Follistatin-Like 1 Attenuates Apoptosis via Disco-Interacting Protein 2 Homolog A/Akt Pathway After Middle Cerebral Artery Occlusion in Rats

Similar documents
c Ischemia (30 min) Reperfusion (8 w) Supplementary Figure bp 300 bp Ischemia (30 min) Reperfusion (4 h) Dox 20 mg/kg i.p.

Supplementary Figure 1. Confocal immunofluorescence showing mitochondrial translocation of Drp1. Cardiomyocytes treated with H 2 O 2 were prestained

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION

Supplementary Figure 1

Silencing of the Activated Protein-1 Transcription Factor JunD Exacerbates Ischemia/Reperfusion-induced Cerebral Injury

Sestrin2 and BNIP3 (Bcl-2/adenovirus E1B 19kDa-interacting. protein3) regulate autophagy and mitophagy in renal tubular cells in. acute kidney injury

Mechanisms of Osteopontin-Induced Stabilization of Blood-Brain Barrier Disruption After Subarachnoid Hemorrhage in Rats

Isoflurane Enhanced Hemorrhagic Transformation by Impairing Antioxidant Enzymes in Hyperglycemic Rats With Middle Cerebral Artery Occlusion

Programmed necrosis, not apoptosis, is a key mediator of cell loss and DAMP-mediated inflammation in dsrna-induced retinal degeneration

SUPPLEMENTAL MATERIAL. Supplementary Methods

Aneurysmal subarachnoid hemorrhage

B-cell. Astrocyte SCI SCI. T-cell

Impact factor: Reporter:4A1H0019 Chen Zi Hao 4A1H0023 Huang Wan ting 4A1H0039 Sue Yi Zhu 4A1H0070 Lin Guan cheng 4A1H0077 Chen Bo xuan

Page 39 of 44. 8h LTA & AT h PepG & AT h LTA

Chemical Chaperones Mitigate Experimental Asthma By Attenuating Endoplasmic

LA CLINICA E LA DIAGNOSI DELLA VERTIGINE VASCOLARE

Mingjin Jiang 1, Jing Li 1, Qiuxian Peng 1,2, Yi Liu 1, Wei Liu 1, Chaohua Luo 1, Ju Peng 1, Junkui Li 1, Ken Kin Lam Yung 2* and Zhixian Mo 1*

Boucher et al NCOMMS B

University of Milan spin-off founded in 2004 and now fully owned by Genextra S.p.A.

Supplemental Information

Problem Set 8 Key 1 of 8

Imaging ischemic strokes: Correlating radiological findings with the pathophysiological evolution of an infarct

Supplemental Figure 1. Western blot analysis indicated that MIF was detected in the fractions of

Perlecan domain V is neuroprotective and proangiogenic following ischemic stroke in rodents

Aneurysmal subarachnoid hemorrhage (SAH) is one of

Bone marrow-derived mesenchymal stem cells improve diabetes-induced cognitive impairment by

TRAF6 ubiquitinates TGFβ type I receptor to promote its cleavage and nuclear translocation in cancer

Receptor-interacting Protein Kinases Mediate Necroptosis In Neural Tissue Damage After Spinal Cord Injury

Phospho-AKT Sampler Kit

Reperfusion Injury: How Can We Reduce It?

Effect of low temperatures on BAX and BCL2 proteins in rats with spinal cord ischemia reperfusion injury

Molecular Cardiology. Therapeutic Impact of Follistatin-Like 1 on Myocardial Ischemic Injury in Preclinical Models

Original Article Activation of STAT3 is involved in neuronal apoptosis in focal cerebral ischemia/reperfusion rats via Bcl 2/Fas pathway

Supplemental Table.1 Published preclinical research studies of progesterone use in adult traumatic brain injury Author Model Dose i Outcome

(a) Significant biological processes (upper panel) and disease biomarkers (lower panel)

Aggf1 attenuates neuroinflammation and BBB disruption via PI3K/Akt/NF-κB pathway after subarachnoid hemorrhage in rats

Subarachnoid hemorrhage (SAH) is a devastating stroke

Li et al. Journal of Experimental & Clinical Cancer Research (2018) 37:108

Part-4. Cell cycle regulatory protein 5 (Cdk5) A novel target of ERK in Carb induced cell death

Supplementary Figure 1:

Supplementary Figure 1. Deletion of Smad3 prevents B16F10 melanoma invasion and metastasis in a mouse s.c. tumor model.

A Central Role of MG53 in Metabolic Syndrome. and Type-2 Diabetes

Cells and reagents. Synaptopodin knockdown (1) and dynamin knockdown (2)

Supplementary Figure 1. Normal T lymphocyte populations in Dapk -/- mice. (a) Normal thymic development in Dapk -/- mice. Thymocytes from WT and Dapk

Research progress on the use of estrogen receptor agonist for treatment of spinal cord injury

Supplementary Figure S I: Effects of D4F on body weight and serum lipids in apoe -/- mice.

