Microscopic exam. Fat colorless, neutral, fatty acids, crystals and soaps. Undigested food, meat fibers, starch none Eggs and segment of parasite

Similar documents
Parasitology. Helminthology (Helminths)

Overview IMPORTANCE CLASSIFICATION SPECIMEN COLLECTION PROTOZOA WORMS BLOOD PARASITES ARTHROPODS DELUSIONAL PARASITOSIS QUIZZES GROSS

Urinalysis and Body Fluids CRg. Feces. Feces. Unit 5. 5 Feces & miscellaneous handouts draft

Prof. Mahmoud Rushdi. Assiut University Egypt.

Saliva & Feces analysis

PARASITOLOGY CASE HISTORY 15 (HISTOLOGY) (Lynne S. Garcia)

PERSISTENT DIARRHOEA. IAP UG Teaching slides

COMPREHENSIVE STOOL ANALYSIS

HUMAN PARASITOLOGY. lumbricoides, Trichuris trichiura, hookworm. Human Parasitology (Code: ) Guideline

Recent Diagnostic Methods for Intestinal Parasitic Infections

NEW YORK STATE Parasitology Proficiency Testing Program. Parasitology (General) 01 February Sample Preparation and Quality Control

American Association of Bioanalysts 5615 Kirby Drive, Suite 870 Houston, TX

Bacteriology. Mycology. Patient: SAMPLE PATIENT DOB: Sex: MRN: Rare. Rare. Positive. Brown. Negative *NG. Negative

Giardia lamblia (flagellates)

Indian Journal of Basic and Applied Medical Research; September 2014: Vol.-3, Issue- 4, P

PARASITE MRS. OHOUD S.ALHUMAIDAN

Non_ pathogenic Amoeba of humans:

FACT OR ARTIFACT LEARN THE KEYS TO DIFFERENTIATE PARASITES FROM ARTIFACTS

TEST PATIENT. Date of Birth : 12-Jan-1999 Sex : M Collected : 25-Oct TEST DRIVE. Lab id :

Comprehensive Stool Analysis / Parasitology x3

NOTES: The Digestive System (Ch 14, part 2)

COMPLETE DIGESTIVE STOOL ANALYSIS - (CDSA) Level 4

Ingestion Digestion- Absorption- Elimination

Christina Tennyson, M.D. Division of Gastroenterology

2/26/2009. Diarrhea. Christina Tennyson, M.D. Assistant Professor of Medicine Division of Gastroenterology Columbia University

Microscopic Examination of Urine

Lab Objectives for stool examination. Complete stool analysis

GI Micro Lab. B- After that the stool sample should be cultured on different types of media

Stool Collection Guidelines

Chronic diarrhea. Dr.Nasser E.Daryani Professor of Tehran Medical University

Dr. Jabar Etaby Lecture GIARDIASIS(lambliasis) Etiology: Giardia lamblia (flagellate)

Rapid-VIDITEST FOB Blister

Laboratory diagnosis of parasitic diseases. (Amoebiasis)

Clostridium difficile Specimen Collection

Schistosome life cycle.

MICROBIOLOGY SPECIMEN COLLECTION MANUAL

COMPLETE DIGESTIVE STOOL ANALYSIS - Level 2

Helminths (Worms) General Characteristics: Eukaryotic, multicellular parasites, in the kingdom Animalia.

Parasites List of Pinworm (Enterobius vermicularis) Giardia ( Giardia lamblia Coccidia ( Cryptosporidium

Parasitology Questions. Choose the best correct answer in the following statements

News and Notes. Parasitology Comprehensive 5 November 2013

Amoebiasis. (Amoebic dysentery)

JMSCR Vol 06 Issue 04 Page April 2018

E. Histolytica IgG (Amebiasis)

Nursing Principles & Skills II. Bowel Sounds Constipation Fecal Impaction

Parasitology. Lab. Amoeba

News and Notes. Parasitology Comprehensive 2 October Sample Preparation and Quality Control. 12 K (All Parasites)

Hompes Method. Practitioner Training Level II. Lesson Seven Part A DRG Pathogen Plus Interpretation

Microbiology - Problem Drill 21: Microbial Diseases of the Digestive System

Classification - Protozoa. Parasitology Intestinal Amoeba. Stools for O&P Examination. Stool Specimen. What to look for.

