The role of the tumour suppressor gene PTEN in the etiology of cancers of the female genital tract

Similar documents
The role of the tumour suppressor gene PTEN in the etiology of cancers of the female genital tract

The role of the tumour suppressor gene PTEN in the etiology of cancers of the female genital tract: Concluding remarks

The role of the tumour suppressor gene PTEN in the etiology of endometrial cancer and hyperplasia

Invited Re vie W. Molecular genetics of ovarian carcinomas. Histology and Histo pathology

The role of the tumour suppressor gene PTEN in the etiology of uterine soft tissue tumours

Mohammed El-Khateeb. Tumor Genetics. MGL-12 July 21 st 2013 台大農藝系遺傳學 Chapter 22 slide 1

Tumor suppressor genes D R. S H O S S E I N I - A S L

Colon Cancer and Hereditary Cancer Syndromes

Development of Carcinoma Pathways

A NARRATIVE EXPOSITION OF SERIAL MURDER IN SOUTH AFRICA BRIN ALLAN HODGSKISS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE

oncogenes-and- tumour-suppressor-genes)

Ovarian cancer: 2012 Update Srini Prasad MD Univ Texas MD Anderson Cancer Center

Multistep nature of cancer development. Cancer genes

5 Mousa Al-Abbadi. Ola Al-juneidi & Obada Zalat. Ahmad Al-Tarefe

Cancer Genetics. What is Cancer? Cancer Classification. Medical Genetics. Uncontrolled growth of cells. Not all tumors are cancerous

Clonal evolution of human cancers

Mohammed El-Khateeb. Tumor Genetics. MGL-12 May 13 th Chapter 22 slide 1 台大農藝系遺傳學

Section D: The Molecular Biology of Cancer

Test Bank for Robbins and Cotran Pathologic Basis of Disease 9th Edition by Kumar

American Society of Cytopathology Core Curriculum in Molecular Biology

Introduction to Cancer Biology

IMMUNOHISTOCHEMISTRY IN ENDOMETRIAL HYPERPLASIA AND ENDOMETRIAL ADENOCARCINOMA

Serrated Polyps and a Classification of Colorectal Cancer

of 20 to 80 and subsequently declines [2].

Test Bank for Robbins and Cotran Pathologic Basis of Disease 9th Edition by Kumar

Lecture 8 Neoplasia II. Dr. Nabila Hamdi MD, PhD

CANCER. Inherited Cancer Syndromes. Affects 25% of US population. Kills 19% of US population (2nd largest killer after heart disease)

The evaluation of a new haematological cell counter, the CELL-DYN 3500, on canine leukocyte differential counts

TUMOR M ARKERS MARKERS

Cancer. The fundamental defect is. unregulated cell division. Properties of Cancerous Cells. Causes of Cancer. Altered growth and proliferation

Biochemistry of Cancer and Tumor Markers

Genetics and Cancer Ch 20

The molecular genetics of endometrial cancer

Cancer. The fundamental defect is. unregulated cell division. Properties of Cancerous Cells. Causes of Cancer. Altered growth and proliferation

Atypical Hyperplasia/EIN

JMSCR Vol 05 Issue 11 Page November 2017

Karyotype analysis reveals transloction of chromosome 22 to 9 in CML chronic myelogenous leukemia has fusion protein Bcr-Abl

Current Concept in Ovarian Carcinoma: Pathology Perspectives

PATHOBIOLOGY OF NEOPLASIA

A class of genes that normally suppress cell proliferation. p53 and Rb..ect. suppressor gene products can release cells. hyperproliferation.

Page # 1. Endometrium. Cellular Components. Anatomical Regions. Management of SIL Thomas C. Wright, Jr. Most common diseases:

Dr Rodney Itaki Lecturer Anatomical Pathology Discipline. University of Papua New Guinea School of Medicine & Health Sciences Division of Pathology

Cancer. Questions about cancer. What is cancer? What causes unregulated cell growth? What regulates cell growth? What causes DNA damage?

Human Lung Cancer Pathology and Cellular Biology Mouse Lung Tumor Workshop

Deregulation of signal transduction and cell cycle in Cancer

Cancer genetics

Chapt 15: Molecular Genetics of Cell Cycle and Cancer

SKELETAL MORPHOLOGY OF THE HUMAN HAND AS APPLIED IN FORENSIC ANTHROPOLOGY

Uterine Fibroids: No financial disclosures. Current Challenges, Promising Future. Off-label uses of drugs. Alison Jacoby, MD.

number Done by Corrected by Doctor Maha Shomaf

Endometrial cancer. Szabolcs Máté MD. I. St. Department of Obstetrics and Gyneacology.