Protective effect of ginsenoside Rg1 against MPTP-induced apoptosis in mouse substantia nigra neurons 1

Supplementary Figure 1 IMQ-Induced Mouse Model of Psoriasis. IMQ cream was

A Hepatocyte Growth Factor Receptor (Met) Insulin Receptor hybrid governs hepatic glucose metabolism SUPPLEMENTARY FIGURES, LEGENDS AND METHODS

Effect of Ginkgo biloba leaf extract on electroencephalography of rat with cerebral ischemia and reperfusion

Preconditioning the Brain for Stroke Prevention

ApoE and S-100 expression and its significance in the brain tissue of rats with focal contusion

In the name of GOD. Animal models of cardiovascular diseases: myocardial infarction & hypertension

Follistatin-like 1 in Chronic Systolic Heart Failure: A Marker of Left Ventricular Remodeling

Hypertonic saline alleviates cerebral edema by inhibiting microglia-derived TNF-α and IL-1β-induced Na-K-Cl Cotransporter up-regulation

Effect of anesthetic post-treatment on blood-brain barrier integrity and cerebral edema after transient cerebral ischemia in rats

Previous experimental evidence indicates that some cardiovascular

Deposited on: 25 July 2011

Ischemic postconditioning (IPostC), a procedure of modified

Introduction: 年 Fas signal-mediated apoptosis. PI3K/Akt

Supplementary Figure 1

Supplementary Figure 1. Validation of astrocytes. Primary astrocytes were

IRE1α inhibition decreased TXNIP/NLRP3 inflammasome activation through mir-17-5p after neonatal hypoxic ischemic brain injury in rats

Intrinsic cellular defenses against virus infection

Supplementary fig. 1. Crystals induce necroptosis does not involve caspases, TNF receptor or NLRP3. A. Mouse tubular epithelial cells were pretreated

Ginkgo biloba extract postconditioning reduces myocardial ischemia reperfusion injury

SUPPLEMENTARY INFORMATION

Nature Medicine: doi: /nm.4324

Gallic acid prevents isoproterenol-induced cardiac hypertrophy and fibrosis through regulation of JNK2 signaling and Smad3 binding activity

University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; e Boone Pickens

Supplementary Material

Pharmacologic inhibition of histone demethylation as a therapy for pediatric brainstem glioma

Plasma exposure levels from individual mice 4 hours post IP administration at the

SUPPLEMENTARY INFORMATION

EXPERIMENTAL AND THERAPEUTIC MEDICINE 8: , 2014

Supplementary Table 1. Characterization of HNSCC PDX models established at MSKCC

Correlations among copeptin, ischemia-modified albumin, and the extent of myocardial injury in patients with acute carbon monoxide poisoning

Jian Zhan 1,2,3, Wenyi Qin 4, Ying Zhang 1,2, Jing Jiang 1,2, Hongmei Ma 1,2, Qiongli Li 1,2 and Yong Luo 1,2*

Endocannabinoid-activated Nlrp3 inflammasome in infiltrating macrophages mediates β- cell loss in type 2 diabetes

Supplementary Materials for

European Society of Cardiology Congress DONOR AGE NEGATIVELY INFLUENCES THE CYTOPROTECTIVE PARACRINE EFFECTS EXERTED BY HUMAN MESENCHYMAL STEM CELLS

Supplementary Materials and Methods

Pathophysiology and treatment of focal cerebral ischemia

Aneurysmal subarachnoid hemorrhage (SAH) is one of

Original Article Protective effects of tamoxifen on traumatic brain injury in rats

Master Eudipharm 2012 Introductory Module, Principles of Discovery of Medicine and Development Planning. Nathan Mewton, MD, PhD. September 26 th 2012

Non-invasive Neurosurgery using MR guided Focused Ultrasound

Supplementary Figure 1. Establishment of prostacyclin-secreting hmscs. (a) PCR showed the integration of the COX-1-10aa-PGIS transgene into the

Endothelial PGC 1 - α 1 mediates vascular dysfunction in diabetes

Supplemental Information. Menin Deficiency Leads to Depressive-like. Behaviors in Mice by Modulating. Astrocyte-Mediated Neuroinflammation

Research article. Department of Pharmacology and Toxicology, Medical College of Georgia, Georgia Health Sciences University, Augusta, Georgia, USA.

Germinal matrix hemorrhage (GMH) occurs when immature

Supplementary Figures

Echocardiographic assessment of the right ventricle in paediatric pulmonary hypertension.

NNZ-2566 in Rett Syndrome and Autism Spectrum Disorders Role and Update

Systematic Review and Stratified Meta-analysis of the Efficacy of Interleukin-1 Receptor Antagonist in Animal Models of Stroke

Sevoflurane preconditioning induces tolerance to brain ischemia partially via inhibiting thioredoxin-1 nitration

(a-r) Whole mount X-gal staining on a developmental time-course of hearts from

Research Article Tyrosine Phosphorylation of NR2B Contributes to Chronic Migraines via Increased Expression of CGRP in Rats

Transcription:

Follistatin-Like 1 Attenuates Apoptosis via Disco-Interacting Protein 2 Homolog A/Akt Pathway After Middle Cerebral Artery Occlusion in Rats Xiping Liang, MD*; Qin Hu, MD, PhD*; Bo Li, MD, PhD; Devin McBride, PhD; Hetao Bian, MD; Pierre Spagnoli, BS; Di Chen, MD, PhD; Jiping Tang, MD; John H. Zhang, MD, PhD Downloaded from http://stroke.ahajournals.org/ by guest on April 9, 2018 Background and Purpose Follistatin-like 1 (FSTL1), an extracellular glycoprotein, has been reported to decrease apoptosis in ischemic cardiac diseases, but its effect in ischemic stroke has not been examined. We hypothesized that recombinant FSTL1 attenuates neuronal apoptosis through its receptor disco-interacting protein 2 homolog A (DIP2A) and the Akt pathway after middle cerebral artery occlusion (MCAO) in rats. Methods One hundred forty male Sprague-Dawley rats were subjected to 2 hours of MCAO followed by reperfusion. In a subset of animals, the time course and location of FSTL1 and DIP2A were detected by Western blot and immunofluorescence double staining. Another set of animals were intracerebroventricularly given either recombinant FSTL1 1 hour after reperfusion or FSTL1-small interfering RNA (sirna) 48 hours before reperfusion. Additionally, DIP2A was knockdown by sirna in some animals. Infarction volume and neurological deficits were measured, and the expression of FSTL1, DIP2A, phosphorylated Akt, cleaved caspase-3, and terminal deoxynucleotidyl transferase dutp nick end labeling were quantified using Western blot. Results The expression of FSTL1 and DIP2A was increased in neurons and peaked 24 hours after MCAO. Recombinant FSTL1 reduced brain infarction and improved neurological deficits 24 and 72 hours after MCAO via activation of its receptor DIP2A and downstream phosphorylation of Akt. These effects were reversed by DIP2A-siRNA and FSTL1-siRNA. Conclusions Recombinant FSTL1 decreases neuronal apoptosis and improves neurological deficits through phosphorylation of Akt by activation of its receptor DIP2A after MCAO in rats. Thus, FSTL1 may have potentials as a treatment for patients with ischemic stroke. (Stroke. 2014;45:3048-3054.) Key Words: apoptosis follistatin-related proteins infarction, middle cerebral artery Stroke is one of the leading causes of morbidity and mortality worldwide, of which >80% are ischemic caused by obstruction of the cerebral arteries. 1 Currently, tissue-type plasminogen activator is the only Food and Drug Administration approved treatment for acute ischemic stroke and is given to 2% to 5% of patients with stroke. 2 However, tissue-type plasminogen activator has a few limitations which fuel the interest in the development of new neuroprotective therapies. Recent studies have revealed that stroke-induced neuron apoptosis, predominantly in the ischemic penumbra or peri-infarct zone, may be caspase dependent. Thus, neuronal apoptosis is potentially recoverable in the early stage after stroke onset, 3 and a treatment manipulating apoptotic pathways remains an appealing strategy. Follistatin-like 1 (FSTL1) is an extracellular glycoprotein that belongs to the follistatin family of proteins. Accumulating evidence indicates that FSTL1 has protective effects on ischemia reperfusion injury in muscle and heart tissue associated with antiapoptosis. 4,5 The plasma protein levels of FSTL1 were increased after ischemia injury or under hypoxia/reoxygenation stress in the heart or hind limb. 5,6 Elevated levels of circulating FSTL1 were also observed in patients with heart failure. 7 These findings suggest that FSTL1 may have broad cardiovascular-protective activities in heart ischemia. The protective effects of FSTL1 against apoptosis in cardiac ischemia were mediated by activation of the receptor disco-interacting protein 2 homolog A (DIP2A) and phosphorylation of Akt. 8 However, the therapeutic impact of FSTL1 and its receptor Received May 9, 2014; final revision received July 15, 2014; accepted July 28, 2014. From the Departments of Physiology and Pharmacology (X.L., Q.H., B.L., D.M., H.B., P.S., D.C., J.T., J.H.Z.) and Neurosurgery (J.H.Z.), Loma Linda University School of Medicine, CA; and Department of Neurology, Chongqing Medical University, Chongqing, China (X.L.). *Drs Liang and Hu contributed equally. The online-only Data Supplement is available with this article at http://stroke.ahajournals.org/lookup/suppl/doi:10.1161/strokeaha. 114.006092 /-/DC1. Correspondence to John H. Zhang, MD, PhD, Departments of Neurosurgery and Physiology and Pharmacology, Loma Linda University School of Medicine, 11041 Campus St, Risley Hall, Room 219, Loma Linda, CA 92354. E-mail johnzhang3910@yahoo.com 2014 American Heart Association, Inc. Stroke is available at http://stroke.ahajournals.org DOI: 10.1161/STROKEAHA.114.006092 3048

