Black tea, green tea and risk of breast cancer: an update

Similar documents
Coffee and tea intake and risk of breast cancer

Biomed Environ Sci, 2015; 28(7):

Dietary magnesium intake and risk of stroke: a meta-analysis of prospective studies 1 4

Original Article Association of tea consumption and the risk of thyroid cancer: a meta-analysis

The association between methylenetetrahydrofolate reductase gene C677T polymorphisms and breast cancer risk in Chinese population

Higher dietary folate intake reduces the breast cancer risk: a systematic review and meta-analysis

IJC International Journal of Cancer

Association between alcohol consumption and the risk of ovarian cancer: a meta-analysis of prospective observational studies

Associations between the SRD5A2 gene V89L and TA repeat polymorphisms and breast cancer risk: a meta-analysis

S e c t i o n 4 S e c t i o n4

Association between Folate Intake and the Risk of Lung Cancer: A Dose-Response Meta-Analysis of Prospective Studies

Lack of association between IL-6-174G>C polymorphism and lung cancer: a metaanalysis

Folate and Risk of Breast Cancer: A Meta-analysis

Evaluating the results of a Systematic Review/Meta- Analysis

TEA CONSUMPTION, OXIDATIVE STRESS, AND BREAST CANCER RISK. Dongyu Zhang. Chapel Hill 2018

Choice of axis, tests for funnel plot asymmetry, and methods to adjust for publication bias

Cancer Survivors: - Asian Perspective

Obesity and Breast Cancer in a Multiethnic Population. Gertraud Maskarinec, MD, PhD University of Hawaii Cancer Center, Honolulu, HI

Multivariate dose-response meta-analysis: an update on glst

RESEARCH ARTICLE. Association Between Green Tea and Colorectal Cancer Risk: A Meta-analysis of 13 Case-control Studies

Intake of fruit and vegetables has been hypothesized to

The association between polycystic ovary syndrome and breast cancer: a meta-analysis

Racial and Ethnic Disparities in the Impact of Obesity on Breast Cancer Risk and Survival: A Global Perspective 1 3

Review Article. Association of vitamin C with the risk of age-related cataract: a meta-analysis. Methods. Introduction

Mammographic density and risk of breast cancer by tumor characteristics: a casecontrol

Dairy consumption and risk of type 2 diabetes mellitus: a meta-analysis of cohort studies

Association between the -77T>C polymorphism in the DNA repair gene XRCC1 and lung cancer risk

Supplementary Online Content

Relationship between vitamin D (1,25-dihydroxyvitamin D3) receptor gene polymorphisms and primary biliary cirrhosis risk: a meta-analysis

Scientific publications in critical care medicine journals from East Asia: A 10-year survey of the literature

The angiotensin-converting enzyme (ACE) I/D polymorphism in Parkinson s disease

White Rose Research Online URL for this paper: Version: Accepted Version

A protocol for a systematic review on the impact of unpublished studies and studies published in the gray literature in meta-analyses

Misleading funnel plot for detection of bias in meta-analysis

A note on the graphical presentation of prediction intervals in random-effects meta-analyses

Supplementary Online Content

Original Article Dietary nitrite and nitrate is not associated with adult glioma risk: a meta-analysis

Méta régression (MR) Marc Sznajder, Patricia Samb (décors: Roger Hart Costumes: Donald Cardwell ) Staff DIHSP janvier 2009

Dietary Fibre and the Risk of Colorectal Cancer: a Case- Control Study

Total Calcium (Dietary and Supplementary) Intake and Prostate Cancer: a Systematic Review and Meta-Analysis

Dietary soy intake and changes of mammographic density in premenopausal Chinese women

Diabetes mellitus and incidence of kidney cancer: a meta-analysis of cohort studies

Calcium and Cancer Prevention and Treatment

Non-dietary factors as risk factors for breast cancer, and as effect modifiers of the association of fat intake and risk of

Epidemiologic Studies: Induced Abortion and Breast Cancer Risk Updated November 2011

