Methods for assessing the brain basis of developmental disorders

Similar documents
Announcements. Final Exam will be a take-home exam. Format similar to the short assignment (no multiple choice, etc.)

P2 Visual - Perception

The Cognitive Neuroscientist s Toolkit

Eavesdropping on the Mind. COGS 17 - Winter 2019 Andrew Shibata

Brain and Cognition. Cognitive Neuroscience. If the brain were simple enough to understand, we would be too stupid to understand it

The neurolinguistic toolbox Jonathan R. Brennan. Introduction to Neurolinguistics, LSA2017 1

MR Advance Techniques. Vascular Imaging. Class II

PHYSICS OF MRI ACQUISITION. Alternatives to BOLD for fmri

The Tools: Imaging the Living Brain

COGNITIVE SCIENCE 17. Peeking Inside The Head. Part 1. Jaime A. Pineda, Ph.D.

Non-Invasive Techniques

Non-Invasive Techniques

Syllabus References. Resources. Video: MRI Introduction

Introduction to the Course and the Techniques. Jeffry R. Alger, PhD Ahmanson-Lovelace Brain Mapping Center Department of Neurology

3/1/18. Overview of the Talk. Important Aspects of Neuroimaging Technology

Magnetic Resonance Angiography

Outline. Biological Psychology: Research Methods. Dr. Katherine Mickley Steinmetz

Hemodynamics and fmri Signals

Physiological and Physical Basis of Functional Brain Imaging 6. EEG/MEG. Kâmil Uludağ, 20. November 2007

Beyond fmri. Joe Kable Summer Workshop on Decision Neuroscience August 21, 2009

Laurent Itti: CS564 Brain Theory and Artificial Intelligence. Lecture 4: Experimental techniques in visual neuroscience. Reading Assignments: None!

LESSON 1.3 WORKBOOK. How can we study the behaving brain?

Prof. Greg Francis 1/2/19

Functional MRI Mapping Cognition

Magnetic Resonance Imaging. Alex MacKay University of British Columbia

Table 1. Summary of PET and fmri Methods. What is imaged PET fmri BOLD (T2*) Regional brain activation. Blood flow ( 15 O) Arterial spin tagging (AST)

Hemodynamics and fmri Signals

Introduction to Brain Imaging

Announcements. Exam 1. VII. Imaging techniques of the brain. Anatomical/Structural Scans. Structural Scans: CT. Structural Scans: CT 2/17/2014

Exam 1. Mean 78.0% Median 80% Mode 86% Min 26% Max 98% Std Dev 12.6%

Neural Correlates of Human Cognitive Function:

Neural Networks: Tracing Cellular Pathways. Lauren Berryman Sunfest 2000

Neuroimaging. BIE601 Advanced Biological Engineering Dr. Boonserm Kaewkamnerdpong Biological Engineering Program, KMUTT. Human Brain Mapping

Mental Chronometry encoding comparison decision making response selection

THE BRAIN BEHIND THE SCENES. Mary ET Boyle, Ph.D. Department of Cognitive Science, UCSD

INTRO TO BOLD FMRI FRANZ JOSEPH GALL ( ) OUTLINE. MRI & Fast MRI Observations Models Statistical Detection

Methods to examine brain activity associated with emotional states and traits

Titelmaster The physics of functional magnetic resonance imaging (fmri)

Daniel Bulte. Centre for Functional Magnetic Resonance Imaging of the Brain. University of Oxford

ACR MRI Accreditation Program. ACR MRI Accreditation Program Update. Educational Objectives. ACR accreditation. History. New Modular Program

HSC Physics. Module 9.6. Medical Physics

Magnetic Resonance Imaging on Soft Tissue. Jiten K. Mistry Calvin Gan

The Sonification of Human EEG and other Biomedical Data. Part 3

Chapter 5 The Research Methods of Biopsychology

Electroencephalography

Neuroimaging and Assessment Methods

What is cognitive neuroscience?