Liang et al FSTL1 and Apoptosis 3049 DIP2A on brain ischemia has not been previously investigated nor the molecular mechanisms underlying the effects of FSTL1 on neuron apoptosis. The present study aims to investigate the neuroprotective effect and potential molecular mechanisms of FSTL1 in a rat middle cerebral artery occlusion (MCAO) model. Materials and Methods Animal Model and Experimental Protocol All experiments were approved by the Institutional Animal Care and Use Committee of Loma Linda University. Sprague-Dawley male rats weighting 260 to 300 g were subjected to MCAO as previously described, 9 with some modifications. Briefly, anesthesia was induced intraperitoneally with ketamine (80 mg/kg) and xylazine (10 mg/kg) followed by atropine at a dose of 0.1 mg/kg. The right common carotid artery, internal carotid artery, and external carotid artery were surgically exposed. The external carotid artery was coagulated, and 4-0 nylon suture with silicon was inserted into the internal carotid artery through the external carotid artery stump to occlude the MCA. After 2 hours of MCAO, the suture was carefully removed to induce reperfusion. Sham rats underwent the same procedures except that the MCA was not occluded. After closing the skin incision, rats were kept at 37 C on an electric heating blanket and were housed separately until completely recovered from anesthetic. To test whether delivery of FSTL1 protein affects acute brain ischemic injury in rats, male Sprague-Dawley rats were injected intracerebroventricularly with either 1 of 2 dosages of recombinant FSTL1 protein (R&D Systems, 100 or 300 mg/kg) or vehicle (0.1 mol/l PBS) at 1 hour after reperfusion. sirna Injection Three different formats of FSTL1-small interfering RNA (sirna) (OriGene Technologies) or DIP2A-siRNA (Santa Cruz Biotechnology) were applied 48 hours before MCAO by intracerebroventricular injection (ICV) as previously described. 10 A scalp incision was made along the midline, and a burr hole (1 mm) was drilled into the skull above the right hemisphere (1.0 mm lateral of the bregma). The FSTL1-siRNA or DIP2A-siRNA mixture or scramble-sirna (100 pmol/2 μl) was delivered into the ipsilateral ventricle with a Hamilton syringe and administered for 2 minutes. The needle was left in place for an additional 5 minutes after injection to prevent possible leakage and was then slowly withdrawn after 4 minutes. After the needle was removed, the burr hole was sealed with bone wax. The incision was closed with sutures, and the rat was allowed to recover. Neurological Scores Twenty-four or 72 hours after MCAO, the Garcia test was performed by a blinded investigator as previously described with modifications. 11 The score given to each rat at completion of the evaluation was the summation of 7 individual test scores (spontaneous activity, symmetry in the movement of 4 limbs, forepaw outstretching, climbing, body proprioception, response to vibrissae touch, and beam walking). The neurological scoring ranged from 2 (most severe deficit) to 21 (maximum). 2,3,5-Triphenyltetrazolium Chloride Staining Infarction volume was determined by staining with 2,3,5-triphenyltetrazolium chloride (Sigma) at 24 and 72 hours after MCAO as previously described with some modification. 11 Briefly, general anesthesia was reintroduced with a mixture of ketamine and xylazine and decapitated; the brains were rapidly removed and sectioned coronally into 2-mm thick slices starting from the frontal pole. Slices were stained with 2,3,5-triphenyltetrazolium chloride for 15 minutes at 37 C. The infarct and total hemispheric areas of each section were traced and analyzed using ImageJ (ImageJ, National Institutes of Health). The possible interference of brain edema with infarct volume was corrected by standard methods (whole contralateral hemisphere volume nonischemic ipsilateral hemisphere volume), and the infracted volume was expressed as a ratio of the corrected infarct to the whole contralateral hemisphere. Immunofluorescence Staining Rats were euthanized 24 hours after MCAO for double immunofluorescence staining as previously described, 11 using the neuronal marker of neuronal nuclei (NeuN; Millipore), FSTL1 (sc-12542, Santa Cruz Biotechnology), and DIP2A (sc-6755, Santa Cruz Biotechnology). Brain sections were incubated with a mixture of either NeuN and FSTL1 or NeuN and DIP2A primary antibodies over night at 4 C, followed by a mixture of secondary antibodies for 1 hour at room temperature. Microphotographs were analyzed with a fluorescent microscope (Olympus OX51, Japan). Terminal Deoxynucleotidyl Transferase dutp Nick End Labeling Staining Twenty-four hours after MCAO, terminal deoxynucleotidyl transferase dutp nick end labeling (TUNEL) staining was performed with In Situ Apoptosis Detection Kit (Roche) according to the manufacturer s instruction. Four images were taken from the ischemic border of each section using a 40 objective lens and then the number of TUNEL-positive neurons and the number of TUNEL-positive nonneurons were counted. The total number of neurons and non-neurons in the ischemic hemisphere at 40 magnification were counted in 3 arbitrary fields. The number of TUNEL-positive neurons or nonneurons was expressed as a ratio to that in MCAO+vehicle group, respectively. Western Blots Brain samples were collected 24 hours after MCAO. Proteins of the ipsilateral hemisphere were extracted by homogenizing in radio-immunoprecipitation assay lysis buffer (sc-24948, Santa Cruz Biotechnology). Western blotting was performed as described previously. 12 Primary antibodies used were FSTL1 (sc-12542, Santa Cruz Biotechnology), DIP2A (sc-67556, Santa Cruz Biotechnology), phosphorylated Akt (Cell Signaling Technology), cleaved caspase-3 (Cell Signaling Technology), and goat polyclonal β-actin (sc-1616, Santa Cruz Biotechnology). Statistical Analysis Data from different groups were compared using 1-way ANOVA followed by post hoc Tukey tests. The data are presented as means±sem. A value of P<0.05 was considered statistically significant. Results Expressions of FSTL1 and DIP2A Were Increased in Neurons and Peaked 24 Hours After MCAO The protein level of FSTL1 and DIP2A at 6, 12, 24, and 48 hours in the ischemic penumbra after MCAO were measured by Western blot. Analysis showed that FSTL1 began increasing as early as 6 hours after ischemia, peaking at 12 hours, and was sustained to 24 hours (both 12 and 24 hours were statistically significant from sham, P<0.05). FSTL1 returned to a level indistinguishable from sham by 48 hours (Figure 1A and 1B). A similar trend was observed for the expression of DIP2A, the FSTL1 receptor; DIP2A significantly increased at 12 and 24 hours after MCAO and returned backed to sham levels at 48 hours (Figure 1C). Double immunofluorescence staining of FSTL1 and NeuN or DIP2A and NeuN showed that both FSTL1 and DIP2A were upregulated in neurons in the penumbra 24 hours after MCAO. FSTL1 was primarily

