Comparison of 44-Hour and Fixed 24-Hour Ambulatory Blood Pressure Monitoring in Dialysis Patients

Similar documents
HTA ET DIALYSE DR ALAIN GUERIN

Blood Pressure Measurement and Left Ventricular Mass Index in Hemodialysis Patients Comparison of Several Methods

The Relationship Between Ambulatory Arterial Stiffness Index and Blood Pressure Variability in Hypertensive Patients

Importance of Ambulatory Blood Pressure Monitoring in Adolescents

DIFFERENTE RELAZIONE TRA VALORI PRESSORI E MASSA VENTRICOLARE SX NEI DUE SESSI IN PAZIENTI IPERTESI.

Echocardiographic definition of left ventricular hypertrophy in the hypertensive: which method of indexation of left ventricular mass?

CARDIOVASCULAR RISK FACTORS & TARGET ORGAN DAMAGE IN GREEK HYPERTENSIVES

Slide notes: References:

Does the reduction in systolic blood pressure alone explain the regression of left ventricular hypertrophy?

Characteristics and Future Cardiovascular Risk of Patients With Not-At- Goal Hypertension in General Practice in France: The AVANT AGE Study

Serum levels of galectin-1, galectin-3, and galectin-9 are associated with large artery atherosclerotic

Cardiovascular Diseases in CKD

Ambulatory Blood Pressure and Cardiovascular Events in Chronic Kidney Disease. Rajiv Agarwal, MD

Maher Fouad Ramzy; MD, FACP Professor of Renal Medicine, Cairo University

Blood Pressure Monitoring in Chronic Kidney Disease

ANTIHYPERTENSIVE DRUG THERAPY IN CONSIDERATION OF CIRCADIAN BLOOD PRESSURE VARIATION*

VA/DoD Clinical Practice Guideline for the Diagnosis and Management of Hypertension - Pocket Guide Update 2004 Revision July 2005

Prognostic significance of blood pressure measured on rising

Left ventricular hypertrophy: why does it happen?

AGING, BLOOD PRESSURE & CARDIOVASCULAR DISEASE EVENT RISK. Michael Smolensky, Ph.D. The University of Texas Austin & Houston

Table 1 Baseline characteristics of 60 hemodialysis patients with atrial fibrillation and warfarin use

High-dose monotherapy vs low-dose combination therapy of calcium channel blockers and angiotensin receptor blockers in mild to moderate hypertension

Coronary artery disease (CAD) risk factors

Η σημασία της αρτηριακής σκληρίας στην εκτίμηση της διαστολικής δυσλειτουργίας στην υπέρταση. Θεραπευτικές παρεμβάσεις

Advances in Peritoneal Dialysis, Vol. 29, 2013

Allopurinol reduces left ventricular hypertrophy and endothelial dysfunction in patients with chronic kidney disease

Which dialysis unit blood pressure is the most accurate for predicting home blood pressure in patients undergoing hemodialysis?

Within-Home Blood Pressure Variability on a Single Occasion Has Clinical Significance

Long-term blood pressure monitoring and echocardiographic findings in patients with end-stage renal disease: reverse epidemiology explained?

Individual Study Table Referring to Part of Dossier: Volume: Page:

ORIGINAL ARTICLE AMBULATORY BLOOD PRESSURE IN OBESITY. Introduction. Patients and Methods

Prognostic significance of blood pressure measured in the office, at home and during ambulatory monitoring in older patients in general practice

Dr. A. Manjula, No. 7, Doctors Quarters, JLB Road, Next to Shree Guru Residency, Mysore, Karnataka, INDIA.

The monthly ESH guide through publications

New Hypertension Guideline Recommendations for Adults July 7, :45-9:30am

Antihypertensive Trial Design ALLHAT

When should you treat blood pressure in the young?