Introduction. Cardiac Imaging Modalities MRI. Overview. MRI (Continued) MRI (Continued) Arnaud Bistoquet 12/19/03

ACR MRI Accreditation: Medical Physicist Role in the Application Process

Introduction to Electrophysiology

HST 583 fmri DATA ANALYSIS AND ACQUISITION

Large, High-Dimensional Data Sets in Functional Neuroimaging

Methods for Seeing the Brain (

An Overview of BMIs. Luca Rossini. Workshop on Brain Machine Interfaces for Space Applications

Psychologists who map the brain s fissures (grooves on the brain which appear as a deep fold) and inner recesses

Ways to Study Brain Structures and Functioning. Can physically trace connections. Ablation. Is the most primitive Can be done with any structures

WHAT DOES THE BRAIN TELL US ABOUT TRUST AND DISTRUST? EVIDENCE FROM A FUNCTIONAL NEUROIMAGING STUDY 1

Functional MRI and Diffusion Tensor Imaging

An fmri Phantom Based on Electric Field Alignment of Molecular Dipoles

A U. Methods of Cognitive Neuroscience 2/8/2016. Neat Stuff! Cognitive Psychology

Organization of the nervous system. The withdrawal reflex. The central nervous system. Structure of a neuron. Overview

Myers Psychology for AP*

Neurophilosophical Foundations 3

Methods of Visualizing the Living Human Brain

Procedia - Social and Behavioral Sciences 159 ( 2014 ) WCPCG 2014

Introduction to Functional MRI

Speed, Comfort and Quality with NeuroDrive

fmri (functional MRI)

X-Ray & CT Physics / Clinical CT

Neurovascular Coupling

HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2008

MRI and CT of the CNS

Psychology Fall Dr. Michael Diehr. Psychology Fall Dr. Michael Diehr. Contrasted Group External Empirical Criterion-keyed

This presentation is the intellectual property of the author. Contact them for permission to reprint and/or distribute.

The Central Nervous System

Non Contrast MRA. Mayil Krishnam. Director, Cardiovascular and Thoracic Imaging University of California, Irvine

The Biological Level of Analysis: Studying the Brain

STRUCTURAL ORGANIZATION OF THE NERVOUS SYSTEM

Introduction to Computational Neuroscience

Sleep-Wake Cycle I Brain Rhythms. Reading: BCP Chapter 19

III. Studying The Brain and Other Structures

The physiology of the BOLD signal What do we measure with fmri?

MR Advance Techniques. Cardiac Imaging. Class III

Key Stage 4 - MRI. Pupil worksheet. Watching the brain at work. Your task. Stage 1

Tissue-engineered medical products Evaluation of anisotropic structure of articular cartilage using DT (Diffusion Tensor)-MR Imaging

Recording ac0vity in intact human brain. Recording ac0vity in intact human brain

General Introduction CHAPTER Epilepsy Surgery

Neuroimaging vs. other methods

Computational Cognitive Neuroscience (CCN)

BOLD signal dependence on blood flow and metabolism. Outline

Outline of Talk. Introduction to EEG and Event Related Potentials. Key points. My path to EEG

Ways we Study the Brain. Accidents Lesions CAT Scan PET Scan MRI Functional MRI

Orthopedic Hardware Imaging Part II: MRI v. Metal

DATA MANAGEMENT & TYPES OF ANALYSES OFTEN USED. Dennis L. Molfese University of Nebraska - Lincoln

CARDIAC MRI. Cardiovascular Disease. Cardiovascular Disease. Cardiovascular Disease. Overview

Introduction to the EEG technique

An introduction to functional MRI

EEG Instrumentation, Montage, Polarity, and Localization

MEDICAL REVIEW Functional Magnetic Resonance Imaging: From Acquisition to Application

Transcription:

Announcements LIGN171: Child Language Acquisition http://ling.ucsd.edu/courses/lign171 Final Exam will be a take-home exam Format similar to the short assignment (no multiple choice, etc.) Will be handed out at end of last class period (Thursday June 5 th ) Due by 6 pm June 10 th (Tuesday) By email or hardcopy Methods for assessing the brain basis of developmental disorders Developmental Disorders Autism Impaired language; impaired cognition Savant syndrome Superior language; impaired cognition Specific Language Impairment Impaired language; spared cognition Williams syndrome Spared language; impaired cognition Natural Experiments Lesions and Disorders Phrenology: Structure-function correspondence Gall, Spurzheim; early 19 th century Problematic Claims Size of brain region changes the skull Size of brain region correlates with degree of function Key Claim Cognitive functions can be localized to specific brain regions or structures Huge problem: No theory of Psychology! Which functions are in the brain? The Lesion Method Brain is damaged following injury or disease Which functions are lost, which retained? Lost functions necessarily depended on damaged tissue Leborgne tan Paul Broca 1861 Caveats Size of lesion cannot be controlled Location of lesion cannot be controlled Compensation may occur

