FOOD CALORIMETRY OVERVIEW & PURPOSE

Similar documents
The Great Peanut Problem

Sweet Calories: Energy Content of Marshmallows Lab

Lab 7: Heat and Calorimetry

Running head: CALORIMETRY TO COMPARE ENERGY CONTENT OF FOODS 1. Using Calorimetry as an Experimental Means to Compare the Energy Content of Two Foods

Chemistry Thermodynamics Neatly answer all questions completely for credit. Show all work.

1. Calculate the energy content in peanuts using measurements involving the bomb calorimeter.

Food as Fuel. Investigative Lab 78. Name Class Date. Measuring the Chemical Energy Stored in Food

Energy Found in a Cheeto and a Marshmallow

The Energy in Food. Energy (J/g) = (final temperature start temperature) x mass of water (g) x 4.2 (J per o C) Mass of food burned (g)

Experimental Procedure

Determining Caloric Content of Food. Sudha Madhugiri, Ph.D. Collin College Department of Chemistry

The Power Within a Peanut: Tremendous Energy Potential

Energy Content of Foods

! Which nut has the most. stored energy? By: Andrea Rendon. Chemistry. April, 18th, 2014

LEARN * DREAM * AWAKEN* DISCOVER * ENLIGHTEN * INVESTIGATE * QUESTION * EXPLORE

Stored. Introduction: Name. process by. of usable. respiration. stored energy. allowing us to. the. that can be will indirectly.

Energy in the Food We Eat

Full file at

Cut out these cards and match them up to make correct sentences. Arrange the sentences in a sensible order, and stick them into your book.

Stored Mechanical Gravitational Electrical. measured as. Forms of Energy

Marathon Snack Lab. Key Terms

Observing Respiration

Most of the ethanol that is used as a biofuel in this country is produced from corn.

Problem: What would happen to enzyme activity if enzymes are placed outside their normal conditions? Hypothesis:

Source 1 Evaluation. Source (using Harvard reference style)

Lesson 8: Effect of temperature on an oyster s heart rate

Laboratory 10: Energy in Chemical Reactions

Ecology Pre-test (Middle School)

Materials and Equipment

How do scientists design experiments? This activity will introduce you to the concept of variables.

ENZYME CONCENTRATIONS AND ENZYME ACTIVITY: PLANNING SHEET

Environmental Literacy Carbon Assessment: --- High School Level, Form A ---

Burning Snacks in Chem Lab Michael Hayes Hopewell High School Hopewell City Public Schools

LESSON 1.4 WORKBOOK. Virtual Calorimetry lab. Workbook Lesson 1.4

Year 8 Assessment. Autumn Term Remember!

Exploding Corn: Student Pages DIFFERENCES BEWEEN MASS AND VOLUME CHANGES WITH POPCORN

Chapter 8: Learning More About the Food We Eat. Lesson Objectives. Review the Last Chapter. Helpful Hints

Marathon Snack Alternate Assignment. Key Terms

30.1 Organization of the Human Body

Safety In the Science Lab

Enzyme Action: Testing Catalase Activity

Esters of various alkane acids (Item No.: P )

Skeletal & Muscular Systems Chicken Wing Dissection

Hydrolysis and Dehydration Synthesis

DRK-12 Carbon Assessment, Form A. Fall, 2012

DRK-12 Carbon Assessment, Form A

HIGHLANDS STRONGMAN COMPETITION

Introduction to Science Junior Science. Easy to read Version

Cellular Respiration

Experimental Procedure

You Take My Breath Away. Student Information Page 5C Part 1

Lab 6: Cellular Respiration

March 4, 2017 Built for Speed

Potato Calories. Science Fact or Fiction? Instructions

Personal Work and Power Lab

Contents. Helpline No. UK/ North Ireland Rep. Ireland Web Support Model Number: 12005

Experiment Optional #2: The Synthesis of Aspirin

How Does the Digestive System React to Illness and Help Spread Illness?

Food for Thought. Key message: Food is the fuel of the human body, it keeps us alive and gives us energy.