Arterial stiffness and interdialytic weight gain influence ambulatory blood pressure patterns in hemodialysis patients

Hypertension is common among patients with chronic

How well do office and exercise blood pressures predict sustained hypertension? A Dundee Step Test Study

Forty-four-hour interdialytic ambulatory blood pressure monitoring and cardiovascular risk in pediatric hemodialysis patients

DETERMINANTS OF DAY-NIGHT DIFFERENCE IN BLOOD PRESSURE IN SUBJECTS OF AFRICAN ANCESTRY

SUPPLEMENTARY DATA. Supplementary Table 1. Baseline Patient Characteristics

Masked Hypertension and Aortic Coarctation: Impact on Ventricular Function and Morphology

Supplementary Online Content. Abed HS, Wittert GA, Leong DP, et al. Effect of weight reduction and

Internet Journal of Medical Update, Vol. 3, No. 2, Jul-Dec 2008

Angiotensin II Receptor Blocker Telmisartan: Effect on Blood Pressure Profile and Left Ventricular Hypertrophy in Patients with Arterial Hypertension*

Right Ventricular Systolic Dysfunction is common in Hypertensive Heart Failure: A Prospective Study in Sub-Saharan Africa

University of Padova, Padua, Italy, and HARVEST Study Group, Italy

Todd S. Perlstein, MD FIFTH ANNUAL SYMPOSIUM

Interventricular Septum Thickness Predicts Future Systolic Hypertension in Young Healthy Pilots

Arterial Pressure in CKD5 - ESRD Population Gérard M. London

hypertension Head of prevention and control of CVD disease office Ministry of heath

Prevalence of left ventricular hypertrophy in a hypertensive population

Original article. Introduction. Jong Soon Jang, M.D. Soon Kil Kwon, M.D. Hye-Young Kim, M.D.

Clinical Updates in the Treatment of Hypertension JNC 7 vs. JNC 8. Lauren Thomas, PharmD PGY1 Pharmacy Practice Resident South Pointe Hospital

Comparison of arbitrary definitions of circadian time periods with those determined by wrist actigraphy in analysis of ABPM data

The Evolution To Treatment Of Hypertension With Advanced Formulation

Nomogram of the Relation of Brachial-Ankle Pulse Wave Velocity with Blood Pressure

Introduction. In Jeong Cho, MD, Wook Bum Pyun, MD and Gil Ja Shin, MD ABSTRACT

The magnitude and duration of ambulatory blood pressure reduction following acute exercise

Strategies to assess and manage hypervolemia The invisible threat in dialysis

Using the New Hypertension Guidelines

ARIC Manuscript Proposal # PC Reviewed: 2/10/09 Status: A Priority: 2 SC Reviewed: Status: Priority:

Ambulatory Blood Pressure Monitoring Clinical Practice Recommendations

Central blood pressure variability is increased in hypertensive patients with target organ damage

There is no conflict of interests for the following presentation

Left ventricular mass in offspring of hypertensive parents: does it predict the future?

Early Detection of Damaged Organ

Effects of Kidney Disease on Cardiovascular Morbidity and Mortality

LONG-TERM EFFECTS OF SURGICAL MENAGEMENT OF PRIMARY ALDOSTERONISM ON THE CARDIOVASCULAR SISTEM

How do we diagnose hypertension today? Presentation Subtitle

Ambulatory BP Monitoring: Getting the Diagnosis of Hypertension Right. Anthony J. Viera, MD, MPH, FAHA Professor and Chair

Aortic stenosis (AS) is common with the aging population.

Dr. Dermot Phelan MB BCh BAO PhD European Society of Cardiology 2012

Association of 24 h systolic blood pressure variability and cardiovascular disease in patients with obstructive sleep apnea

Ref 1. Ref 2. Ref 3. Ref 4. See graph

Endothelial function is impaired in women who had pre-eclampsia

Chapter-IV. Blood pressure and heart rate variability as function of ovarian cycle in young women

Hypertension with Comorbidities Treatment of Metabolic Risk Factors in Children and Adolescents

Review of Cardiac Imaging Modalities in the Renal Patient. George Youssef

Time of day for exercise on blood pressure reduction in dipping and nondipping hypertension

Abody of evidence demonstrates that alcohol

Prevalence of Homocysteine-Related Hypertension in Patients With Chronic Kidney Disease

Choosing Study Outcomes that Reflect Cardiovascular Disease: From Biomarkers to Burden of Disease. Greg Wellenius Joel Kaufman

Noor Naif Al-Hakami. Pharm-D candidate (KSU)

Cardiovascular Diseases before and after Renal Transplantation

& Wilkins. a Division of Cardiology, Schulich Heart Centre, b Institute for Clinical and

Identification of patients with heart failure and PREserved systolic Function : an Epidemiologic Regional study

Ambulatory monitoring derived blood pressure variability and cardiovascular risk factors in elderly hypertensive patients

Association between arterial stiffness and cardiovascular risk factors in a pediatric population

The CARI Guidelines Caring for Australasians with Renal Impairment. ACE Inhibitor and Angiotensin II Antagonist Combination Treatment GUIDELINES

Validation of the SEJOY BP-1307 upper arm blood pressure monitor for home. blood pressure monitoring according to the European Society of Hypertension

Ambulatory Systolic Diastolic Pressure Regression Index as a Predictor of Clinical Events A Meta-Analysis of Longitudinal Studies

Intermittent low dose digoxin may be effective and safe in patients with chronic heart failure undergoing maintenance hemodialysis

Is Traditional Clinic Blood Pressure Dead?

