126) 0.631 MEP ( ) SEP ( ) 41 0.196 (0.069 0.555) 0.002 0.925 (0.110 7.796) 0.943 EP Lower MEP (+) SEP (+) 29 1.000 1.000 MEP (+) SEP ( ) 22 0.192 (0.050 0.739) 0.016 0.091 (0.010 0.820) 0.033 MEP ( ) SEP (+) 13 0.071 (0.015 0.346) 0.001 0.057 (0.006 0.552) 0.013 MEP ( ) SEP ( ) 36 0.070 (0.020 0.251) < 0.001 0.099 (0.011 0.900) 0.040 *Unadjusted odds ratios by logistic regression analysis. Adjusted odds ratios by multivariate logistic regression analysis; adjusted for all other variables in model. Three and 5 patients (upper limb and lower limb SEP study, respectively) were excluded because SEP study were impossible by their poor compliance. CI: confidence interval; DM: diabetes mellitus; EP: evoked potentials; MEP: motor evoked potentials; ni: not included in the final adjusted model; NIHSS: National Institute of Health Stroke Scale; SEP: somatosensory evoked potentials. MEP and SEP responses in the lower limbs during the sub-acute stage are less likely to achieve a good functional recovery during the chronic stage than those with positive MEP and SEP responses in the lower limbs. To the best of our knowledge, this is the first study to use the cross-matched analysis of MEP and SEP to predict functional recovery after a stroke. Although MEP and SEP assess anatomically different pathways, both motor and sensory recoveries

Evoked potentials in stroke 19 Table III. Contingency table for good functional recovery in relation to the presence of evoked responses Cut-off point of Functional recovery good functional recovery Results of EPs Good, n Poor, n Sensitivity (%) Specificity (%) Positive predictive value (%) Negative predictive value (%) mrs 2 MEP Upper (+) 21 13 39.6 75.0 61.8 54.9 ( ) 32 39 MEP Lower (+) 30 16 56.6 69.2 65.2 61.0 ( ) 23 36 SEP Upper (+) 39 19 73.6 61.2 67.2 68.2 ( ) 14 30 SEP Lower (+) 37 14 71.2 70.8 72.5 69.4 ( ) 15 34 mrs 3 MEP Upper (+) 29 5 38.1 82.8 85.3 33.8 ( ) 47 24 MEP Lower (+) 37 9 48.7 69.0 80.4 33.9 ( ) 39 20 SEP Upper (+) 50 8 66.7 70.4 86.2 43.2 ( ) 25 19 SEP Lower (+) ( ) 46 27 5 22 63.0 81.5 90.2 44.9 EP: evoked potentials; mrs: modified Rankin Scale; MEP: motor evoked potentials; SEP: somatosensory evoked potentials. after stroke are important, because they are integral aspects of a single functional activity. Therefore, considering both MEP and SEP would better predict functional recovery after a stroke than considering MEP or SEP alone. However, no previous study has considered MEP and SEP simultaneously. In the present study, several demographic and neurophysiological variables were found to be significantly associated with functional recovery by unadjusted analysis. However, only age < 50 years, NIHSS at onset of rehabilitation < 5, and a positive response in lower limbs for MEP and SEP retained significance after adjusted analysis. The adjusted ORs for prediction of good functional recovery in Table II provide information on the relative effects of NIHSS and age vs EPs, showing that the relative contribution of EPs in predicting good functional recovery 3 months after a stroke is less than age or NIHSS. The adjusted ORs were age (0.039; 80 years vs < 50 years), NIHSS (0.058; 5 vs < 5), and EPs (0.099; lower MEP( ) SEP( ) vs lower MEP(+)SEP(+)). Many studies have investigated the predictive value of MEP in terms of post-stroke functional recovery. Heald et al. (10) reported that the presence of MEP within 72 h of stroke onset can discriminate patients with high probabilities of survival and good functional recovery and, conversely, that its absence indicated poor recovery and an increased risk of death. The predictive value of SEP for post-stroke functional recovery has also been well studied. Tzvetanov et al. (3) found that upper limb SEP amplitude recorded within 3 days of stroke onset provided significant prognostic information. In the present study, only positive MEP and SEP responses in the lower limbs were found to be significantly related to a good functional recovery. Our explanation is that the dichotomous outcome measure (good or poor functional recovery) based on the mrs is probably too crude to reflect the effects of upper limb MEP and SEP findings. On the other hand, it is also possible that had we applied different mrs cut-off points for good and poor functional recovery our findings might have been different. When the predictive value of EP study was calculated in terms of sensitivities and specificities, the specificity of MEP was found to be better than its sensitivity. However, this higher specificity was not significant in our SEP study. If the cut-off point for good functional recovery had been adjusted from mrs 2 to mrs 3, the positive predictive value of EP study would have increased to > 80%, but the negative predictive value would have decreased to < 50% (Table III). In this case, stroke patients with a positive response by EP study could be predicted to achieve a good functional recovery, but post-stroke prognosis could not be predicted in patients with a negative response. As a result of low negative predictive value of EP studies, the prediction of post-stroke functional recovery based on neurophysiological findings alone has its limitations. Therefore, we advise that other findings, both clinical and radiological, should also be considered, and that MEP and SEP should be considered complementary tests in terms of predicting functional recovery after stroke. In conclusion, MEP and SEP studies performed during the sub-acute stage of stroke could be useful for predicting functional status during the chronic stage. REFERENCES 1. Kwakkel G, Wagenaar RC, Kollen BJ, Lankhorst GJ. Predicting disability in stroke a critical review of the literature. Age Ageing 1996; 25: 479 489. 2. Escudero JV, Sancho J, Bautista D, Escudero M, Lopez-Trigo J. Prognostic value of motor evoked potential obtained by transcranial magnetic brain stimulation in motor function recovery in patients with acute ischemic stroke. Stroke 1998; 29: 1854 1859. 3. Tzvetanov P, Rousseff RT, Atanassova P. Prognostic value of median and tibial somatosensory evoked potentials in acute stroke. Neurosci Lett 2005; 380: 99 104. 4. Huybrechts KF, Caro JJ. The Barthel Index and modified Rankin Scale as prognostic tools for long-term outcomes after stroke: a qualitative review of the literature. Curr Med Res Opin 2007; 23: 1627 1636.

20 S. Y. Lee et al. 5. Banks JL, Marotta CA. Outcomes validity and reliability of the modified Rankin scale: implications for stroke clinical trials: a literature review and synthesis. Stroke 2007; 38: 1091 1096. 6. Gargano JW, Reeves MJ. Sex differences in stroke recovery and stroke-specific quality of life: results from a statewide stroke registry. Stroke 2007; 38: 2541 2548. 7. Rankin J. Cerebral vascular accidents in patients over the age of 60. III. Diagnosis and treatment. Scott Med J 1957; 2: 254 268. 8. Rossini PM, Barker AT, Berardelli A, Caramia MD, Caruso G, Cracco RQ, et al. Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application. Report of an IFCN committee. Electroencephalogr Clin Neurophysiol 1994; 91: 79 92. 9. Rossini PM, Narici L, Martino G, Pasquarelli A, Peresson M, Pizzella V, et al. Analysis of interhemispheric asymmetries of somatosensory evoked magnetic fields to right and left median nerve stimulation. Electroencephalogr Clin Neurophysiol 1994; 91: 476 482. 10. Heald A, Bates D, Cartlidge NE, French JM, Miller S. Longitudinal study of central motor conduction time following stroke. 2. Central motor conduction measured within 72 h after stroke as a predictor of functional outcome at 12 months. Brain 1993; 116: 1371 1385.