Exposed cases/deaths. or level. Lung All coffee (cups/day) Sex, smoking history, β-carotene intake Coffee intake Never 133 1

Intake of Coffee and Tea and Risk of Ovarian Cancer: A Prospective Cohort Study

Adult weight gain in relation to breast cancer risk by estrogen and progesterone receptor status: a meta-analysis

Green Tea and Cancer. Alison Chiang EPI295 October 30,2009

The association between dietary protein intake and colorectal cancer risk: a metaanalysis

Association between alcohol intake and the risk of pancreatic cancer: a dose response meta-analysis of cohort studies

Please revise your paper to respond to all of the comments by the reviewers. Their reports are available at the end of this letter, below.

Continuous update of the WCRF-AICR report on diet and cancer. Protocol: Breast Cancer. Prepared by: Imperial College Team

IJC International Journal of Cancer

Materials and Methods

The association between dietary zinc intake and risk of pancreatic cancer: a meta-analysis

RESEARCH ARTICLE. Lack of Association between the COMT rs4680 Polymorphism and Ovarian Cancer Risk: Evidence from a Meta-analysis of 3,940 Individuals

Pre-diagnostic cruciferous vegetables intake and lung cancer survival among Chinese women

Lack of association between ERCC5 gene polymorphisms and gastric cancer risk in a Chinese population

Cancer Council Western Australia (CCWA). L.F. is supported by fellowships from the NHMRC

IJC International Journal of Cancer

IJC International Journal of Cancer

Blood a-tocopherol, c-tocopherol Levels and Risk of Prostate Cancer: A Meta-Analysis of Prospective Studies

Long-term dietary calcium intake and breast cancer risk in a prospective cohort of women 1 3

RESEARCH ARTICLE. RASSF1A Gene Methylation is Associated with Nasopharyngeal Carcinoma Risk in Chinese

Supplementary Online Content

The WCRF/AICR Third Expert Report Diet, Nutrition, Physical Activity and Cancer: a Global Perspective Methods, Approaches and Lessons Learned

Meta-analyses triggered by previous (false-)significant findings: problems and solutions

Original Article Dietary fat and risk of inflammatory bowel disease: a meta-analysis

Weight Change and Risk of Colorectal Cancer: A Systematic Review and Meta-Analysis

Introduction to diagnostic accuracy meta-analysis. Yemisi Takwoingi October 2015

Index. Springer International Publishing Switzerland 2017 T.J. Cleophas, A.H. Zwinderman, Modern Meta-Analysis, DOI /

Elisa V. Bandera, MD, PhD

Association between ERCC1 and ERCC2 polymorphisms and breast cancer risk in a Chinese population

RESEARCH ARTICLE. Multiple Sexual Partners as a Potential Independent Risk Factor for Cervical Cancer: a Meta-analysis of Epidemiological Studies

Impact of individual risk factors on German life expectancy

Association between dietary protein intake and prostate cancer risk: evidence from a meta-analysis

Association of methionine synthase rs and methionine synthase reductase rs polymorphisms with meningioma in adults: A meta analysis

The effectiveness of telephone reminders and SMS messages on compliance with colorectal cancer screening: an open-label, randomized controlled trial

Dietary acrylamide and risk of prostate cancer. Medical School, Boston, MA, USA; Centre for Public Health Sciences, University of Iceland,

FTO Polymorphisms Are Associated with Obesity But Not with Diabetes in East Asian Populations: A Meta analysis

Does Body Mass Index Adequately Capture the Relation of Body Composition and Body Size to Health Outcomes?