609G: Concepts of Cancer Genetics and Treatments (3 credits)

Molecular mechanisms of human carcinogenesis

Endometrial Stromal Sarcoma

1. Basic principles 2. 6 hallmark features 3. Abnormal cell proliferation: mechanisms 4. Carcinogens: examples. Major Principles:

TUMOR-SUPPRESSOR GENES. Molecular Oncology Michael Lea

VIII Curso Internacional del PIRRECV. Some molecular mechanisms of cancer

Cell Cycle and Cancer

Cancer. Death Rates for the Main Causes of Death in the U.S. Leading Sites of New Cases & Deaths (2015 estimates in the U.S.)

Molecular Oncology, oncology parameters see each test

Molecular Biology of Endometrial Carcinoma

Female Genital Tract Lab. Dr. Nisreen Abu Shahin Assistant Professor of Pathology University of Jordan

Regulation of Gene Expression in Eukaryotes

Chapter 9. Cells Grow and Reproduce

Colonic polyps and colon cancer. Andrew Macpherson Director of Gastroentology University of Bern

Colorectal adenocarcinoma leading cancer in developed countries In US, annual deaths due to colorectal adenocarcinoma 57,000.

Index. Cytoplasm, nonepithelial malignant tumor features 70

Biology of cancer development in the GI tract

Identification of Potential Therapeutic Targets by Molecular and Genomic Profiling of 628 Cases of Uterine Serous Carcinoma

Negative Regulation of c-myc Oncogenic Activity Through the Tumor Suppressor PP2A-B56α

ENZYME PROFILING OF A RANGE OF SUGARCANE TISSUE TYPES WITH DIFFERENT LEVELS OF SUCROSE

Section D. Genes whose Mutation can lead to Initiation

Endometrial hyperplasia vs. Intraepithelial neoplasia. Martin Chang, MD PhD FRCPC Pathology Update Friday November 9, 2012

Introduction. Cancer Biology. Tumor-suppressor genes. Proto-oncogenes. DNA stability genes. Mechanisms of carcinogenesis.

Ph.D. THESIS ENDOMETRIAL HYPERPLASIAS IN PERIMENOPAUSE SUMMARY

Bases biológicas del cáncer de ovario en el siglo XXI

Section 1. Biology of gynaecological cancers: our current understanding

Case Presentation Diana Lim, MBBS, FRCPA, FRCPath Senior Consultant Department of Pathology, National University Health System, Singapore Assistant Pr

mirna Dr. S Hosseini-Asl

Determination Differentiation. determinated precursor specialized cell

The mutations that drive cancer. Paul Edwards. Department of Pathology and Cancer Research UK Cambridge Institute, University of Cambridge

CELL BIOLOGY - CLUTCH CH CANCER.

Biochemistry of Carcinogenesis. Lecture # 35 Alexander N. Koval

Gynaecological Malignancies

Icd 10 uterine leiomyosarcoma

3 cell types in the normal ovary

Ovarian endometriosis as a premalignant condition: epidemiological, histological and molecular evidence

3 cell types in the normal ovary

THE HALLMARKS OF CANCER

Molecular Cell Biology. Prof. D. Karunagaran. Department of Biotechnology. Indian Institute of Technology Madras

ENODMETRIAL CARCINOMA: SPECIAL & NOT SO SPECIAL VARIANTS

Icd 10 leiomyosarcoma of uterus

Present State of Gene Diagnosis and Future Prospects

Pathology of Ovarian Tumours. Dr. Jyothi Ranganathan MD ( Path) AFMC Pune PDCC (Cytopathology) PGI Chandigarh

7.012 Problem Set 6 Solutions

Recent advances in breast cancers

Genetics of Oncology. Ryan Allen Roy MD July 8, 2004 University of Tennessee

Bihong Zhao, M.D, Ph.D Department of Pathology

Icd 10 uterine leiomyosarcoma

Nucleic Acid Testing - Oncology. Molecular Diagnosis. Gain/Loss of Nucleic Acid. Objectives. MYCN and Neuroblastoma. Molecular Diagnosis

Transcription:

The role of the tumour suppressor gene PTEN in the etiology of cancers of the female genital tract by Greta Dreyer submitted in fulfilment of the requirements for the degree of Doctor of Philosophy in the subject Obstetrics and Gynaecology (Gynaecologic Oncology) at the University Of Pretoria Supervisor: Prof BG Lindeque Co-supervisor: Prof E Jansen van Rensburg April 2010 1