3050 Stroke October 2014 expressed in the cytoplasm, and DIP2A is located in the membranes of neurons (Figure 1D). Recombinant FSTL1 Reduced Brain Infarction and Improved Neurological Function 24 and 72 Hours After MCAO Analysis of the infarct stained with 2,3,5-triphenyltetrazolium chloride showed that the ratio of the infarcted tissue volume to the volume of the contralateral tissue 24 hours after MCAO was 0.334±0.1102. Administering the vehicle did not significantly reduce the infarct ratio (0.324±0.1302; P>0.05 versus MCAO). Treatment with the low dose of FSTL1 (100 mg/kg) had an infarct ratio of 0.2194±0.0395 (P>0.05 versus MCAO). However, treatment with the high dose of FSTL1 (300 mg/kg) significantly decreased the infarct ratio (Figure 2A and 2B; 0.190±0.0397; P<0.05 versus MCAO). MCAO resulted in neurological deficits 24 hours after MCAO (P<0.05 versus sham). Administering the vehicle or low dose of FSTL1 did not have any significant effect on neurological deficits. Yet, the high dose of FSTL1 significantly improved the neurological function of rats 24 hours after MCAO (Figure 2C; P<0.05 versus MCAO). Seventy-two hours after MCAO, the infarct ratio was 0.3193±0.0775 in untreated group (MCAO) and 0.3222±0.0536 in the vehicle-treated group (MCAO+vehicle). FSTL1 at a dose of 300 mg/kg significantly decreased the infarct ratio compared with MCAO (0.151±0.0382; P<0.05 versus MCAO; Figure 3A and 3B). Furthermore, FSTL1 significantly improved the performance of MCAO rats on the neurobehavioral tests (Figure 3C; P<0.05 versus MCAO). FSTL1 Decreased Neuronal Apoptosis Through Phosphorylation of Akt Twenty-four hours after MCAO, there were abundant TUNEL-positive neurons in the ischemic penumbra, and Figure 1. Time course and location of follistatin-like 1 (FSTL1) and disco- interacting protein 2 homolog A (DIP2A) in rat brain after middle cerebral artery occlusion (MCAO). A, Representative Western blots of FSTL1 and DIP2A. B, FSTL1 expression increases significantly 12 and 24 hours after MCAO and declines 48 hours after MCAO. C, DIP2A expression increases significantly 12 and 24 hours after MCAO and declines 48 hours after MCAO. D, Immunofluorescence double staining of FSTL1 (red), DIP2A (red), and neuronal nuclei (NeuN, green) showed that the expression of FSTL1 and DIP2A were increased and localized in neurons of the penumbra 24 hours after ischemia. n=5 per group for Western blots and n=1 per group for immunohistochemistry. *P<0.05 vs sham. Bars, 100 μm. treatment with 300 mg/kg FSTL1 decreased the number of TUNEL-positive neurons (Figure 4A and 4B; P<0.05 versus MCAO+vehicle). Knockdown of FSTL1 by intracerebroventricular injection of FSTL1-siRNA 48 hours before MCAO significantly increased the number of TUNEL-positive neurons when compared with either the MCAO+vehicle or the scramble-sirna group (Figure 4A and 4B; P<0.05 versus MCAO+vehicle and MCAO+scramble-siRNA). Neurological function was exacerbated by FSTL1-siRNA (Figure 4B; P<0.05 versus MCAO+vehicle and MCAO+scramblesiRNA). Additionally, administration of FSTL1 reduced the number of TUNEL-positive non-neuronal cells, FSTL1- sirna increased the number of TUNEL-positive non-neuronal cells, and FSTL1+DIP2A-siRNA increased the number of TUNEL-positive non-neuronal cells (Figure I in the onlineonly Data Supplement). Western blot analysis showed that administration of FSTL1 significantly increased the expression of FSTL1 and enhanced the phosphorylation of Akt (Figure 4C and 4D; P<0.05 versus MCAO+vehicle). FSTL1-siRNA effectively suppressed the expression of FSTL1 and reduced the level of phosphorylated Akt 24 hours after MCAO (Figure 4C and 4D; P<0.05 versus MCAO+vehicle, MCAO+FSTL1, and MCAO+scramble-siRNA). FSTL1 Phosphorylation of Akt Is Dependent on Its Receptor DIP2A DIP2A-siRNA was injected intracerebroventricularly 48 hours before MCAO, and rats were treated with FSTL1 1 hour after MCAO. DIP2A-siRNA abolished the effects of FSTL1 by increasing neuron apoptosis (Figure 5A and 5B, increased TUNEL-positive neurons, P<0.05 versus MCAO+FSTL1+scramble-siRNA group) and increasing the neurological deficits (Figure 5C; P<0.05 versus MCAO+FSTL1+scramble-siRNA group). Western blot