No effect of exercise on insulin-like growth factor (IGF)-1, insulin and glucose in young women participating in a 16-week randomized controlled trial

RETRACTED ARTICLE. Association between serum vitamin D levels and the risk of kidney stone: evidence from a meta-analysis

Comparison of complications in one-stage bilateral total knee arthroplasty with and without drainage

OMEGA CARO-E and the Lowering of the Risk for Cancer. Dr Carl Albrecht 28 February, 2013

Dietary Fatty Acids and the Risk of Hypertension in Middle-Aged and Older Women

Association between sugar-sweetened beverages and type 2 diabetes: A meta-analysis

Dietary Carbohydrates, Fiber, and Breast Cancer Risk

Alectinib Versus Crizotinib for Previously Untreated Alk-positive Advanced Non-small Cell Lung Cancer : A Meta-Analysis

Corresponding author: F.Q. Wen

Association between duration of oral contraceptive use and risk of hypertension: A meta- analysis

White Rose Research Online URL for this paper: Version: Accepted Version

Association of mir-21 with esophageal cancer prognosis: a meta-analysis

Reliability of Echocardiography Measurement of Patent Ductus Arteriosus Minimum Diameter: A Meta-analysis

Population-based case control study of soyfood intake and breast cancer risk in Shanghai

NUTRITIONAL EPIDEMIOLOGY - DIETARY PATTERNS AND THE ROLE OF HORMONES IN BREAST CANCER

An inverse association between tea consumption and colorectal cancer risk

British Journal of Nutrition

290 Biomed Environ Sci, 2016; 29(4):

Transcription:

Wu et al. SpringerPlus 2013, 2:240 a SpringerOpen Journal LETTER TO THE EDITOR Open Access Black tea, green tea and risk of breast cancer: an update Yili Wu, Dongfeng Zhang * and Shan Kang Abstract Previous meta-analysis indicated conflicting results in case control versus cohort studies on the association of green tea with breast cancer risk, and conflicting results were also found in case control versus cohort studies in another meta-analysis on the association of black tea with breast cancer risk. Many studies were published after the previous meta-analysis. Besides, the dose-response relationship of tea consumption with breast cancer risk is unclear. Thus the association of tea consumption with breast cancer risk was assessed incorporating new publications. Summary relative risk (RR) for highest versus lowest level of tea consumption was calculated based on fixed or random effect models. Dose-response relationship was assessed by restricted cubic spline model and multivariate random-effect meta-regression. The combined results from 9 studies suggested no significant association between green tea consumption and breast cancer risk (RR = 0.82, 95% CI = 0.64-1.04). No significant association was found among cohort studies and case-control studies after sensitivity analysis, respectively. A linear but not significant dose-response association was found between green tea consumption and breast cancer risk. The combined results from 25 studies demonstrated no significant association between black tea consumption and breast cancer risk (RR = 0.98, 95% CI = 0.93-1.03), and no significant association was found in subgroup analysis. A linear but not significant dose-response association was found between black tea consumption and breast cancer risk. Based on the current evidence, black tea and green tea might not contribute significantly to breast cancer risk, respectively. Keywords: Black tea, Green tea, Breast cancer, Dose-response analysis To the editor, The most recent meta-analysis by Ogunleye et al. (Ogunleye et al. 2010) included 7 (2 cohort and 5 casecontrol) studies of green tea and breast cancer that were published as of December 2008. An inverse association between green tea and breast cancer risk was reported from case-control studies [compared to the lowest quantile, the relative risk (RR) for the highest quantile of green tea is 0.81, 95% CI = 0.75-0.88], while no association was observed from cohort studies (compared to the lowest quantile, the RR for the highest quantile of green tea is 0.85, 95% CI = 0.65-1.22), and the authors concluded that the association between green tea consumption and breast cancer risk remains unclear. Meanwhile, Zhou et al. (Zhou et al. 2011) suggested that a dose-response analysis * Correspondence: zhangdf1962@yahoo.com.cn Department of Epidemiology and Health Statistics, The Medical College of Qingdao University, Dongzhou Road, No.38, Shandong, Qingdao 266021, P. R. China should be performed to assess the association between green tea and breast cancer risk. In another meta-analysis on black tea and breast cancer risk, Sun et al. (Sun et al. 2006) included 13 (5 cohort and 8 case-control) studies that were published as of August 2004. A moderate positive association between black tea consumption and risk of breast cancer was observed in cohort studies (compared to the lowest quantile, the RR for the highest quantile of black tea is 1.15, 95% CI = 1.02-1.31) whereas a minor inverse association was observed from the casecontrol studies (compared to the lowest quantile, the RR for the highest quantile of black tea is 0.91, 95% CI = 0.84-0.98). Following the meta-analyses by Ogunleye et al. (Ogunleye et al. 2010), results were published from 2 prospective cohort studies (Iwasaki et al. 2010; Dai et al. 2010) on the association of green tea with risk of breast cancer. And since the meta-analysis by Sun et al. (Sun et al. 2006), results were published from 9 prospective cohort studies (Harris et al. 2012; Fagherazzi et al. 2011; 2013 Wu et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Wu et al. SpringerPlus 2013, 2:240 Page 2 of 5 Figure 1 The multivariate-adjusted risk of breast cancer for the highest vs. lowest categories of green tea consumption. D + L denotes random effect model, I-V denotes fixed effect model. Boggs et al. 2010; Bhoo Pathy et al. 2010; Larsson et al. 2009; Ishitani et al. 2008; Ganmaa et al. 2008; Hirvonen et al. 2006; Adebamowo et al. 2005) and 3 case-control studies (Yuan et al. 2005; Kumar et al. 2009; Baker et al. 2006) on the association of black tea with breast cancer risk. Besides, we also would like to draw attention to the dose-response analysis, because categories of tea consumption differed between studies, which might complicate the interpretation of the pooled results across study populations with different categories. In this respect, a dose response meta-analysis with restricted cubic spline functions provides a solution to the problem (Desquilbet & Mariotti 2010), from which a summary risk estimate can be derived for a standardized increase and specific exposure values for tea consumption. Figure 2 The dose-response analysis between green tea consumption and breast cancer risk. The solid line and the long dash line represent the estimated relative risk and its 95% confidence interval. Short dash line represents the linear relationship. We performed a literature search to October 2012 using the databases of Pubmed, ISI Web of Knowledge, China Biology Medical literature database and Google Scholar with the key words tea consumption combined with breast cancer. Furthermore, the reference lists of retrieved articles were scrutinized to identify additional relevant studies. If data were duplicated in more than 1 study, we included the study with the largest number of cases. RR estimates with corresponding 95% CI for the highest vs. lowest categories of tea consumption were extracted. For dose-response analysis, the number of cases and participants (person-years), and RR (95% CI) for each category of tea consumption were also extracted. The median or mean level of tea consumption for each category was assigned to corresponding RR for every study. If the upper boundary of the highest category was not provided, we assumed that the boundary had the same amplitude as the adjacent category. We extracted the RR that reflected the greatest degree of control for potential confounders. Pooled measure was calculated as the inverse variance-weighted mean of the logarithm of RR with 95% CI to assess the strength of association between tea consumption and breast cancer risk. The I 2 of Higgins and Thompson was used to assess heterogeneity (I 2 values of 0, 25%, 50%, and 75% represents no, low, moderate, and high heterogeneity (Higgins et al. 2003), respectively). The fixed effect model was used as the pooling method if moderate or lower heterogeneity (I 2 < 50%) was found, otherwise, the random effect model was adopted (I 2 50%). Besides, combining studies regardless of the between-study heterogeneity had been widely criticized (Lau et al. 1998), and hierarchical systems for