Safety Data Sheet. Product Name: DetectX Palladium Screening Fluorescent Detection Kit. Section 1: Identification. Section 2: Hazard(s) Identification

Cell Biology Sub-Topic (1.6) Respiration

MD10826_Körperfettwaage_manual_UK.fm Seite 1 Mittwoch, 26. Juli :10 14

Human Body Systems: Calorimetry

Forensics with TI-Nspire Technology

Black-Magic RT-S20/25 Replenisher Product Code: Revised Date: 01/11/2013

Acting in an Emergency (Video- Acting in an emergency and preventing disease transmission)

BIOL 109L Laboratory Four Fall 2018 Milk, Metabolism, and Lactose Intolerance

PROCEDURE FOR GENERATION AND TESTING OF MAINSTREAM TOBACCO HEATING SYSTEM (THS or IQOS) AEROSOL USING A LINEAR SMOKING MACHINE

Food Is Fuel - Student Edition (Human Biology)

Unit 5L.4: Food. Know that humans require food as an energy source. Know that a balanced diet must contain proteins, fats,

Transcutaneous Electrical Nerve Stimulator (TENS)

Enzymes: What s in your spit? Teacher Version

Organic Molecule Composition of Milk: Lab Investigation

Entry Deadline: October 14, 2014 Each team participating will need to call the Extension office at to enter.

STEP-BY-STEP-ANLEITUNG

Chapter 9: Cellular Respiration

Solar Illumination Study

How to Rebuild and Replace the Coils in a Mutation X V4 Atomizer

Patient/Carer instructions for the administration of Subcutaneous Cytarabine

BCH 445 Biochemistry of nutrition Dr. Mohamed Saad Daoud

Investigating a natural composite chicken bone

CHAPTER 6 CELLULAR RESPIRATION

Welcome back to Science Junior Science. Easy to read Version

Core practical 1: Investigate how enzyme concentration affects the initial rate of an enzyme-controlled reaction

Identifying Mystery Powders

Food serves as a source of raw materials for the cells in the body and as a source of energy.

Multicellular. Organisms

PATIENT INFORMATION LEAFLET MEDICINE TO TREAT: DIABETES. Insulin

Used to pick up or hold hot objects Protects the eyes from flying objects or chemical splashes

Organic Compounds in the Foods

Whitehall Memorial High School Whitehall, WI. Starches. By Scott McConnell High School Life Science Instructor And by Delaine Stendahl

What Makes a Food Nutritious?

2018 Version. Introduction to Science Junior Science

Enzyme Reaction Rates Using TOOTHPICKASE

Heat Stress Course Outline

WRAP: EVERY 3 DAYS Tighten, tone, and firm your body with That Crazy Wrap Thing

Geschrieben von: Phillip Takahashi

BODY ANALYZER SCALE PS 8710

The Basics of Food Safety in 50 Minutes. Chef Adam Weiner, CFSE JobTrain

Instructions for Use. Welcome!

Transcription:

FOOD CALORIMETRY OVERVIEW & PURPOSE How much energy is released when your body burns food? Have you ever looked at the nutrition label on a package of food or a soda can? It s here that you can find Calories per serving. How do we determine how many calories are in food? What is a calorie? All living things need energy in order to do things like move, grow and keep warm. While plants get their energy directly from sunlight, humans and other animals must eat so that they can use the energy stored in food. This food is oxidized (or burned ) inside our bodies during digestion. As this happens, chemical energy stored in the food is converted to heat energy (to maintain our constant body temperature), mechanical energy (to move our muscles), and electrical energy (for nerve transmission). Different types of food store and release different amounts of energy. For example, fat stores and releases more energy than the same amount of protein. If we eat more food than needed, our bodies convert it to fat in order to store the energy for future use. The amount of energy released by food is usually measured in kilocalories (kcal). Nutritionists and American food labels refer to these kilocalories as Calories (with a capital C). Because these measure the same thing (energy), we can use simple math to convert from one to another. 1 Calorie = 1 kilocalorie = 1, 000 calories = 4, 184 joules So, a can of soda containing 150 Calories contains 150,000 calories. A calorie is the amount of energy needed to raise the temperature of 1 gram of water 1 degree Celsius. Calorimetry is the measurement of heat energy released or absorbed in a chemical reaction. When we burn food, heat energy is released as its chemical bonds are broken http://www.rdcep.org/demo-collection page 1