Abstrak Die rol van die tumoronderdrukker geen PTEN in die etiologie van kankers van die vroulike genitale traktus Fosforilering en defosforilering van die tirosien aminosure in proteine speel n belangrike rol in die regulering van sellulêre prosesse in alle eukariotiese organismes. Dit sluit die regulering van selsikluskontrole, groeikontrole, sellulêre differensiasie sowel as genetiese en sinaptiese oordrag in. Dit word lank reeds gespekuleer dat die fosfatase-gene betrokke is in menslike karsinogenese, maar die PTEN geen is die eerste fosfatase geen wat bewys word om n ware tumoronderdrukker geen te wees. As basiese funksie defosforileer normale PTEN die kinases en inhibeer dit die kinase sinjaal kontrolepaaie wat deur integrien en groeifaktor beheer word. Die sentrale hipotese van hierdie studie is dat PTEN n belangrike rol speel in tumore van die boonste genitale traktus. Die frekwensie van abnormaliteite in die koderingsareas van hierdie geen is bestudeer in spesifieke ginekologiese tumore en weefsels met die gebruik van polimerase kettingreaksie gebaseerde mutasieanalise. Die maligne tumore sowel as die mees verwante pre-maligne of benigne weefsel- of tumortipes wat beskikbaar was, is gebruik as navorsingsmateriaal om sodoende die verskillende vlakke van PTEN betrokkenheid in die ontwikkeling van neoplasie te demonstreer. Intieme betrokkenheid van die PTEN geen is gevind in endometriële karsinogenese. PTEN mutasies is in hiperplasie gevind en dit was algemeen in endometroiede karsinoom (54%). Patogene mutasies was baie meer algemeen in kanker as in hiperplasie (10%). Veelvuldige mutasies is in sommige laat stadium tumore aangetoon, wat suggereer dat reeds maligne selle meer genetiese mutasies oor tyd verkry. Alle tumore waar meer as een patogeniese mutasie gevind is het voorgekom by swart pasiënte. Die laaste twee bevindinge is uniek tot hierdie studie. 2

Selektiewe betrokkenheid van die PTEN geen is gevind in die ontwikkeling van sagte weefsel tumore van die uterus. PTEN mutasies is nie in benigne sagte weefsel tumore gevind nie en geen betekenisvolle betrokkenheid is in leiomiosarkome of endometriële stromale sarkome aangetoon nie. PTEN was egter betekenisvol betrokke in karsinosarkome van die uterus (13%) en veral in tumore met n endometrioiede epiteelkomponent waar mutasies in 17% gevind is. Hierdie bevinding is n hoogs betekenisvolle en unieke navorsingsbevinding wat die hipotese ondersteun dat hierdie tumore uit die endometrium ontstaan. Dit onderskryf ook die indruk dat n sterk band bestaan tussen hierdie geen en endometroiede differensiasie, met morfologie sterk gekoppel aan sellulêre genetika. Mutasie in die PTEN geen is aangetoon in ovariële endometroiede karsinoom in ~29% van gevalle wat ondersoek is. Die bevinding bevestig PTEN betrokkenheid in karsinogenese in hierdie tumortipe. Weereens toon die resultaat dat PTEN betrokkenheid gekoppel is aan endometroiede morfologie. Die ondersoek van benign of pre-maligne letsels in hierdie orgaan was nie voldoende om kommentaar oor die tydsberekening van mutasie te kan lewer nie. Met alle tumortipes in ag genome, is daar n tendens aangetoon van minder PTEN mutasies in swart vroue. PTEN mutasies korreleer met endometroiede histologie. In kombinasie bevestig hierdie resultaat n rasse-diskrepansie in die distribusie van tumourtipe of morfologie. In opsomming is die bevinding van hierdie studie dat daar betekenisvolle dog hoogs selektiewe PTEN geen betrokkenheid in boonste genitale traktus tumore is. n Sterk en interessante verband is bevestig tussen genotipe en histologiese fenotipe. Hierdie resultate verbeter die begrip van karsinogenese en behoort n bydrae te lewer in die soeke na nuwe anti-neoplastiese middels. 3