Liang et al FSTL1 and Apoptosis 3051 Figure 2. Follistatin-like 1 (FSTL1) decreased infarct ratio and improved neurological function 24 hours after middle cerebral artery occlusion (MCAO). A, Representative 2,3,5-triphenyltetrazolium chloride staining images of coronal sections. Quantified infarct ratio (B) and neurological scores (C) showed that high dosage of FSTL1 decreases infarction and neurological deficits 24 hours after MCAO. *P<0.05 vs sham; &P<0.05 vs MCAO; n=6 for each group. Figure 3. Follistatin-like 1 (FSTL1) decreased infarct ratio and improved neurological function 72 hours after middle cerebral artery occlusion (MCAO). A, Representative 2,3,5-triphenyltetrazolium chloride staining images of coronal sections. Quantified infarct ratio (B) and neurological scores (C) showed that high dose of FSTL1 decreases infarction and neurological deficits 24 hours after MCAO. *P<0.05 vs sham; &P<0.05 vs MCAO; n=6 for each group. analysis showed that DIP2A-siRNA reduced the expression of DIP2A, decreased the level of phosphorylation of Akt, and raised the level of cleaved caspase-3 (Figure 6; P<0.05 versus MCAO+FSTL1+scramble-siRNA group). Discussion Apoptosis has been suggested to play a role in neuronal death after stroke in patients as well as in animal models of stroke. Cerebral ischemia triggers 2 general pathways of apoptosis: the intrinsic pathway that originates from mitochondrial release of cytochrome c and associated stimulation of caspase-3 and the extrinsic pathway that originates from the activation of cell surface death receptors and subsequent stimulation of caspase-8. 3 Neurons in the ischemic penumbra or peri-infarct zone undergo apoptosis within hours after stroke onset. Targeting and preventing apoptosis in the penumbra would seem to be a logical therapeutic goal for limiting cerebral infarct volume after stroke. In the present study, we showed that administration of recombinant FSTL1 can reduce infarction volume and improve neurological function

3052 Stroke October 2014 Figure 4. Follistatin-like 1 (FSTL1) decreased apoptosis by increasing Akt phosphorylation 24 hours after middle cerebral artery occlusion (MCAO). A, Immunofluorescence double staining of terminal deoxynucleotidyl transferase dutp nick end labeling (TUNEL) positive cells (green) and neurons (neuronal nuclei [NeuN], red). B, TUNEL-positive neurons are decreased by FSTL1 and increased by FSTL1-siRNA. Neurological score is improved by FSTL1 and reduced by FSTL1-siRNA. C, Western blot analysis of FSTL1 expression. D, Western blot analysis of phosphorylated Akt (p-akt). Akt phosphorylation is increased by FSTL1 and reversed by FSTL1-siRNA. Disco-interacting protein 2 homolog A (DIP2A; 96 kda), FSTL1 (35 kda), and β-actin (42 kda) were run on the same gel. n=6 for each group in Western blot and immunohistochemistry. &P<0.05 vs MCAO+vehicle, #P<0.05 vs MCAO+scramble-siRNA. Bars, 100 μm. by suppressing neuron apoptosis after MCAO in rats. We also found that the antiapoptotic mechanism of FSTL1 treatment is via decreased caspase-3 cleavage through phosphorylation of Akt by activation of the FSTL1 receptor, DIP2A. These observations suggested that treatment with FSTL1 might be a potential therapeutic intervention for reducing infarction in patients with ischemic stroke. FSTL1 was originally identified from a transforming growth factor responsive gene in osteoblast cells that have a follistatin-like domain. Although developmental studies have suggested that FSTL1 regulates organ tissue formation in embryos, 13 its functions in fully developed tissue have only been partially elucidated. FSTL1 has been reported to suppress cancer 14 and modulate inflammation 15 in animals. Recently, accumulating evidence indicates FSTL1 is cardiac protective after ischemia stress. Upregulation of FSTL1 transcription was observed in the hearts of Akt1 transgene-induced hypertrophy mice, 16,17 and FSTL1 levels are increased in patients with acute coronary syndrome or heart failure. 7,18,19 In experimental cardiac ischemia, systemic administration of FSTL1 was protective and suggested to be antiapoptotic. 6 Additionally, administration of FSTL1 accelerated revascularization in the hind-limb ischemia model, and in vitro studies demonstrated an antiapoptotic effect of FSTL1 on primary endothelial cells. 5 The results of these studies suggest that FSTL1 functions as an antiapoptotic protein after ischemia. However, little is known about its function in cerebrovascular disease. We found that FSTL1 was endogenously expressed in brain and was robustly increased 12 hours after MCAO. FSTL1 was observed in the cytoplasm of neurons. This study also provides additional evidence of the antiapoptotic function of FSTL1 after ischemia. Administration of recombinant FSTL1 decreased infarction volume and improved neurological function by reducing apoptosis, and knockdown of FSTL1