down. In this lab, you will observe an energy transformation the transfer of chemical energy (stored in food s chemical bonds) to heat energy. As you burn a food sample, heat is released and transferred to the water above it. By measuring the water s temperature increase, you can calculate how much heat energy was transferred to it by the burning food using this equation: Q = mw c w Δ T where Q = heat energy absorbed by water m w = mass of water being heated c = specific heat of water = calories required to raise temperature of 1 gram of water 1 C o = 1 calorie g o C Δ T = change in temperature of water = final temperature initial temperature OBJECTIVES Learn how chemical energy stored in food can be transferred to other forms of energy, like heat. Be able to convert between calories, kilocalories, food Calories, and joules. Understand how calorimetry is used to determine the energy content of food. Measure, calculate, and compare the energy (calorie) content in several food samples. METHOD Students will use a calorimeter to determine how much energy is in various food samples. http://www.rdcep.org/demo-collection page 2

QUESTIONS FROM READING 1. How do humans and other animals get the energy they need to live? 2. Name some energy conversions (transformations) that occur as your body burns (oxidizes) food. 3. What is the difference between a food (or nutritional) Calorie and a calorie? PRE-LAB DISCUSSION QUESTIONS 1. Which of the food samples in this lab do you think contains the most energy? Why? 2. What is the original source of energy for all foods? MATERIALS (per group of students) Erlenmeyer flask (200mL capacity) cork and nail food sample holder digital scale with 0.1 gram accuracy heat-resistant gloves metal cylinder stand rubber stopper long-reach lighter food samples (e.g. popcorn, peanuts, marshmallows, cheese puffs, cereal, croutons) metal square suspension plate thermometer safety glasses aluminum foil calculator long-reach tongs hand wipes! SAFETY PRECAUTIONS! Be sure to wear safety glasses during the entire lab, and use oven mitts when handling parts that may be hot! Allow the food sample to cool down before touching it or http://www.rdcep.org/demo-collection page 3

throwing it away. Do not eat the food samples. This lab should be performed in a well-ventilated room. Be very careful when inserting the glass thermometer into the rubber stopper! PROCEDURE Setup 1. For safety and to make cleanup easier, place a sheet of aluminum foil on the table to be used as a work surface. 2. Pour 125 ml of water (at about room temperature) into the Erlenmeyer flask, and insert the rubber stopper. (Figure 1) 3. Insert a thermometer into the flask through the hole in the rubber stopper. The thermometer may be easier to insert if you wet it first. Be very careful not to break the glass thermometer! Make sure that the thermometer is submerged in the water but not touching the glass on the bottom of the flask (Figure 2). 4. Set up the calorimeter as shown in Figure 3. a. Insert the top of the flask through the metal square suspension plate and rotate it 90 degrees so that the metal clamp on the flask rests on the square plate. b. Place the square plate and flask on top of the metal cylinder stand so that the flask is suspended. (Figure 4) 5. Wrap the food holder (cork with nail) in aluminum foil to prevent it from burning. (Figure 5) Data Collection 1. Choose a food sample. 2. Pin the food sample to the top of the nail on the cork (Figure 6). If the sample cannot be easily pinned, bend a paper clip and stick both ends into the cork, making a platform for the food sample. a. Try to pin the food sample so that it points upward (so that its length is parallel to the pin). http://www.rdcep.org/demo-collection page 4