Abstract The role of the tumour suppressor gene PTEN in the etiology of cancers of the female genital tract The phosphorylation and dephosphorylation of the tyrosine amino-acids in proteins play an important role in the regulation of many cellular processes in all eukariotic organisms, including the regulation of cell cycle control, growth control, cellular differentiation and gene and synaptic transmission. The involvement of the phosphatase genes in human carcinogenesis was longsuspected, but PTEN is the first important phosphatase gene proven to be a true tumour suppressor. The basic function of normal PTEN is the dephosphorylation of the kinases and inhibition of the integrin and growth factor mediated kinase signalling pathways. The central hypothesis of this study is that PTEN plays an important role in tumours of the upper female genital tract. The involvement of aberrations in the coding regions of this gene was studied in specific gynaecologic tumours and tissues using polymerase chain reaction based mutation analysis. The research model was to study both the malignant tumour and the closest available premalignant or benign counterpart to demonstrate different levels of involvement of PTEN in the evolving steps. The PTEN gene was found to be intimately involved in endometrial carcinogenesis. Involvement was demonstrated in hyperplasia and was common in endometroid carcinoma (54%). Pathogenic PTEN mutations were much more common in cancer than in hyperplasia (10%). Multiple mutations were found in some late stage tumours, suggesting that the already malignant tumour cells accumulate more genetic mutations over time. All tumours with more than one pathogenic mutation occurred in African patients. The latter two findings are unique to the current study. 4

Selective involvement of the PTEN gene was demonstrated in uterine soft tissue tumours. PTEN involvement was neither found in benign soft tissue tumours nor significantly in leiomyosarcoma or endometrial stromal sarcoma. However, PTEN plays a significant role in uterine carcinosarcoma (13%) and specifically in tumours with an endometroid epithelial component, where mutations were found in 17%. This finding is a highly significant and unique research result which supports the hypothesis of the endometrial origin of these tumours. It also supports the observation of a strong link between this gene and endometroid differentiation, with morphology strongly linked to cellular genetics. PTEN gene mutation was demonstrated in ovarian endometroid carcinoma in ~29% of cases investigated. This finding confirms PTEN involvement in carcinogenesis in this tumour type. The finding suggests that PTEN involvement is linked to endometroid epithelial morphology. We could not sufficiently test the involvement of the gene in benign or pre-malignant ovarian endometroid lesions and thus cannot comment on the chronology of mutations in this tissue type. When all tumour types were included, there was a tendency towards a lower frequency of PTEN mutations in African women. PTEN mutations correlated with endometroid histology. In combination, these results confirm the racial disparity in tumour type distribution or morphology. In summary this study demonstrated significant though highly selective PTEN gene involvement and a strong and interesting association between genotype and histological phenotype was confirmed. The findings enhance our understanding of carcinogenesis and should lead to translational research into new anti-neoplastic drugs. 5

Short summary The role of PTEN gene mutation in the evolution of gynaecologic malignancies was analysed using polymerase chain reaction based mutation analysis. Benign, pre-malignant and malignant tumours of the upper female genital tract were examined. The accumulation of cellular genetic damage during carcinogenesis were studied and compared in the different tissue and tumour types. The study demonstrated significant though highly selective PTEN gene involvement and a strong and interesting association between genotype and histological phenotype was confirmed. The findings enhance our understanding of carcinogenesis and should lead to translational research into new therapies. 6

Contents Abstrak... 2 Abstract... 4 Short summary... 6 Contents... 7 Chapter 1... 16 The role of the tumour suppressor gene PTEN in the etiology of cancers of the female genital tract general introduction 1 Introduction to the study... 18 1.1 Background... 18 1.2 Research questions... 20 1.2.1 Endometrial hyperplasia and carcinoma... 20 1.2.2 Uterine soft tissue tumours... 21 1.2.3 Endometroid ovarian cancer... 21 1.3 Objectives... 22 2 Justification of the study... 22 2.1 Motivation... 22 2.2 Significance... 23 3 Theory base and general literature overview... 23 3.1. Genetic changes as part of the carcinogenetic process... 23 3.1.1 DNA repair genes... 24 3.1.2 Proto-oncogenes and oncogenes... 25 3.1.2.1 Extra-cellular peptide growth factors with their cell membrane receptors... 25 3.1.2.1.1 HER- 2/neu or C-erb B-2... 25 3.1.2.1.2 Proto-oncogene bcl-2... 26 3.1.2.1.3 Epidermal growth factor (EGF)... 26 3.1.2.1.4 C-fms... 26 3.1.2.2 Cell membrane proteins (The ras oncogenes)... 27 3.1.2.3 Nuclear transcription factors (Proto-oncogene c-myc)... 28 3.1.3 Tumour suppressor genes... 28 Loss of heterozygosity... 28 The two hit genetic model for tumorigenesis... 28 Tumour suppressor genes and the two-hit model... 29 3.1.3.1 The tp53-gene... 30 3.1.3.2 The DCC gene... 30 3.1.3.3 The retinoblastoma gene... 31 3.1.3.4 The PTEN gene... 31 3.2. The function of the phosphatases and kinases... 31 3.2.1 Protein phosphatases and protein kinases... 31 Protein kinase B/Akt... 32 7