News and Notes. Parasitology Comprehensive 5 February Sample Preparation and Quality Control. 13 A Helminthes Only

HASPI Medical Biology Lab 03

Esophageal Disorders. Gastrointestinal Diseases. Peptic Ulcer Disease. Wireless capsule endoscopy. Diseases of the Small Intestine 7/24/2010

DIAGNOSTIC MICROBIOLOGY

COMPLETE DIGESTIVE STOOL ANALYSIS - Level 5

Origination Date: 25 Mar 2004 Total Pages: Effective Date: 18 Sep 2012 SOP Number LTC-SOP-17 v2.0. Network Name, Title Signature Date

Digestion Introduction Lecture MMHS Science Chitraroff

HMCL223 Clinical Diagnostic Techniques

Rapid-VIDITEST. Helicobacter pylori. One step Helicobacter pylori Blister test. Instruction manual

It s not just water! What is Urinalysis?

Intestinal Parasites. James Gaensbauer MD, MScPH Fellow, Pediatric Infectious Diseases University of Colorado School of Medicine November 12, 2012

Ascaris lumbricoides

Glencoe Health. Lesson 3 The Digestive System

Learning Targets. The Gastrointestinal (GI) Tract. Also known as the alimentary canal. Hollow series of organs that food passes through

Nutrition. Why do humans need food? How do some animals get their food? ROUGHAGE NUTRIENTS. Animals make energy available using:

FOOD BORNE INFECTIONS

ANATOMY & PHYSIOLOGY ONLINE COURSE - SESSION 13 THE DIGESTIVE SYSTEM

TYPES OF ORGANISM RELATIONSHIPS

ENG MYCO WELL D- ONE REV. 1.UN 29/09/2016 REF. MS01283 REF. MS01321 (COMPLETE KIT)

TISSUE COLLECTION. SCPA 603- Histopathological Techniques for Routine and Research

ORGANS OF THE DIGESTIVE SYSTEM

Biomarkers of GI tract diseases. By Dr. Gouse Mohiddin Shaik

HELMINTHS IMAGE DISEASE STAGE SOURCE SYMPTOMS FOUND LEN TAENIA SAGINATA (BEEF) TAENIA SOLIUM (PORK) TAENIASIS (TAPEWORM)

District NTD Training module 9 Learners Guide

ccess safe drinking wa r is everyone s right Protozoans that cause diarrheal disease

ELISA TEST FOR DETECTION OF BLASTOCYSTIS SPP. IN HUMAN FAECES: COMPARISON OF THREE METHODS

BACTERIAL EXAMINATION OF WATER

Ruminal fluid. examination

20% Of The Earth s Liquid Fresh Water Is In Just One Place. Courtesy NASA

cytoplasm contains two 2 nuclei and two parabasal bodies (Figure 7).

Small living organism Not visible to the naked eye Must be viewed under a microscope Found everywhere in the environment, including on and in the

Cryptosporidium spp. ELISA Kit

Chapter 15 Food and Digestion

Ulcerative Colitis. ulcerative colitis usually only affects the colon.

Microbiological Methods V-A- 1 SALMONELLA SPECIES PRESUMPTIVE AND CONFIRMATION TESTS

#9 - Digestion. Objectives: Prelab Activity. I Digestive System

Comparison of Formol-Ether, Direct Smear and Nigrosine Methylene Blue for the Diagnosis of Human Intestinal Parasites

Rapid-VIDITEST C. difficile Ag (GDH) Card/Blister

Ever wonder what s really happening on the inside?