Danno d organo bersaglio e rischio CV. Persiste un ruolo prognostico oltre la patologia d organo?

JNC Evidence-Based Guidelines for the Management of High Blood Pressure in Adults

How Low Do We Go? Update on Hypertension

Gender-Adjustment and Cutoff Values of Cornell Product in Hypertensive Japanese Patients

Transcription:

ORIGINAL PAPER Comparison of 44-Hour and Fixed 24-Hour Ambulatory Blood Pressure Monitoring in Dialysis Patients Wenjin Liu, MD; Hong Ye, MD; Bing Tang, MD; Zhiping Sun, MD; Ping Wen, MD; Wenhui Wu, MD; Xueqing Bian, MD; Xia Shen, RN; Junwei Yang, MD From the Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China The two most commonly used strategies to evaluate dialysis patients blood pressure (BP) level are 44-hour and 24-hour ambulatory blood pressure monitoring (ABPM). The objective of this study was to find an appropriate 24-hour period that correlated well with the 44-hour BP level and determine the differences between these strategies. In a group of 51 dialysis patients, the authors performed 44-hour ABPM and extracted data for a fixed 24-hour ABPM. The fixed 24-hour ABPM started at 6 AM on the nondialysis day. A strong correlation was found between all parameters of 44-hour and the fixed 24-hour ABPM, with paired sample t test showing only small magnitude changes in a few parameters. Both 24-hour ABPM and 44-hour ABPM were superior to clinic BP in predicting left ventricular mass index (LVMI) by multiple regression analysis. It was found that 44-hour ambulatory arterial stiffness index (AASI), but not 24-hour AASI, had a positive association with LVMI (r=0.328, P=.021). However, after adjustment for 44-hour systolic blood pressure, this association disappeared. Fixed 24-hour ABPM is a good surrogate of 44-hour ABPM to some extent, while 44-hour ABPM can provide more accurate and detailed information. J Clin Hypertens (Greenwich). 2014;16:63 69. ª2013 Wiley Periodicals, Inc. Hypertension, as a major complication of end-stage renal disease, is a significant financial and medical burden on hemodialysis patients. Accurate blood pressure (BP) measurements are needed for daily clinical practice. Ambulatory BP monitoring (ABPM) is the gold standard in the diagnosis of hypertension and has been widely used in dialysis patients. 1 It has been suggested that ambulatory BP (ABP) is a stronger predictor of target organ damage (TOD) and cardiovascular outcomes than predialysis or postdialysis BP. 2,3 It can also provide detailed information that clinic BP cannot, such as BP rhythm, load, and variability. These indices were also found to be associated with TOD and prognosis in previous studies. 4 6 In dialysis patients, there are two strategies to perform ABPM. Twenty-four hour (24H) monitoring has been the conventional choice and is widely accepted and applied in the general population. In dialysis patients, it is also superior to clinic BP. But since dialysis patients have little preserved renal function, it has become common practice to perform 44-hour (44H) monitoring. The loss of renal function leads to the accumulation of sodium and water and impairs the normal day-by-day BP pattern in dialysis patients. 7 A previous study by Kelley and colleagues 8 demonstrated that BP increased continuously at a rate of about 1 mm Hg every 4 hours following the end of dialysis. Therefore, 44H ABPM in dialysis patients might have particular advantages. It provides complete information Address for correspondence: Junwei Yang, MD, Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu 210003, China E-mail: jwyang@njmu.edu.cn Manuscript received: July 27, 2013; revised: September 16, 2013; accepted: September 16, 2013 DOI: 10.1111/jch.12217 about interdialytic BP and reveals the real BP pattern. The disadvantages are also obvious: it is inconvenient, time-consuming, expensive, and uncomfortable for patients. According to the characteristic BP pattern of dialysis patients, it is important to choose an appropriate fixed 24H period when performing 24H ABPM. The fixed 24H should correlate well with the 44H BP level while at the same time be clinically feasible. Since BP continually rises, the first 24H and the last 24H period would be unsuitable to represent the average level of the interdialytic 44H BP. We hypothesized that the 24H period of the nondialysis day, which covered the relative middle-term interdialytic period, would be better to predict the whole 44H BP level. This period was also chosen for considerations of clinical feasibility and evidence from a previous study. 9 METHODS Patients This cross-sectional study was performed at the Center for Kidney Disease of the Second Affiliated Hospital of Nanjing Medical University in Jiangsu, China. Patients enrolled were older than 18 and had been undergoing chronic hemodialysis 3 times a week for more than 3 months. A bicarbonate buffered dialysate with sodium concentration of 138 mmol/l were used for all patients. The dry body weight was estimated in all patients evaluated by routine clinical examination. Exclusion criteria were: (1) previous history of cardiovascular complications including acute coronary syndrome, heart failure, transient ischemic attack, and stroke; (2) history of dilated cardiomyopathy or amyloid degeneration; and (3) unstable condition caused by infection, malignant hypertension, or tumor. Informed consent was obtained from each participant before the The Journal of Clinical Hypertension Vol 16 No 1 January 2014 63