Other protein kinases and integrin signaling... 34 3.2.2 The lipid kinases and phosphatases in the phospholipid pathway... 35 3.3. PTEN: The tumour suppressor gene and its protein product... 36 3.3.1 The isolation of PTEN as a novel tumour suppressor gene... 36 3.3.2 PTEN as a protein phosphatase and lipid phosphatase... 38 3.3.3 The interaction of PTEN with known kinases, phosphatases and growth factors... 39 3.3.4 PTEN and the control of cellular growth... 41 3.3.4.1 Arresting cells in G1... 41 3.3.4.2 Induction of apoptosis... 41 3.3.4.3 Effect on cell and soma size... 42 3.3.5 Biological activities of PTEN not directly related to growth... 42 3.3.5.1 Cell adhesion, the intracellular matrix and PTEN... 42 3.3.5.2 Cell migration and cell proliferation... 43 3.3.6 Interaction of PTEN with other tumour suppressor genes, oncogenes and chemotherapeutic agents... 44 3.3.7 Interaction of PTEN with steroid hormone receptors... 44 3.4 The involvement of PTEN in non-gynaecologic neoplasms... 45 3.4.1 Brain tumours... 45 3.4.2 Breast cancer... 45 3.4.3 Other malignancies... 46 3.5 The involvement of PTEN in the etiology of cancers of the female genital tract... 46 3.5.1 Neoplasms of the uterine epithelium... 47 3.5.2 Neoplasms of the uterine soft tissue... 47 4 Delineation of the research... 48 4.1 Tumours of the female genital tract... 48 4.1.1 Etiology of tumours of the upper vs lower female genital tract... 48 4.1.2 Models of neoplastic transformation... 48 4.1.2.1 Neoplasms of the uterine epithelium... 49 4.1.2.2 Neoplasms of the uterine soft tissue... 50 4.1.2.3 Neoplasms of the ovarian epithelium... 50 4.2 Methods to study the role of PTEN... 51 4.2.1 Detecting somatic genetic mutation... 51 4.2.2 Detecting the aberrant protein product... 52 5 Conclusion... 52 Chapter 2... 54 The role of the tumour suppressor gene PTEN in the etiology of endometrial cancer and hyperplasia 1. Introduction... 57 1.1 Background... 57 1.2 Research questions and hypothesis... 60 2. Literature overview... 61 2.1 Genetic changes in endometrial proliferative disorders... 61 2.1.1 DNA repair genes and micro-satellite instability... 61 2.1.2 Proto-oncogenes and oncogenes... 62 8

2.1.2.1 K-ras... 62 2.1.2.2 HER 2/neu or c-erbb-2... 63 2.1.2.3 Bcl-2... 63 2.1.2.4 C-fms... 63 2.1.2.5 C-myc... 64 2.1.3 Tumour-suppressor genes and onco-suppressor genes... 64 2.1.3.1 P 53... 64 2.1.3.2 DCC... 65 2.1.3.3 Rb-gene... 65 2.1.3.4 PTEN... 65 2.2 Histology of endometrial proliferative disorders... 65 2.2.1 Endometrial hyperplasia and precursors of endometrial cancer... 65 2.2.1.1 Endometrial hyperplasia... 65 2.2.1.2 Endometrial intra-epithelial neoplasia (EIN) or carcinoma (EIC)... 66 2.2.2 Endometrial polyps... 66 2.2.3 Endometrial cancer... 67 2.2.3.1 Pathogenetic subtypes... 67 2.2.3.2 Histological subtypes... 68 2.3 PTEN gene and endometrial proliferative disorders... 69 2.3.1 PTEN in normal endometrium... 69 2.3.2 PTEN in endometrial hyperplasia... 69 2.3.3 PTEN in progression to endometrial cancer... 70 2.3.4 PTEN in endometrial cancer... 71 2.3.4.1 Frequency of PTEN mutations in endometrial cancer... 71 2.3.4.1.1 Germline mutations... 71 2.3.4.1.2 Somatic mutations... 71 2.3.4.2 PTEN gene inactivation by other methods... 72 2.3.4.4 Association of PTEN with other genetic anomalies... 73 2.3.4.5 PTEN mutations and the prognosis of endometrial cancer... 74 2.3.4.6 PTEN in different population groups and races... 74 3. Materials and methods... 74 3.1 Materials... 74 3.1.1 Sampling and clinical material... 74 3.1.2 Histology reports... 75 3.1.3 Tissue for DNA analysis... 76 3.2 Methods... 76 3.2.1 DNA extraction... 76 3.2.2 DNA amplification... 77 3.2.3 PTEN mutation analysis... 77 3.2.3.1 Denaturing gradient gel electrophoresis (DGGE)... 77 3.2.3.2 Single strand conformational polymorphism (SSCP)... 79 3.2.3.3 Sequence analysis... 79 4. Results 4.1 Clinical data... 80 4.2 Histology data... 83 4.2.1 Histological type... 83 4.2.2 Histological grade... 84 4.3 Mutation screening... 84 9