Comprehensive Stool Analysis / Parasitology x3

Collecting Stool Specimens for Culture Collecting Stool Specimens For Parasitology Collection of 72 Hour Stool Fat

Bacillary Dysentery (Shigellosis)

Introduction. Causes. Roundworms. Worms. Flatworms. How Flatworms are transmitted. Fast fact. Fast fact

Detection of Helminth Ova and Larvae in Trichrome-Stained Stool Smears

Chronic Diarrhea in Dogs

Digestive System. Why do we need to eat? Growth Maintenance (repair tissue) Energy

Brief Survey of Common Intestinal Parasites in the Tokyo Metropolitan Area. Tsukasa NOZAKI1), Kouichi NAGAKURA2)*, Hisae FUSEGAWA3)

AFTER mechanical digestion, the pieces of food are still to be used by. broken down. the cells. They MUST be EVEN MORE!!!!!!

Protectives and Adsorbents. Inorganic chemistry Course 1 Third year Assist. Lecturer Ahlam A. Shafeeq MSc. Pharmaceutical chemistry

Collection (Specimen Source Required on all tests) Sputum: >5 ml required. First morning specimen preferred.

Transcription:

Stool examination Stool analysis determines the various properties of the stool for diagnostic purposes. Frequently ordered tests on faeces includes tests for leukocytes, blood, fat, parasites, and pathogens. Bacteria, viruses, intestinal parasites and other malfunctions can be revealed from stool samples. Stool cultures are necessary in epidemiology and public health studies.

Microscopic exam Fat colorless, neutral, fatty acids, crystals and soaps. Undigested food, meat fibers, starch none Eggs and segment of parasite none Yeasts none Leukocytes none

Chemical examination Water Ph Occult blood Minerals Reducing substances up to 75% neutral to alkaline None variable <0.25 g/dl

Patient preparation & sample collection After patient has been prepared & instructed for stool sampling do: Collect faeces in dry, clean, urine free container with cover. Collect entire stool specimen and transfer it in container using tongue depressor, spatula or wooden stick. A sample of 2.5cm or 64.7mg is sufficient. Warm stool is best for detection of ova &parasites. Do not refrigerate specimen for (o & p).

Techniques used in diagnosis Wet preparation technique. Concentration technique : a/ Flotation technique b/sedimentation technique Staining procedures: a/ Trichrome b/ Iron haematoxlin PCR Antigen detection Cultivation or culture

Types of specimens Ordinary defecated sample Stool bag sample Rectal swab sample Adhesive tape sample

Diagnostic value of stool sample Detection of ova and parasites Detection of worms and segments Culture for bacteria cholera and salmonella Culture for viruses Rota and Polio Diagnosis of malabsorption Detection of occult blood

Macroscopic analysis Color : Yellow Green Black Red Clay Others Consistency: Soft Watery Mucoid bloody Ph : Alkaline or acidic Odor : varies Observe and report : Mucus Pus Blood Segment or Worm.

Microscopic examination On a clean slide on a drop of a suitable solution e.g. saline, iodine, methylene blue eosine, formal saline or Zink sulphate emulsify a suitable amount of stool and make a thin homogenous film covered with cover glass examine on a microscope under 10x power then 40x power and then report.

Macroscopic analysis Color : Yellow Green Black Red Clay Others Consistency: Soft Watery Mucoid bloody Ph : Alkaline or acidic Odor : varies Observe and report : Mucus Pus Blood Segment or Worm.

precautions Always wear protective gloves Reject contaminated samples Reject dry & delayed samples >1hour Use only covered stool containers Examine samples within one hour Do not discard sample till result verification

Stool Analysis What is the stool or feces? 1. Waste residue of indigestible material (cellulose during the previous 4 days) 2. Bile pigments and salts 3. Intestinal secretions, including mucus 4. Leukocytes that migrate from the bloodstream 5. Epithelial cells that have been shade 6. Bacteria and Inorphosphatesganic material(10-20%) chiefly calcium and. Undigested and unabsorbed food.