Wu et al. SpringerPlus 2013, 2:240 Page 3 of 5 Figure 3 The multivariate-adjusted risk of breast cancer for the highest vs. lowest categories of black tea consumption. D + L denotes random effect model, I-V denotes fixed effect model. grading evidence stated that the results of studies must be consistent or homogeneous to obtain the highest grading (Harbour & Miller 2001). Thus, sensitivity analysis was also carried out using the method by Patsopoulos et al. (Patsopoulos et al. 2008) with I 2 > 50% as the criteria to reduce between-study heterogeneity. Publication bias was detected using Egger s linear regression test (Egger et al. 1997). Figure 4 The dose-response analysis between black tea consumption and breast cancer risk. The solid line and the long dash line represent the estimated relative risk and its 95% confidence interval. Short dash line represents the linear relationship. A two-stage random-effects dose response metaanalysis (Orsini et al. 2012) was performed to compute the trend from the correlated log RR estimates across levels of tea consumption taking into account the between-study heterogeneity. Briefly, a restricted cubic spline model, with 3 knots at the 25th, 50th and 75th percentiles (Harrell et al. 1988) of the levels of tea consumption was estimated using generalized least square regression taking into account the correlation within each set of published RRs (Orsini & Bellocco 2006). Then multivariate random-effects meta-analysis was used to combine the study-specific estimates using restricted maximum likelihood method (Jackson et al. 2010). A P value for nonlinearity was calculated by testing the null hypothesis that the coefficient of the second spline is equal to 0. If tea consumption was indicated by gram of tea leaves or tea beverage, we rescaled tea consumption to the number of cups per day assuming 2.5 g tea leaves or 150 g tea beverage as approximately equivalent to one cup (Tang et al. 2009). All statistical analyses were performed with Stata software, version 12 (Stata Corp, College Station, Texas). P <.05 was considered statistically significant. For green tea, data from 9 studies (Iwasaki et al. 2010; Dai et al. 2010; Shrubsole et al. 2009; Inoue et al. 2008; Zhang et al. 2007; Suzuki et al. 2004; Wu et al. 2003; Key et al. 1999; Tao et al. 2002) were used. Compared to