4.3.1 Denaturing gradient gel electrophoresis results... 84 4.3.2 Single strand conformational polymorphism results... 86 4.4 Sequence analysis... 86 4.4.1 Disease causing mutations... 86 In the Pretoria patients the following was found:... 86 In the Utrecht patients the following was found:... 86 In the endometrial hyperplasia subset of patients the following was found:... 87 Mutation analysis in Pretoria subset... 88 Exon 1... 88 Exon 3... 88 Exon 4... 89 Exon 5... 89 Exon 6... 89 Exon 7... 89 Exon 8... 89 Mutation analysis in Utrecht subset... 90 Exon 1... 90 Exon 5... 90 Exon 6... 90 Exon 7... 90 Exon 8... 91 Exon 9... 91 4.4.2 Mutations of unknown significance and polymorphisms... 91 4.5 Correlation between clinical and molecular results... 92 4.5.1 Correlation between PTEN gene mutations and clinical findings in the endometrial cancers... 92 4.5.2 Correlation between PTEN gene mutations and histology findings in the endometrial cancers... 93 5. Interpretation and discussion... 95 5.1 Endometrial hyperplasia... 95 5.2 Endometrial cancer... 95 5.3 Limitations and recommendations for future research... 97 Chapter 3... 98 The role of the tumour suppressor gene PTEN in the etiology of uterine soft tissue tumours 1 Introduction... 101 1.1 Background... 101 1.2 Research questions and hypothesis... 103 2 Literature overview... 104 2.1 Genetic changes in soft tissue tumours of the uterus... 104 2.1.1 Chromosomal abnormalities in uterine leiomyomas and uterine sarcomas... 104 2.1.1.1 Cytogenetic changes in uterine leiomyomas and sarcomas... 104 2.1.1.2 Alterations of ploidy in uterine sarcomas... 105 2.1.2 Involvement of specific genetic alterations in leiomyomas and leiomyosarcomas... 106 2.1.2.1 High mobility group (HMG) proteins... 106 10

2.1.2.2 CYP17 polymorphism... 106 2.1.2.3 Fumarate hydratase (FH)... 106 2.1.2.4 K-ras, C-myc... 107 2.1.2.5 HER 2/neu or c-erbb-2 and Bcl-2... 107 2.1.2.6 P 53... 108 2.1.2.7 Microsatellite instability (MSI)... 108 2.1.2.8 PTEN... 108 2.2. Histology, pathogenesis and prognosis of uterine soft tissue tumours... 109 2.2.1 Uterine leiomyomas... 109 2.2.2 Uterine sarcomas... 111 2.2.2.1 Leiomyosarcoma... 113 2.3 The PTEN gene and uterine leiomyomas and sarcomas... 115 2.3.1 PTEN in normal endometrium and myometrium... 115 2.3.2 Frequency of PTEN alterations in uterine leiomyomas and sarcomas116 2.3.2.1 Germline mutations... 116 2.3.2.2 Somatic mutations... 116 3. Materials and methods... 117 3.1 Materials... 117 3.1.1 Sampling and clinical material... 117 3.1.2 Histology reports... 118 3.1.3 Tissue for DNA analysis... 118 3.2 Methods... 119 3.2.1 DNA extraction... 119 3.2.2 DNA amplification... 119 3.2.3 PTEN mutation analysis... 120 3.2.3.1 Single Strand Conformational Polymorphism... 120 3.2.3.2 Sequence analysis... 121 4. Results... 121 4.1 Clinical data... 121 4.1.1 Age distribution... 122 4.1.2 Menopausal status... 122 4.1.3 Stage distribution... 122 4.1.4 Symptoms... 123 4.1.5 Differences between population groups... 123 4.2 Histology data... 125 4.2.1 Leiomyosarcoma... 125 4.2.2 Carcinosarcoma... 126 4.2.3 Endometrial stromal sarcoma... 126 4.3 Mutation screening... 126 4.3.1 Single Strand Conformational Polymorphism (SSCP) results... 126 4.4 Sequence analysis... 127 4.4.1 Non-malignant tissue samples... 127 4.4.2 Leiomyosarcomas... 127 4.4.3 Carcinosarcomas... 128 4.4.4 Endometrial stromal sarcomas... 129 4.4.5 Polymorphisms and pten-protein aberration... 129 4.5 Correlation between clinical findings and molecular results... 129 11