Liang et al FSTL1 and Apoptosis 3053 Figure 5. Follistatin-like 1 (FSTL1) decreased neuron apoptosis after middle cerebral artery occlusion (MCAO) was dependent on its receptor, discointeracting protein 2 homolog A (DIP2A). DIP2A-siRNA increased neuron apoptosis (A and B) and increased neurological deficits (C) in FSTL1-treated rats after MCAO. n=6 for each group. &P<0.05 vs MCAO+vehicle; @P<0.05 vs MCAO+FSTL1+scramble-siRNA. Bars, 100 μm. exacerbates these outcomes. Furthermore, FSTL1 was found to decrease apoptosis both in neurons and non-neuronal cells, suggesting that FSTL1 may play a role in other cell types after cerebral ischemia. The serine/threonine protein kinase Akt (also known protein kinase B) is a key regulator of cell growth and survival and is essential for cellular adaptation to stress. Therefore, Akt plays a role in several critical pathways making it a compelling target for neuroprotection after brain ischemia. FSTL1 has been implicated in the protection of cardiovascular cells from stress via the activation of phosphatidylinositol 3-kinase and Akt signaling. 6 In endothelial cells, FSTL1 activation of phosphatidylinositol 3-kinase/Akt signaling led to the activation of endothelial nitric oxide synthase and subsequent nitric oxide production. 5 In this study, it was found that recombinant FSTL1 increases the phosphorylation of Akt 24 hours after MCAO, and knockdown of FSTL1 has the reverse effect. Although FSTL1 is categorized as a follistatin-like protein, there is relatively little functional similarity with other follistatin family proteins which are binding partners of the transforming Figure 6. Follistatin-like 1 (FSTL1) prevented apoptosis though the discointeracting protein 2 homolog A (DIP2A)/ Akt pathway after middle cerebral artery occlusion (MCAO) in rats. Western blots for DIP2A, Akt, and cleaved caspase-3 (CC3; A) showed that DIP2A-siRNA prevented the expression of DIP2A after FSTL1 treatment (B), reduced Akt phosphorylation (C), and increased the expression of CC3 (D). n=6 for each group. &P<0.05 vs MCAO+vehicle; @P<0.05 vs MCAO+FSTL1+scramble-siRNA.

3054 Stroke October 2014 growth factor-β family proteins. Recently, DIP2A was found to function as an FSTL1 receptor. In endothelial cells, DIP2A functions in the antiapoptotic effects of FSTL1 and mediates FSTL1 activation of Akt. 8 DIP2A has been observed on the surface of endothelial cells, and knockdown of DIP2A by sirna reduced the binding of FSTL1. Furthermore, in endothelial cell cultures, DIP2A knockdown diminishes FSTL1-stimulated survival, migration, and differentiation in network structures and inhibited FSTL1-induced Akt phosphorylation. Finally, DIP2A was also identified as a candidate receptor molecule for FSTL1 by molecular interaction methods. 20 To determine the mechanism of FSTL1 in Akt phosphorylation after focal cerebral ischemia, we first examined the localization of DIP2A and FSTL1. We found that both DIP2A and FSTL1 were primarily expressed by neurons and increased 24 hours after MCAO, indicating that locally produced FSTL1 may activate signaling pathways through the DIP2A receptor. Knockdown of DIP2A by sirna removed the antiapoptosis effects of FSTL1 via decreased the Akt phosphorylation after MCAO in rats. In conclusion, our findings indicate that FSTL1 may contribute to neuronal survival after brain ischemia. FSTL1 inhibited apoptosis through phosphorylation of Akt via activation of its receptor, DIP2A. This study provides new information on the function of FSTL1 following MCAO and makes FSTL1 a potential therapeutic candidate for patients with ischemic stroke. Sources of Funding This study was supported partially by a grant from National Institutes of Health NS043338 (Dr Zhang). None. Disclosures References 1. O Donnell MJ, Xavier D, Liu L, Zhang H, Chin SL, Rao-Melacini P, et al; INTERSTROKE investigators. Risk factors for ischaemic and intracerebral haemorrhagic stroke in 22 countries (the INTERSTROKE study): a case-control study. Lancet. 2010;376:112 123. 2. Brainin M, Teuschl Y, Kalra L. Acute treatment and long-term management of stroke in developing countries. Lancet Neurol. 2007;6:553 561. 3. Broughton BR, Reutens DC, Sobey CG. Apoptotic mechanisms after cerebral ischemia. Stroke. 2009;40:e331 e339. 4. Ogura Y, Ouchi N, Ohashi K, Shibata R, Kataoka Y, Kambara T, et al. Therapeutic impact of follistatin-like 1 on myocardial ischemic injury in preclinical models. Circulation. 2012;126:1728 1738. 5. Ouchi N, Oshima Y, Ohashi K, Higuchi A, Ikegami C, Izumiya Y, et al. Follistatin-like 1, a secreted muscle protein, promotes endothelial cell function and revascularization in ischemic tissue through a nitric-oxide synthase-dependent mechanism. J Biol Chem. 2008;283:32802 32811. 6. Oshima Y, Ouchi N, Sato K, Izumiya Y, Pimentel DR, Walsh K. Follistatin-like 1 is an Akt-regulated cardioprotective factor that is secreted by the heart. Circulation. 2008;117:3099 3108. 7. El-Armouche A, Ouchi N, Tanaka K, Doros G, Wittköpper K, Schulze T, et al. Follistatin-like 1 in chronic systolic heart failure: a marker of left ventricular remodeling. Circ Heart Fail. 2011;4:621 627. 8. Ouchi N, Asaumi Y, Ohashi K, Higuchi A, Sono-Romanelli S, Oshima Y, et al. DIP2A functions as a FSTL1 receptor. J Biol Chem. 2010;285:7127 7134. 9. Hu Q, Ma Q, Zhan Y, He Z, Tang J, Zhou C, et al. Isoflurane enhanced hemorrhagic transformation by impairing antioxidant enzymes in hyperglycemic rats with middle cerebral artery occlusion. Stroke. 2011;42:1750 1756. 10. Ma Q, Chen S, Hu Q, Feng H, Zhang JH, Tang J. NLRP3 inflammasome contributes to inflammation after intracerebral hemorrhage. Ann Neurol. 2014;75:209 219. 11. Hu Q, Chen C, Yan J, Yang X, Shi X, Zhao J, et al. Therapeutic application of gene silencing MMP-9 in a middle cerebral artery occlusioninduced focal ischemia rat model. Exp Neurol. 2009;216:35 46. 12. Kristian T, Balan I, Schuh R, Onken M. Mitochondrial dysfunction and nicotinamide dinucleotide catabolism as mechanisms of cell death and promising targets for neuroprotection. J Neurosci Res. 2011;89:1946 1955. 13. Sylva M, Moorman AF, van den Hoff MJ. Follistatin-like 1 in vertebrate development. Birth Defects Res C Embryo Today. 2013;99:61 69. 14. Chan QK, Ngan HY, Ip PP, Liu VW, Xue WC, Cheung AN. Tumor suppressor effect of follistatin-like 1 in ovarian and endometrial carcinogenesis: a differential expression and functional analysis. Carcinogenesis. 2009;30:114 121. 15. Clutter SD, Wilson DC, Marinov AD, Hirsch R. Follistatin-like protein 1 promotes arthritis by up-regulating IFN-gamma. J Immunol. 2009;182:234 239. 16. Shiojima I, Sato K, Izumiya Y, Schiekofer S, Ito M, Liao R, et al. Disruption of coordinated cardiac hypertrophy and angiogenesis contributes to the transition to heart failure. J Clin Invest. 2005;115:2108 2118. 17. Schiekofer S, Shiojima I, Sato K, Galasso G, Oshima Y, Walsh K. Microarray analysis of Akt1 activation in transgenic mouse hearts reveals transcript expression profiles associated with compensatory hypertrophy and failure. Physiol Genomics. 2006;27:156 170. 18. Lara-Pezzi E, Felkin LE, Birks EJ, Sarathchandra P, Panse KD, George R, et al. Expression of follistatin-related genes is altered in heart failure. Endocrinology. 2008;149:5822 5827. 19. Widera C, Horn-Wichmann R, Kempf T, Bethmann K, Fiedler B, Sharma S, et al. Circulating concentrations of follistatin-like 1 in healthy individuals and patients with acute coronary syndrome as assessed by an immunoluminometric sandwich assay. Clin Chem. 2009;55: 1794 1800. 20. Tanaka M, Murakami K, Ozaki S, Imura Y, Tong XP, Watanabe T, et al. DIP2 disco-interacting protein 2 homolog A (Drosophila) is a candidate receptor for follistatin-related protein/follistatin-like 1 analysis of their binding with TGF-β superfamily proteins. FEBS J. 2010;277:4278 4289.