Random Collection 1. Universal precaution 2. Collect stool in a dry,clean container 3. uncontaminated with urine or other body secretions, such as menstrual blood 4. Collect the stool with a clean tongue blade or similar object. 5. Deliver immediately after collection

Ova and parasites collection 1. Warm stools are best for detecting ova or parasites. Do not refrigerate specimen for ova or parasites. 2. If the stool should be collect in 10 % formalin or PVA fixative, storage temperature is not critical. 3. Because of the cyclic life cycle of parasites, three separate random stool specimens are recommended.

Enteric pathogen collection 1. Some coliform bacilli produce antibiotic substances that destroy enteric pathogen.refrigerate specimen immediately. 2. A diarrheal stool will usually give accurate results. 3. A freshly passed stool is the specimen of choice. 4. Stool specimen should be collected before antibiotic therapy, or as early in the course of the disease. 5. If blood or mucous is present, it should be included in the specimen

Interfering factors 1. Patients receiving tetracycline, anti-diarrheal drugs, barium, bismuth, oil, iron, or magnesium may not yield accurate results. 2. Bismuth found in toilet tissue interferes with the results. 3. Do not collect stool from the toilet bowl. A clean, dry bedpan is the best. 4. Lifestyle, personal habits, environments may interfere with proper sample procurement.

Normal values in stool exam Amount Color Odor Consistency Size and shape Gross blood Mucus Pus Parasites 100-200g/d Brown varies with ph plastic, soft, bulky and small Formed None None None None

Normal values in stool analysis Microscopic examination Normal values Fat (Colorless, neutral fat (18%)and fatty acid crystals and soaps) Undigested food amount None to small Meat fibers, Starch, Trypsin None Eggs and segments of parasites None Yeasts None Leukocytes None

Normal values in stool analysis Chemical examination Normal values Water Up to 75 % ph 6.5-7.5 Occult blood Negative Urobilinogen 50-300 g/24hr Porphyrins Coporphyrins:400-1200 g/24hr Uroporphyrins:10-40 mg/24hr Nitrogen <2.5 g/24hr

Normal values in stool analysis Chemical examination Normal values Bile children Negative in adults :positive in Trypsin amounts greater amounts in 20-950 units/g( positive in small in adults; present in normal children. Osmolarity osmol- used 200-250 mosm with serum arity to calculate osmotic gap Sodium 5.8-9.8 meq / 24hr

Normal values in stool analysis Chemical examination Chloride Potassium Lipids ( fatty acid) Normal values 2.5-3.9 meq / 24 hr 15.7-20.7 meq /24 hr 0-6 g / 24 hr

Clinical Implications 1. Fecal consistency may be altered in various disease states a. Diarrhea mixed with mucous and red blood cells is associated with 1. Typhus 2. Typhoid 3. Cholera 4. Amoebiasis 5. Large bowel cancer

Clinical Implications b. Diarrhea mixed with mucus and white blood cells is associated with 1. Ulcerative colitis 2. Regional enteritis 3. Shigellosis 4. Salmonellosis 5. Intestinal tuberculosis

Clinical Implications C. Pasty stool is associated with a high fat content in the stool: 1. A significant increase of fat is usually detected on gross examination 2. With common bile duct obstruction, the fat gives the stool a putty- like appearance. 3. In cystic fibrosis, the increase of neutral fat gives a greasy, butter stool appearance.

Stool Odor Normal value Varies with ph of stool and diet. Indole and sketole are the substances that produce normal odor formed by intestinal bacteria putrefaction and fermentation. Clinical implication. 1. A foul odor is caused by degradation of undigested protein. 2. A foul odor is produced by excessive carbohydrate ingestion. 3. A sickly sweet odor is produced by volatile fatty acids and undigested lactose

Stool color Normal value : Brown Clinical implication: 1. Yellow to yellow-green : severe diarrhea 2. Green : severe diarrhea bile Black: resulting from bleeding into the upper gastrointestinal tract (>100 ml blood) 3. Tan or Clay colored : blockage of the common bile duct. 4. Pale greasy acholic (no bile secretion) stool found in pancreatic insufficiency.