4.6 Correlation between histology findings and molecular results... 130 5. Interpretation and discussion... 131 5.1 Benign myometrium... 131 5.2 Leiomyomas, leiomyosarcomas and endometrial stromal sarcomas... 131 5.3 Carcinosarcomas... 131 5.4 Strenghts, limitations and recommendations... 133 Chapter 4... 134 The role of the tumour suppressor gene PTEN in the etiology of endometroid ovarian tumours 1 Introduction... 137 1.1 Background... 137 1.2 Research questions and hypothesis... 139 2 Literature overview... 140 2.1 Endometriosis as neoplasm and pre-malignant condition in the ovary... 140 2.1.1 The etiology of endometriosis... 140 2.1.2 The pathophysiology of endometriosis and ovarian cancer... 141 2.1.3 The association between endometriosis and malignancy... 143 2.1.3.1 Gynaecological cancer... 143 2.1.3.2 Non-gynaecological cancer... 145 2.1.4 Evidence that endometriosis can be a pre-malignant disease... 145 2.1.5 The malignant potential of different forms of endometriosis... 145 2.1.6 Endometriosis as a genetic disease... 146 2.2 Histopathology of endometroid ovarian lesions and ovarian neoplasms 146 2.2.1 Endometriosis and related non-malignant lesions... 147 2.2.2 Endometriosis related malignant lesions... 148 2.2.3 Ovarian neoplasms... 149 2.2.3.1 Ovarian endometroid carcinoma... 150 2.2.3.2 Ovarian clear cell carcinoma... 150 2.2.3.3 Mucinous adenocarcinoma and mullerian mucinous borderline tumour (MMBT)... 150 2.2.3.4 Endometrial stromal sarcoma... 150 2.2.3.5 Other non-endometroid epithelial carcinomas... 151 2.3 Genetic changes in endometriosis and ovarian neoplasms... 151 2.3.1 Cytogenetic changes in endometriosis and ovarian carcinoma... 152 2.3.2 Specific genetic alterations in endometriosis and ovarian carcinoma152 2.3.2.1 K-ras... 152 2.3.2.2 Beta-catenin... 153 2.3.2.3 HER 2/neu or c-erbb-2... 153 2.3.2.4 P 53... 154 2.3.2.5 BRCA 1 and BRCA 2... 155 2.3.2.6 Bcl-2... 156 2.3.2.7 DNA repair genes, micro-satellite instability (MSI) and loss of heterozygosity (LOH)... 156 2.3.2.8 PTEN... 157 2.3.2.9 Phenotype and genotype in ovarian cancer... 157 2.4 The PTEN gene in endometriosis and ovarian neoplasms... 158 2.4.1 PTEN germline mutations in ovarian cancer... 158 12