The First Brain Imaging Experiment and probably the cheapest one too! Unnatural experiments Measuring (intact) brains Angelo Mosso Italian physiologist (1846-1910) E = mc 2??? [In Mosso s experiments] the subject to be observed lay on a delicately balanced table which could tip downward either at the head or at the foot if the weight of either end were increased. The moment emotional or intellectual activity began in the subject, down went the balance at the head-end, in consequence of the redistribution of blood in his system. -- William James, Principles of Psychology (1890) Spatial Dynamics: (f)mri and PET functional Magnetic Resonance Imaging (fmri) BOLD signal measures oxygen use in blood; blood flows to active brain regions Excellent spatial resolution (~1 mm 3 ) Non-invasive Poor temporal resolution; hemodynamic response is slow (peak ~6 seconds) Whole brain image takes ~1-4 4 seconds to acquire Dangerous environment strong magnetic field (1.5 or 3 Tesla common for research; earth s s magnetic field is 10-4 T) superconducting magnet cooled by liquid helium Expensive Positron Emission Tomography (PET) Radioactive isotope injected into blood, delivered to active brain regions Good spatial resolution (~ 5 mm Very flexible; lots of different measurements possible (metabolism, etc.) (~ 5 mm 3 ) Poor temporal resolution (~10 seconds; 20 minutes) Short half life; isotope must be manufactured nearby Very invasive; limited testing Expensive Temporal dynamics: Electricity (EEG) and Magnetism (MEG)

Neurons Resting potential Slightly negative -70 mv Sodium ions kept out of cell Event-related potentials (ERP) Action potential propagates along axon from axon hillock Ion exchange at nodes of Ranvier Current flow inside neuron yields MEG Return current of ions outside neuron yields EEG Action potential Ions enter cell Neuron is depolarized ((-55 mv) All or nothing response Summed electrical activity of a large number of neurons Measured at scalp (~10 microvolts) microvolts) Excellent temporal resolution (sub(sub-millisecond) NonNon-invasive; cheap, easy to administer Poor spatial resolution: Inverse Problem Data is noisy The first EEG recordings The electroencephalogram represents a continuous curve with continuous oscillations in which... one can distinguish larger first order waves with an average duration of 90 milliseconds [Alpha waves] and smaller second order waves of an average duration of 35 milliseconds [Beta waves]. The larger deflections measure at most 150 to 200 microvolts..." (H. Berger, 1929) Hans Berger (1873-1941) Alpha waves First EEG recorded by Hans Berger, circa 1924 Lucky us! Hans Berger s needle electrodes EEG and EKG (electrocardiogram) EEG is produced in cortical gray matter by neurons that have a dipole structure (pyramidal cells) oriented perpendicular to the scalp when lots of parallel neurons are activated synchronously (via thalamus) ¾EEG does not reflect action potentials! 3

Poor Spatial Resolution in EEG The forward problem: Given one or more dipoles in the brain, calculate the electric field at the scalp Accommodate distortion due to skull, etc. The inverse problem: For any electric field at the scalp there are an infinite number of possible dipole combinations Possible dipole locations can be estimated by additional information (e.g., MRI, fmri) Magneto-encephalography encephalography (MEG) Magnetic fields produced by electric currents in a wire (axon) Measurable from currents parallel to scalp Tiny amplitude (10-13 Tesla; earth s s magnetic field is 10-4 T) Good temporal resolution (sub-millisecond) Non-invasive Poor spatial resolution Expensive (superconducting SQUID); magnetic shielding required Subdural Grids Summary of Methods Grids of electrodes, implanted on the surface of the brain (under the dura) Very good spatial resolution (limited by electrode array); millisecond or better temporal resolution Very invasive Used in epilepsy patients Is brain function normal? NOTE: subcortical structures measured by fmri, PET, lesion Historical Timeline Methods: Magnetic Resonance Imaging (MRI)

Brain Imaging: Anatomy MRI provides near photographic detail with no radiation CAT Photography PET MRI Source: modified from Posner & Raichle, Images of Mind Static magnetic field: B0 The magnet is always on! Superconducting electromagnet cooled with liquid helium B0 is typically 1.5 or 3 Tesla; 7 T or higher is possible Earth Earth s magnetic field is 10-4 T Once powered up, the magnet stays on! Protons protons everywhere Spinning protons are like tiny magnets B0 causes proton spins to align with direction of magnetic field Extracting a signal Protons precess as they spin within main magnetic field Precession provides basis for detectable signal RadioRadio-frequency (rf (rf)) pulses at precession frequency knock protons out of alignment Protons precess at right angle to receiver rf coil synchronized precession induces detectable current in receiver coil Signal is distorted by local magnetic fields (biological tissues), signal decays (loses synchrony) within about 100 milliseconds Protons rere-align with main magnetic field within a few seconds 5