Stool ph Normal value : Neutral to acid or alkaline Clinical implication 1. Increased ph ( alkaline) a. protein break down b. Villous adenoma c. Colitis d.antibiotic use 2. Decreased ph ( acid) a. Carbohydrate malabsorption b. Fat malabsorption c. Disaccharidase deficiency

Stool color(con) 4. Maroon-to-red-to-pink : possible result of bleeding from the lower gastrointestinal tract (e.g. Tumors, hemorrhoids, fissures, inflammatory process) 5. Blood streak on the outer surface of usually indicates hemorrhoids or anal abnormalities. 6. Blood in stool can arise from abnormalities higher in the colon. In some case the transit time is rapid blood from stomach or duodenum can appear as bright or dark red or maroon in stool.

Blood in Stool Normal value : Negative Clinical Implication : 1. Dark red to tarry black indicates a loss of 0.50 to 0.75 ml of blood from the upper GI tract. 2. Positive for occult blood may be caused by a. Carcinoma of colon b. Ulcerative colitis c. Adenoma d. Diaphramatic hernia e. Gastric carcinoma f. Diverticulitis g. Ulcers

Mucous in Stool Normal value : Negative for mucous Clinical Implication: 1. Translucent gelatinous mucous clinging to the surface of formed stool occurs in a. Spastic constipation b. Mucous colitis c. Emotionally disturbed patients d. Excessive straining at stool 2. Bloody mucous clinging to the surface suggests a. Neoplasm b. Inflammation of the rectal canal

Mucous in Stool (con) 3. Mucous with pus and blood is associated with a. Ulcerative colitis b. Bacilliary dysentery c. Ulcerating cancer of colon diverticulitis e. Intestinal tuberculosis d. Acute

Fat in Stool Normal value : fat in stool will account for up to 20 % of total solids. Lipids are measured as fatty acids (0-6.0 g/24hr) Clinical Implication : 1. Increased fat or fatty acids is associated with the malabsorption syndromes a. Non tropical sprue b. Crohn s disease c. Whipple s disease d. Cystic fibrosis e. Enteritis and pancreatic diseases f. Surgical removal of a section of the intestine

Urobilinogen in Stool Normal value : 125-400 Ehrlich units / 24 hr 75-350 Ehrlich units/100 g Clinical Implication: 1. Increased values are associated with Hemolytic anemias 2. Decreased values are associated with a. Complete biliary obstruction b. Severe liver disease, infectious hepatitis c. Oral antibiotic therapy that alters intestinal bacteria flora d. Infants are negative up to 6 months of age

Bile in Stool Normal value Adults negative Children may be positive Clinical Implication: 1. Bile may be present in diarrheal stools. 2. Increased bile levels occur in Hemolytic anemia

Trypsin in Stool Normal value : Positive in small amounts in 95 % of normal persons. Clinical Implication : Decreased amounts occur in a. Pancreatic deficiency b. Malabsorption syndromes c. Screen for cystic fibrosis

Leukocytes in Stool Normal value : Negative Clinical Implication 1. Large amounts of leukocytes a. Chronic ulcerative colitis b. Chronic bacillary dysentery c. Localized abscess d. Fistulas of sigmoid rectum or anus 2. Mononuclear leukocytes appear in Typhoid

Leukocytes in Stool (con) 3. Polymorphonuclear leukocytes appear in a. Shigellosis b. Salmonellosis c. Yersinia d. Invasive Escherichia coli diarrhea e. Ulcerative colitis 4. Absence of leukocytes is associated with a. Cholera c. Viral diarrhea b. Non specific diarrhea d. Amebic colitis e. Noninvasive E.coli diarrhea f. Toxigenic bacteria Staphylococci spp., Clostridium Cholera g. Parasites-Giardia