Follistatin-Like 1 Attenuates Apoptosis via Disco-Interacting Protein 2 Homolog A/Akt Pathway After Middle Cerebral Artery Occlusion in Rats Xiping Liang, Qin Hu, Bo Li, Devin McBride, Hetao Bian, Pierre Spagnoli, Di Chen, Jiping Tang and John H. Zhang Stroke. 2014;45:3048-3054; originally published online August 19, 2014; doi: 10.1161/STROKEAHA.114.006092 Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231 Copyright 2014 American Heart Association, Inc. All rights reserved. Print ISSN: 0039-2499. Online ISSN: 1524-4628 The online version of this article, along with updated information and services, is located on the World Wide Web at: http://stroke.ahajournals.org/content/45/10/3048 Data Supplement (unedited) at: http://stroke.ahajournals.org/content/suppl/2014/08/19/strokeaha.114.006092.dc1 Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Stroke can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document. Reprints: Information about reprints can be found online at: http://www.lww.com/reprints Subscriptions: Information about subscribing to Stroke is online at: http://stroke.ahajournals.org//subscriptions/

SUPPLEMENTAL MATERIAL FSTL1 Attenuates Apoptosis via DIP2A/Akt Pathway after MCAO in Rats Xiping Liang M.D. 1, 3#, Qin Hu M.D., Ph.D. 1#, Bo Li M.D., Ph.D. 1, Devin M c Bride Ph.D 1, Hetao Bian M.D. 1, Pierre Spagnoli B.S. 1, Di Chen M.D., Ph.D. 1, Jiping Tang M.D. 1, John H Zhang M.D., Ph.D. 1, 2 * 1 Departments of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA; 2 Departments of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, CA, USA; 3 Departments of neurology, Chongqing Medical University, Chongqing, China. # These authors contributed equally to this work. *Corresponding author: John H. Zhang, M.D., Ph.D., Department of Neurosurgery and Department of Physiology and Pharmacology, Loma Linda University School of Medicine, 11041 Campus street, Risley Hall, Room 219, Loma Linda, CA, 92354, USA. E-mail: johnzhang3910@yahoo.com, Phone: 909-558-4723, Fax: 909-558-0119.

Supplemental Figures and Figure Legends Supplement figure I. Statistical analysis of TUNEL positive non-neuronal cells in Figure 4A (A) and Figure 5A (B). n=6 for each group. &p<0.05 vs. MCAO+Vehicle, #p<0.05 vs. MCAO+Scramble-siRNA, @p<0.05 vs. MCAO+FSTL1+Scramble-siRNA.