b. Practice placing the metal cylinder with flask over the food sample and food holder, as this should be done quickly after the food sample has been ignited. c. Make sure the food sample does not touch the flask. (Figure 7) 3. Zero the scale. 4. Place the food holder with attached food sample on the scale to measure its mass (Figure 8). a. Write down this initial mass on the data sheet. 5. Just before igniting the food sample, record the initial temperature of the water. a. Write down this initial temperature on the data sheet. 6. Using the long-reach lighter, ignite the food sample. Quickly and carefully place the metal cylinder with flask over the ignited food sample. (Do not wait until the sample is completely engulfed in flames. You want to capture all of the heat generated by the burning food. a. Do not ignite the food sample while it s already under the flask, as you don t want to heat the water with the long-reach lighter. (Figure 9) 7. When the food stops burning, record the maximum temperature of the water in the flask. a. Let the samples smolder for a full minute before recording the final water temperature. The water temperature will continue to rise after the flame has gone out. b. Write down this final temperature on the data sheet. 8. Measure the mass of the remaining burnt food sample and holder. a. Write down this final sample mass on the data sheet. 9. Repeat steps 1 through 4 for each food sample. Data Processing 1. Calcuate the temperature change ( ΔT ) of the water for each food sample and write them down on the data sheet. 2. Calculate the heat energy (Q) gained by the water. 1 ml of water has a mass of 1 gram, so 125 ml of water has a mass of 125g. 3. Convert the heat energy ( Q) gained by the water from calories to food Calories http://www.rdcep.org/demo-collection page 5

(kilocalories). 4. Calculate how much of the food sample burned. 5. Calculate the energy (Calories) per gram of the food sample. 6. Calculate the energy (Calories) per gram as stated on the food package s nutrition label. Nutrition labels often list the number of Calories per serving, so you ll need to convert this to Calories per gram. 7. Repeat steps 1 through 6 for all food samples. POST-LAB QUESTIONS 1. Compare your group s data with others. Use all of the data to calculate the average energy content (in Calories per gram) in each food sample. 2. Rank the food samples in order from highest to lowest energy (calorie) content. Which food has the highest energy content? The lowest? 3. What is the relationship between foods fat content and energy content? 4. Why might some foods with lower energy content be better energy sources than other foods with a higher energy content? 5. Did you find the calorie content of your food samples to be higher or lower than the calorie content stated on the nutrition labels? 6. Why do you think your results are higher or lower? What were some of the sources of error in this lab? FURTHER EXPLORATIONS Determine the caloric content of other combustible foods. Compare the caloric content of several foods to gasoline, natural gas, and coal. http://www.rdcep.org/demo-collection page 6

DATA Volume of water: ml Mass of water: grams Food sample marshmallow popcorn walnut cheese puff Initial mass of sample and holder (grams) Final mass of sample and holder (grams) Initial water temperature ( o C) Final water temperature ( o C) Temperature change ( ΔT ) Heat energy ( Q) gained by water (calories) Heat energy ( Q) gained by water (Calories or kilocalories) Food burned (grams) Heat energy per gram of burned food as determined in this lab (Calories / gram) Energy per gram as stated on food package label (Calories / gram) http://www.rdcep.org/demo-collection page 7

EQUATIONS Δ T = T final T initial Q = mw c w Δ T where Q = heat energy absorbed by water m w = mass of water being heated c = specific heat of water = 1 calorie g o C Δ T = change in temperature of water = final temperature initial temperature 1 food Calorie = 1 kilocalorie = 1, 000 calories Δ m = change in mass = initial mass of sample and holder final mass of sample and holder heat energy per gram of food sample = Heat energy (Q) gained by water (in Calories or kilocalories) how much food burned away (in grams) Calories per serving Calories per gram = grams per serving http://www.rdcep.org/demo-collection page 8

FIGURES Figure 1. Insert rubber stopper into flask. Figure 2. Make sure thermometer does not touch bottom of flask. Figure 3. Calorimeter will look like this when set up properly. Figure 4. Place square plate and flask on top of metal cylinder. Figure 5. Wrap food holder (cork with nail) in aluminum foil. Figure 6. Pin food sample to nail on cork. http://www.rdcep.org/demo-collection page 9

Figure 7. Make sure food sample does not touch bottom of flask. Figure 8. Measure mass of food sample and food holder. Figure 9. Do not ignite food sample while under the flask. http://www.rdcep.org/demo-collection page 10

NOTES FOR THE TEACHER Teachers should pre-insert the thermometers into the rubber stoppers in order to prevent students from breaking them and getting injured. There are enough materials in this kit for four groups of students. http://www.rdcep.org/demo-collection page 11