Porphyrins in Stool Normal value : Coproporphyrin 400-1200 g / 24hr Urophorphyrin 10-40 g / 24 hr. These values vary from Lab to Lab. Clinical Implication: 1. Increased fecal coproporphyrin is associated with a. Coproporphyria (hereditary) b. Porphyria variegata c. Protoporphyria d. Hemolytic anemia 2. Increased fecal protoporphyrin is associated with a. Porphyria veriegata c. Acquired liver disease b. Protoporphyria

Stool Electrolytes Normal values : Sodium 5.8-9.8 meq / 24 hr Chloride 2.5-3.9 meq / 24 hr Potassium 15.7-20.7 meq /24 hr Clinical Implication : 1. Idiopathic proctocolitis Sodium and Chloride Normal Potassium 2. Cholera Sodium and Chloride

Why study Parasitology Many of these parasites are causative agents of major public health problems of the world. Recent estimates of prevalence of parasites in the world are: Ascaris Hookworms Whipworms Filarial worms Malaria Schistosomes Amebiasis Taenia tapeworms Clonorchis Chagas Disease 1.5 billion 1.3 billion 1 billion 657 million 500 million 210 million 50 million 50 million 20 million 15 million These parasites cause varying morbidities and even mortalities 40

41

DIAGNOSIS DIRECT INDIRECT MOLECULAR Urine Stool Sputum Biopsy Blood Aspirates IHAT LAT IFAT ELISA CFT DEIDT PCR DNA probes 42

STOOL EXAMINATION MACROSCOPIC Consistency Colour Composition OTHERS MICROSCOPIC Culture Cellophane tape Permanent Diect saline smear Baeremann tech. Temprory Iodine smear Ova quantitaion (Stoll & Kato) Concentration techniques Floatation Sedimentation Saline Formol ether Sat saline Zinc sulphate Sheather s sugar 43

WET MOUNT PREPARATION It is a fast, simple, procedure and provides a quick answer when positive It provides an estimate of the parasitic burden It can be used as a safe guard It may be more cost effective to delete the direct smear and begin the stool examination with the concentration procedure. Results should be confirmed by permanent stained smears

Lugol iodine acetic acid solution causes trophozoite forms to become nonmotile. the Using a fine Pasteur pipette, allow a drop of methylene blue solution to run under the coverslip over the saline preparation (Fig. 7). This will stain the nuclei of any cells present and distinguish the lobed nuclei of polymorphs from the large single nuclei of mucosal cells. If a drop of eosin solution is added, the whole field becomes stained except for the protozoa (particularly amoebae), which remain colourless and are thus easily recognized. 45

STOOL EXAMINATION MACROSCOPIC EXAMINATION COLOUR Pale=Steatorrhea (G.l) CONSISTENCY -Liquid (Troph) -Formed (Cyst) -Semi formed (Cyst) COMPOSITION?? Blood?? Mucus (dysentry) Adult PARASITES *Ascaris worm *E. vermicularis *T. saginata 46

STOOL EXAMINATION Temporary Saline smear Iodine smear saline Iodine 1% Huge number of: Huge number of: Eggs Cyst morphological details Protozoal troph. Motility (Amoeb, flagellates) 47

Staining the saline preparation with methylene blue

Microscopic examination of fecal material WET MOUNT STAINED SMEAR Concentration methods generally appear unsuitable for B.hominis, because they cause disruption of the vacuolar, multivacuolar and granular forms of the organism.

Concentration procedures Flotation techniques Zinc sulfate Sedimentation techniques Formalin ethyl acetate The preparation is clean. Cysts are suitable for inoculation into culture media It is the method of choice in most laboratories It is ideal for large volume laboratories It can be performed on fresh material and on specimens fixed in most of the available preservatives The sedimentation technique used at (CDC) It can only be performed on fresh material or on specimen preserved in preservatives containing formalin Contain an excess of fecal debris that could mask the presence of parasitic cysts.