Wu et al. SpringerPlus 2013, 2:240 Page 4 of 5 the lowest quantile, the RR of breast cancer for the highest quantile of green tea was 0.82 (0.64-1.04), and high between-study heterogeneity was found (I 2 = 78.1%) (Figure 1). After sensitivity analysis with I 2 > 50% as the criteria, the association was still not significant (RR = 0.96, 95% CI = 0.86-1.08). No significant association was found among cohort studies (RR = 1.03, 95% CI = 0.83-1.29, I 2 = 0.00%). A marginally significant association was found among case-control studies (RR = 0.70, 95% CI = 0.50-0.98, I 2 = 86.5%), however, the association was not significant after sensitivity analysis (RR = 0.98, 95% CI = 0.86-1.13, I 2 = 0.00%). Data from 7 studies (Iwasaki et al. 2010; Dai et al. 2010; Shrubsole et al. 2009; Zhang et al. 2007; Suzuki et al. 2004; Wu et al. 2003; Key et al. 1999) were used for dose-response analysis. A linear (P =0.55) but not significant dose-response association was found between green tea consumption and breast cancer risk (Figure 2), and the risk of breast cancer decreased by 3% (RR = 0.97, 95% CI = 0.90-1.04, P =0.39) for every 2 cups/day increment in green tea consumption. The RR (95% CI) of breast cancer was 0.97 (0.91-1.03), 0.94 (0.86-1.04), 0.93 (0.84-1.04), 0.93 (0.83-1.03), 0.92 (0.81-1.04) and 0.91 (0.79-1.04) for 1, 2, 3, 4, 5 and 6 cups/day of green tea consumption. No publication bias was detected (P = 0.68). For black tea, data from 25 studies (Harris et al. 2012; Fagherazzi et al. 2011; Boggs et al. 2010; Bhoo Pathy et al. 2010; Larsson et al. 2009; Ishitani et al. 2008; Ganmaa et al. 2008; Hirvonen et al. 2006; Adebamowo et al. 2005; Yuan et al. 2005; Kumar et al. 2009; Baker et al. 2006; Suzuki et al. 2004; Wu et al. 2003; Key et al. 1999; Michels et al. 2002; Zheng et al. 1996; Goldbohm et al. 1996; Mannisto et al. 1999; McLaughlin et al. 1992; Ewertz & Gill 1990; Schairer et al. 1987; Lubin et al. 1985; Tavani et al. 1998; Rosenberg et al. 1985) were used. Compared to the lowest quantile, the RR of breast cancer for the highest quantile of black tea was 0.98, 95% CI = 0.93-1.03, I 2 = 42.1%) (Figure 3). The association was also not significant in subgroups by study design categorized as cohort studies (RR = 1.02, 95% CI = 0.95-1.09, I 2 = 45.7%) and case-control studies (RR = 0.94, 0.87-1.00, I 2 = 32.2%), menopausal status categorized as premenopausal status (RR = 0.92, 95% CI = 0.77-1.08, I 2 = 15.6%) and postmenopausal status (RR = 1.07, 95% CI = 0.96-1.21, I 2 = 0.00%), estrogen receptor (ER) and progesterone receptor (PR) status (negative: -; positive: +) categorized as ER+/PR + (RR = 1.03, 95% CI = 0.80-1.34, I 2 = 63.9%) and ER-/PR- (RR = 0.84, 95%CI = 0.68-1.03, I 2 = 0.00%), as well as body mass index (BMI) categorized as BMI < 25 kg/m 2 (RR = 0.98, 95%CI = 0.81-1.18, I 2 = 51.2%) and BMI > 25 kg/m 2 (RR = 1.02, 95% CI = 0.84-1.24, I 2 = 0.00%). After sensitivity analysis with I 2 > 50% as the criteria, the association was still not significant for ER+/PR + breast cancer (RR = 0.93, 95% CI = 0.82-1.05, I 2 = 0.00%), and no significant association was found among subjects with BMI < 25 kg/m 2 (RR = 1.07, 95% CI = 0.86-1.33, I 2 = 