Gradient magnetic fields Gradient magnetic fields allow spatial localization by changing local magnetic field strengths in a systematic way 3 gradient fields are added x, y, z dimensions Summary Necessary components of an MR machine Superconducting magnet to produce B 0 Magnets to produce gradient fields for spatial localization Radio frequency coil (at 90 o to B 0 ) transmitter (to knock protons out of alignment with B 0, generate signal) receiver (to detect signal) MRI studies brain anatomy. MRI vs. fmri Functional MRI (fmri) studies brain function. MRI vs. fmri high resolution (1 mm) low resolution (~3 mm but can be better) MRI fmri one image fmri Blood Oxygenation Level Dependent (BOLD) signal indirect measure of neural activity many images (e.g., every 2 sec for 5 mins) Multiple Slices per volume Motion Artifacts SAGITTAL View Number of Slices e.g., 10 Slice Thickness e.g., 6 mm VOXEL (Volumetric Pixel) In-plane resolution e.g., 192 mm / 64 = 3 mm 3 mm 6 mm IN-PLANE SLICE 3 mm Translation x,y,z Rotation yaw, pitch, roll Pulsatile motion Brain is not rigid Correction algorithms Matrix Size e.g., 64 x 64 Field of View (FOV) e.g., 19.2 cm Voxels are fixed in space. Motion changes the voxel that a volume of tissue contributes to, leading to a blurry picture

Structural Imaging Sources of image contrast # of protons per voxel (volume of tissue) Variation in local magnetic fields changes signal strength Local magnetic field strength affected by chemical composition of tissue in voxel Spatial resolution practically limited by time to acquire images; signal to noise ratio (SNR). Increased field strength improves SNR, yields better images (1.5 T; 3 T common; 7 T possible) Functional Imaging: BOLD (Blood Oxygen Level Dependent) Contrast agents are paramagnetic materials that distort local magnetic fields Deoxyhemoglobin is strongly paramagnetic; oxyhemoglobin is not The BOLD Signal Increased neural activity increased local blood flow Decreased deoxyhemoglobin in venous blood uniform local magnetic field strength Change in NMR signal Hemodynamic response function One more time Neurons use oxygen Venous blood contains deoxyhemoglobin Increased blood flow is excessive (overcompensation) Venous blood contains excessive oxyhemoglobin Concentration of deoxyhemoglobin goes down Decrease of deoxyhemoglobin (paramagnetic contrast agent) makes NMR signal more uniform Less distorted local magnetic field leads to increased signal strength (~3% difference) Increased signal lights up active brain regions Brain Activity fmri Activation Flickering Checkerboard OFF (60 s) - ON (60 s) -OFF (60 s) - ON (60 s) - OFF (60 s) Time Source: Kwong et al., 1992 Subtraction and mental processes Images of blood flow taken before a task is begun are compared with those obtained when the brain is engaged in that task. Investigators refer to these two periods as the control state and the task state. Researchers carefully choose each state so as to isolate as best as possible a limited number of mental operations. Subtracting blood-flow measurements made in the control state from each task state indicates those parts of the brain active during a particular task. Functional images Condition 1 Time ~2s Condition 2 Region of interest (ROI) Activation Statistics fmri Signal (% change)... ~ 5 min ROI Time Course Time Condition Statistical Map superimposed on anatomical MRI image

Individuals vs groups An average brain Talairach atlas (Talairach and Tournoux,, 1988) Provides standard coordinate system for comparing individual brains, both within and across studies. Source: Posner & Raichle, Images of Mind Additional Uses of MRI Magnetic Resonance Angiography (MRA) 1. Anterior cerebral artery 2. Middle cerebral artery 3. Posterior cerebral artery 4. Basilar artery 5. Vertebral artery 6. Internal carotid artery Diffusion Tensor Imaging Diffusion of water in 3d white matter tractography water diffusion follows axon bundles MRI Safety Issues Follow standard safety procedures (American College of Radiology) Ferromagnetic objects (containing iron) will move to the center of the magnet Implanted metallic objects may shift position Currents may be induced in loops of wire, leading to burns MRI is very, very safe, when proper safety procedures are followed!

Oops Accidents can happen