STOOL EXAMINATION Scanty infection Concentration techniques Sedimentation Heavy eggs (Ascaris Floatation Non Operculated eggs egg) Trematodes ( S. m.) Operculated eggs Cestode (Trematodes) Larvae (Strong sterc.) Nematode(Hookworms,Trichoston g) Cysts

STOOL EXAMINATION Saline sedimentation Mesh wire gauze Saline Emulsify Conical flask 10 g stool Sediment 52

STOOL EXAMINATION Formol Ether Sed. Conc. Ether Ether 10% Formalin debris formalin 1 g stool Sediment Thorough mixing Conical flask centrif. tube Ether adsorbs fecal debris & floats. Formalin fixes & preserves the specimen. 53

Floatation concentration STOOL EXAMINATION Clean light eggs & cysts Sat saline Sheather s sugar Zn sulphate Tin container Cestode eggs (non op) Nematode eggs????? Hookworms??????? Trichostong Egg of S.m. Eggs of small tapeworms Cysts 20 min Seive Crypto, Iso. oocysts Centrif. 2 min 54

STOOL EXAMINATION Kato technique Mesh screen Hole Remove the template Template Cellophane soaked by glycerin (clears faeces( Egg count/ g stool Egg quant. Of: Ascaris, T. trich., Hookworms, S. mansoni

STOOL EXAMINATION Stoll s technique Egg quant. Of: Ascaris, T. trich., Hookworms, S. mansoni 24 hr stool 60 CC 4 g Stool 56 CC Shake well 0.15 CC NaOH Egg count/ slide Eggs/1g= Eggs/slideX Erlynmeyer flask Egg/day=Eggs/1g 56 X stool

STOOL EXAMINATION Baermann s technique Stool/soil seive 25-50 CC Warm water Glass funnel 30 min centrifuge clamp Detec. Of Nematode L. /stool, soil

Cultivation of intestinal protozoa Xenic in which the parasite is grown in the presence of an undefined flora. D. fragilis,b. coli, E. histolytica and B. hominis Monoxenic in which the parasite is grown in the presence of a single additional species E. histolytica and B. coli Axenic in which the parasite is grown in the absence of any other metabolizing cells. G. intestinalis, E.histolytica and B.hominis Cultures are primarily research tools rather than diagnostic tools.

STOOL EXAMINATION Cultures for Nematode larvae Filter paper culture Filter paper Slide Sealed petri dish Water Scanty infection Larvae of: St. stercoralis (A,L) Hookworms 59 Trichostrong

INDIRECT IMMUNOLOGICAL METHODS Scanty infection. Tissue parasite no portal of exit (Hydatid dis.) Migratory stage (Fasciola) Chronic infection fibrosis (Bilharziasis) 60

STOOL EXAMINATION Permanent Stained smears Iron haematoxylin stain Trichrome stain Modified Ziehl Neelsen stain (Crptosporidum.) 61

INDIRECT IMMUNOLOGICAL METHODS Antigen detection ore specific ore accurate. ctive infection arly uantitative Antibody detection Ab remain in serum for months even after cure 62

Antigen detection offer advantages in labor, time, simple to perform, and batching efficiency that may lead to reduce costs offer both increased sensitivity and specificity compared to conventional staining methods These reagents are particularly helpful in an outbreak or when screening patients with minimal symptoms Can detect only one or two pathogens at one time It is costly

Low sensitivity of microscopic examination Many E.histolytica infections were confused with E.dispar The only way to distinguish E.dispar from E.histolytica microscopically is erythrophagocytosis. False-positive results due to misidentification of macrophages and nonpathogenic species of Entamoeba Antigen based ELISA Some of the assays differentiate E.histolytica from E. dispar They have excellent sensitivity and specificity They are readily usable by even non experienced laboratory personnel Used as large scale screening tools in epidemiological studies