0.00%). Data from 19 studies (Harris et al. 2012; Fagherazzi et al. 2011; Boggs et al. 2010; Bhoo Pathy et al. 2010; Larsson et al. 2009; Ganmaa et al. 2008; Hirvonen et al. 2006; Adebamowo et al. 2005; Kumar et al. 2009; Baker et al. 2006; Wu et al. 2003; Key et al. 1999; Michels et al. 2002; Zheng et al. 1996; Goldbohm et al. 1996; Ewertz & Gill 1990; Schairer et al. 1987; Lubin et al. 1985; Rosenberg et al. 1985) were used for dose-response analysis. A linear (P = 0.09) but not significant dose-response association was found between black tea consumption and breast cancer risk (Figure 4), and the risk of breast cancer decreased by 1% (RR = 0.99, 95% CI = 0.96-1.03, P = 0.68) for every 2 cups/day increment in black tea consumption. The RR (95% CI) of breast cancer was 1.02 (0.99-1.05), 1.01 (0.98-1.05), 0.99 (0.95-1.03), 0.97 (0.92-1.02), 0.95 (0.89-1.01) and 0.93 (0.85-1.01) for 1, 2, 3, 4, 5 and 6 cups/day of black tea consumption. No publication bias was detected (P =0.79). Overall, this analysis suggested that black tea and green tea might not contribute significantly to breast cancer risk based on the current evidence, respectively. However, further researches deserve to address the possible interaction effects between tea and other dietary/ genetic cofactors. Competing interest The authors declare that they have no competing interest. Authors' contributions WYL and KS carried out the collection, assembly, analysis and interpretation of data. WYL and ZDF participated in the drafting and revision of the manuscript. All authors read and approved the final manuscript. Received: 16 April 2013 Accepted: 29 April 2013 Published: 24 May 2013 References Adebamowo CA, Cho E, Sampson L et al (2005) Dietary flavonols and flavonolrich foods intake and the risk of breast cancer. Int J Cancer 114:628 633 Baker JA, Beehler GP, Sawant AC, Jayaprakash V, McCann SE, Moysich KB (2006) Consumption of coffee, but not black tea, is associated with decreased risk of premenopausal breast cancer. J Nutr 136:166 171 Bhoo Pathy N, Peeters P, van Gils C et al (2010) Coffee and tea intake and risk of breast cancer. Breast Cancer Res Treat 121:461 467 Boggs DA, Palmer JR, Stampfer MJ, Spiegelman D, Adams-Campbell LL, Rosenberg L (2010) Tea and coffee intake in relation to risk of breast cancer in the black Women s health study. Cancer Causes Control 21:1941 1948 Dai Q, Shu XO, Li H et al (2010) Is green tea drinking associated with a later onset of breast cancer? Ann Epidemiol 20:74 81 Desquilbet L, Mariotti F (2010) Dose-response analyses using restricted cubic spline functions in public health research. Stat Med 29:1037 1057 Egger M, Davey Smith G, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315:629 634 Ewertz M, Gill C (1990) Dietary factors and breast-cancer risk in Denmark. Int J Cancer 46:779 784 Fagherazzi G, Touillaud MS, Boutron-Ruault MC, Clavel-Chapelon F, Romieu I (2011) No association between coffee, tea or caffeine consumption and breast cancer risk in a prospective cohort study. Public Health Nutr 14:1315 1320 Ganmaa D, Willett WC, Li TY et al (2008) Coffee, tea, caffeine and risk of breast cancer: a 22-year follow-up. Int J Cancer 122:2071 2076