2.4.2 PTEN somatic mutations and pten protein expression... 158 2.4.3 PTEN in normal endometrium and ovary... 159 2.4.4 PTEN in ovarian endometriosis... 159 2.4.5 PTEN in ovarian epithelial cancer... 160 2.4.6 PTEN and loss of heterozygosity (LOH)... 161 2.4.6.1 Frequency of LOH (10q23) in ovarian lesions... 161 2.4.6.2 LOH (10q23) vs. PTEN mutations in ovarian lesions... 162 2.4.6.3 Importance of LOH (10q23) in ovarian lesions... 163 2.4.7 PTEN and other genetic changes... 164 2.4.8 PTEN involvement in the genetic sequence of carcinogenesis... 164 2.4.9 PTEN related genetic anomalies... 165 2.4.9.1 The tyrosine kinase-signalling cascade... 165 2.4.9.2 Akt or Protein kinase B (PKB)... 165 3. Materials and methods... 166 3.1 Materials... 167 3.1.1 Sampling and clinical material... 167 3.1.2 Histology reports... 167 3.1.3 Tissue for DNA analysis... 168 3.2 Methods... 168 3.2.1 DNA extraction... 168 3.2.2 DNA amplification... 168 3.2.3 PTEN mutation analysis... 169 3.2.3.1 Sequence analysis... 169 4. Results... 169 4.1 Clinical data... 169 4.1.1 Age distribution and population group... 169 4.1.2 Menopausal status and associated disease... 170 4.2 Histology data... 171 4.2.1 Stage distribution and differentiation grade... 171 4.2.2 Tumour size... 172 4.3 Mutation screening... 172 4.4 Sequence analysis... 172 4.4.1 Non-malignant tissue samples... 172 4.4.2 Endometroid ovarian carcinoma... 173 4.4.3 Polymorphisms and pten-protein aberration... 173 4.5 Correlation between PTEN gene mutations and clinico-pathological findings... 173 5. Interpretation and importance... 173 5.1 Ovarian endometriosis... 173 5.2 Endometroid ovarian carcinoma... 174 5.3 Epithelial ovarian carcinoma... 174 5.4 Strengths, limitations and recommendations... 175 Chapter 5... 177 The role of the tumour suppressor gene PTEN in the etiology of cancers of the female genital tract: Concluding remarks 1 Introduction... 179 13

1.1 Background... 179 1.2 Research questions and hypotheses... 179 1.2.1 Research questions... 179 1.2.1.1 Endometrial hyperplasia and carcinoma... 180 1.2.1.2 Uterine soft tissue tumours... 180 1.2.1.3 Endometroid ovarian cancer... 181 1.2.2 Hypotheses... 181 1.3 Outline... 182 2 Research findings... 182 2.1 Clinical findings... 182 2.1.1 Age at diagnosis... 182 2.2.2 Stage distribution... 183 2.2 Histology findings... 184 2.1.1 Differentiation grade... 184 2.3 PTEN mutation analysis... 185 2.3.1 Frequency of mutations... 185 2.3.1.1 Endometrial carcinoma... 185 2.3.1.2 Uterine soft tissue tumours... 186 Carcinosarcoma... 186 Leiomyosarcoma... 186 Endometrial stromal sarcoma... 186 Summary... 187 2.3.1.3 Endometroid ovarian cancer... 187 2.3.2 Timing of PTEN mutations and mutations in pre-cursor lesions... 187 2.3.2.1 Endometrial carcinoma... 187 2.3.2.2 Uterine soft tissue tumours... 188 2.3.2.3 Endometroid ovarian cancer... 189 2.3.3 Correlation with stage, type, grade and other genetic findings... 190 2.3.3.1 Endometrial carcinoma... 190 2.3.3.2 Uterine soft tissue tumours... 191 2.3.3.3 Endometroid ovarian cancer... 191 2.3.4 Differences between population groups... 192 2.3.4.1 Endometrial carcinoma... 192 2.3.4.2 Uterine soft tissue tumours... 192 3 Hypothesis testing... 192 3.1 Endometrial tumours... 192 3.2 Uterine soft tissue tumours... 193 3.3 Ovarian endometroid carcinoma... 193 4 Contributions and limitations... 193 4.1 The carcinogenetic model... 193 4.1.1 Endometrial hyperplasia and endometrial carcinoma... 194 4.1.2 Uterine leiomyoma and leiomyosarcoma... 194 4.1.3 Uterine carcinosarcoma... 194 4.1.4 Ovarian endometriosis and ovarian endometroid carcinoma... 195 4.2 The female upper genital tract... 195 4.3 PTEN involvement... 196 4.3.1 Role of PTEN in the carcinogenetic pathway... 196 4.3.2 PTEN mutation analysis... 197 14

4.3.3 Alternative tests of PTEN involvement... 197 4.3.3.1 Immunohistochemistry... 197 4.4 Epigenetics vs genetics... 198 4.4.1 Defining epigenetics... 198 4.4.2 DNA methylation as part of epigenetics... 199 4.4.3 MicroRNA and gene expression... 200 4.4.4 Epigenetics and Knudson's theory... 200 5. Impact of the study and recommendations... 201 5.1 Impact... 201 5.1.1 Molecular study... 201 Molecular testing methods... 201 Epigenetics... 202 Combination of genetic alterations... 202 5.1.2 Improved diagnosis and stratification... 202 5.1.3 Predicting treatment response... 203 5.1.4 Novel treatment and improved outcome... 204 5.2 Recommendations... 204 Bibliography... 206 15