INDIRECT IMMUNOLOGICAL METHODS IHAT Ag Sensitized heep s RBC (O ve) LAT Ag + + Latex particlepatient s serum (?? AB) Patient s serum (?? AB) Agglutination 65 Agglutination

Immunofluorescent-antibody test (IFAT) using monoclonal probes specific for Enterocytozoon bieneusi or Encephalitozoon intestinalis. The sensitivity and specificity of IFAT were 100% Moreover, Secies identification by IFAT was more rapid and less expensive than that by PCR. IFAT is a suitable test for detection of microsporidia in developing countries.

INDIRECT IMMUNOLOGICAL METHODS INDIRECT FLUORESCENT ANTIBODY TEST fluorescein Anti human AB Patient s serum (?? AB) parasite 67

INDIRECT IMMUNOLOGICAL METHODS ELISA OPD Peroxidase E OPD Anti human AB atient s serum (?? AB) Ag AB Flat bottom plastic micrititre plate 68

INDIRECT IMMUNOLOGICAL METHODS CFT Sheep s Anti sheeprbc AB AB comple ment Patient s serum (?? AB) Ag Tube / microplate 69

INDIRECT IMMUNOLOGICAL METHODS Double Electro Immuno Diffusion Line of ppt Electric current A b Ag Buffere d gel 70

INDIRECT IMMUNOLOGICAL METHODS Immunodiagnostic Strip Test (Dip Stick Test) Pt bld (?Ag) Coloured dye Monoclonal Ab trocellulose strip Malaria, Filaria, African tryp. Ag

PCR PCR was more sensitive, specific, and easier to interpret Nonhuman pathogens can be distinguished from human pathogens It takes longer time It is technically complex and is costly. Thus it may be not well suited for use in developing countries.

MOLECULAR BIOLOGICAL TECHNIQUES Polymerase Chain Reaction (PCR) Single stranded DNA Replication 73 Detection T cruzi, T gondii

10 X Objective 74

40 X Objective 75

2 VIAL COLLECTION KITS 5% OR 10% FORMALIN PVA ONCENTRATION PERMENANT STAINED SMEAR Trichrome or Iron haematoxylin GENERAL MORPHOLOGY PRECISE MORPHOLOGY

Non-parasitic structures found in faeces: Care must be taken not to report as parasites those structures that can be normally found in faeces such as: muscle fibres, vegetable fibres, starch cells (stain blueblack with iodine), pollen grains, fatty acid crystals, soaps, spores, yeasts, and hairs. Large numbers of fat globules may be seen in faeces when there is malabsorption. Charcot Leyden crystals (breakdown products of eosinophils) can sometimes be seen in faeces (also in sputum) in parasitic infections. They appear as slender crystals with pointed ends, about 30 40m in length 77

Structures found in faeces that required differentiation from parasites. Structures found in faeces that 78required differentiation from parasites.

Image illustrating Red Blood Cells in slide preparation. Image illustrating Yeast Cells in slide preparation79 Note similarity to parasitic oocysts. Image illustrating Fat Globules in slide preparation Image illustrating Vegetable cell in slide preparation.

Image illustrating Vegetable Spiral in slide preparation. Image illustrating Vegetable cell in slide preparation. 80 Image illustrating a Vegetable Spiral in slide preparation. Such spirals may appear similar to proglottids.

Image illustrating pollen in slide preparation that could be mistaken for a Taenia egg. The shell is thinner, of non-uniform thickness, and no hooks are visible. Image illustrating pollen resembling a Hymenolepis nana egg. Hooks and polar filaments are not visible. Image illustrating pollen in slide preparation using a color filter Image illustrating geranium pollen cells in slide preparation. 81

Image illustrating peach hair in slide preparation. Note the similarity to Strongyloides stercoralis. Image illustrating vegetable hairs in slide preparation. 82