Wu et al. SpringerPlus 2013, 2:240 Page 5 of 5 Goldbohm RA, Hertog MG, Brants HA, van Poppel G, van den Brandt PA (1996) Consumption of black tea and cancer risk: a prospective cohort study. J Natl Cancer Inst 88:93 100 Harbour R, Miller J (2001) A new system for grading recommendations in evidence based guidelines. BMJ 323:334 336 Harrell FE Jr, Lee KL, Pollock BG (1988) Regression models in clinical studies: determining relationships between predictors and response. J Natl Cancer Inst 80:1198 1202 Harris HR, Bergkvist L, Wolk A (2012) Coffee and black tea consumption and breast cancer mortality in a cohort of Swedish women. Br J Cancer 107:874 878 Higgins JP, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. BMJ 327:557 560 Hirvonen T, Mennen LI, de Bree A et al (2006) Consumption of antioxidant-rich beverages and risk for breast cancer in French women. Ann Epidemiol 16:503 508 Inoue M, Robien K, Wang R, Van Den Berg DJ, Koh WP, Yu MC (2008) Green tea intake, MTHFR/TYMS genotype and breast cancer risk: the Singapore Chinese health study. Carcinogenesis 29:1967 1972 Ishitani K, Lin J, Manson JE, Buring JE, Zhang SM (2008) Caffeine consumption and the risk of breast cancer in a large prospective cohort of women. Arch Intern Med 168:2022 2031 Iwasaki M, Inoue M, Sasazuki S et al (2010) Green tea drinking and subsequent risk of breast cancer in a population-based cohort of Japanese women. Breast Cancer Res 12:R88 Jackson D, White IR, Thompson SG (2010) Extending DerSimonian and Laird s methodology to perform multivariate random effects meta-analyses. Stat Med 29:1282 1297 Key TJ, Sharp GB, Appleby PN et al (1999) Soya foods and breast cancer risk: a prospective study in Hiroshima and Nagasaki, Japan. Br J Cancer 81:1248 1256 Kumar N, Titus-Ernstoff L, Newcomb PA, Trentham-Dietz A, Anic G, Egan KM (2009) Tea consumption and risk of breast cancer. Cancer Epidemiol Biomarkers Prev 18:341 345 Larsson SC, Bergkvist L, Wolk A (2009) Coffee and black tea consumption and risk of breast cancer by estrogen and progesterone receptor status in a Swedish cohort. Cancer Causes Control 20:2039 2044 Lau J, Ioannidis JP, Schmid CH (1998) Summing up evidence: one answer is not always enough. Lancet 351:123 127 Lubin F, Ron E, Wax Y, Modan B (1985) Coffee and methylxanthines and breast cancer: a case-control study. J Natl Cancer Inst 74:569 573 Mannisto S, Pietinen P, Virtanen M, Kataja V, Uusitupa M (1999) Diet and the risk of breast cancer in a case-control study: does the threat of disease have an influence on recall bias? J Clin Epidemiol 52:429 439 McLaughlin CC, Mahoney MC, Nasca PC, Metzger BB, Baptiste MS, Field NA (1992) Breast cancer and methylxanthine consumption. Cancer Causes Control 3:175 178 Michels KB, Holmberg L, Bergkvist L, Wolk A (2002) Coffee, tea, and caffeine consumption and breast cancer incidence in a cohort of Swedish women. Ann Epidemiol 12:21 26 Ogunleye AA, Xue F, Michels KB (2010) Green tea consumption and breast cancer risk or recurrence: a meta-analysis. Breast Cancer Res Treat 119:477 484 Orsini N, Bellocco RSG (2006) Generalized least squares for trend estimation of summarized dose response data. Stata J 6:40 57 Orsini N, Li R, Wolk A, Khudyakov P, Spiegelman D (2012) Meta-analysis for linear and nonlinear dose-response relations: examples, an evaluation of approximations, and software. Am J Epidemiol 175:66 73 Patsopoulos NA, Evangelou E, Ioannidis JP (2008) Sensitivity of between-study heterogeneity in meta-analysis: proposed metrics and empirical evaluation. Int J Epidemiol 37:1148 1157 Rosenberg L, Miller DR, Helmrich SP et al (1985) Breast cancer and the consumption of coffee. Am J Epidemiol 122:391 399 Schairer C, Brinton LA, Hoover RN (1987) Methylxanthines and breast cancer. Int J Cancer 40:469 473 Shrubsole MJ, Lu W, Chen Z et al (2009) Drinking green tea modestly reduces breast cancer risk. J Nutr 139:310 316 Sun CL, Yuan JM, Koh WP, Yu MC (2006) Green tea, black tea and breast cancer risk: a meta-analysis of epidemiological studies. Carcinogenesis 27:1310 1315 Suzuki Y, Tsubono Y, Nakaya N, Koizumi Y, Tsuji I (2004) Green tea and the risk of breast cancer: pooled analysis of two prospective studies in Japan. Br J Cancer 90:1361 1363 Tang N, Wu Y, Zhou B, Wang B, Yu R (2009) Green tea, black tea consumption and risk of lung cancer: a meta-analysis. Lung Cancer 65:274 283 Tao MH, Liu DK, Gao LF, Jin F (2002) Association between green tea drinking and breast cancer risk. Tumor 22:11 15 Tavani A, Pregnolato A, La Vecchia C, Favero A, Franceschi S (1998) Coffee consumption and the risk of breast cancer. Eur J Cancer Prev 7:77 82 Wu AH, Yu MC, Tseng CC, Hankin J, Pike MC (2003) Green tea and risk of breast cancer in Asian Americans. Int J Cancer 106:574 579 Yuan JM, Koh WP, Sun CL, Lee HP, Yu MC (2005) Green tea intake, ACE gene polymorphism and breast cancer risk among Chinese women in Singapore. Carcinogenesis 26:1389 1394 Zhang M, Holman CD, Huang JP, Xie X (2007) Green tea and the prevention of breast cancer: a case-control study in Southeast China. Carcinogenesis 28:1074 1078 Zheng W, Doyle TJ, Kushi LH, Sellers TA, Hong CP, Folsom AR (1996) Tea consumption and cancer incidence in a prospective cohort study of postmenopausal women. Am J Epidemiol 144:175 182 Zhou P, Li JP, Zhang C (2011) Green tea consumption and breast cancer risk: three recent meta-analyses. Breast Cancer Res Treat 127:581 583 doi:10.1186/2193-1801-2-240 Cite this article as: Wu et al.: Black tea, green tea and risk of breast cancer: an update. SpringerPlus 2013 2:240. Submit your manuscript to a journal and benefit from: 7 Convenient online submission 7 Rigorous peer review 7 Immediate publication on acceptance 7 Open access: articles freely available online 7 High visibility within the field 7 Retaining the copyright to your article Submit your next manuscript at 7 springeropen.com