study, and the study was approved by the institutional review board at the Second Affiliated Hospital of Nanjing Medical University. Ambulatory BP Monitoring ABPM was performed after the midweek hemodialysis session for 44 hours using an ABP monitor (SpaceLabs 90217; SpaceLabs Medical Inc, Redmond, WA). The monitor was placed in the non-access arm and was programmed to measure BP every 20 minutes during the daytime period (6 AM 10 PM) and every 30 minutes during the nighttime period (10 PM 6 AM). Patients were instructed to follow their daily routines during examination. Data were downloaded using the manufacturer s software (SpaceLabs report manager system) and was further analyzed by SPSS 13.0 (SPSS Inc, Chicago, IL). 24H ABP data were extracted from the 44H ABP. The 24H period was set to begin at 6 AM on the nondialysis day to the next day at 6 AM. Patients who had recordings <70% were excluded from the analysis. Clinic BP Predialysis and postdialysis BPs were measured by the dialysis center personnel. The BP recordings were averaged over 2 weeks (6 times) before ABPM was performed. Echocardiography Echocardiography was performed within 1 week after the ABPM. It was performed immediately after a midweek hemodialysis session, as suggested by another study for the reason associated with the least intravascular volume. 2 For each patient, the following measurements were taken: end-diastolic interventricular septum thickness (IVSD), posterior wall thickness (PWD), and left ventricular diameter (LVDD). Left ventricular mass (LVM) was calculated using the following formula and corrected for height 2.7 measured in meters, 10 as previous studies suggest that correcting LVM for height 2.7 minimizes the effect of sex, race, age, and obesity and correlates better with long-term outcomes in dialysis patients. 11,12 LV mass (g) ¼ 0:832 ½ðIVSD þ LVDD þ PWDÞ 3 ðlvddþ 3 Šþ0:60 Blood Chemistry Blood samples were drawn from the dialysis access before dialysis on the day ABPM was performed. Statistical Analysis Data were expressed as the meanstandard deviation for normally distributed variables. The paired-sample t test was used to compare 44H ABP and 24H ABP. The strength of associations between normally distributed continuous variables was measured using Pearson s correlation coefficient and followed by multiple linear regressions to assess the independent predictors of LVM index (LVMI). P<.05 was considered statistically significant. RESULTS From March to July 2013, we conducted ABPM in 63 dialysis patients from our dialysis center. Twelve patients were excluded from this study because of insufficient BP recordings (<70%). In the remaining 51 patients in our report, 49 had adequate echocardiographic evaluation, which constituted the sample to test the relationship between BP and LVMI. Twenty-four patients were willing to have their KT/V assessed for this study. Clinical characteristics, laboratory tests, echocardiographic parameters, and clinical BP measurements are summarized in Table I. The majority of the patients were men and the average age was 53.4 years. Average dry body weight was 60.8 kg and body mass index (BMI) was 21.9 kg/m 2. Mean duration of dialysis was 58.7 months. Twelve patients had diabetes mellitus and diabetic nephropathy, which, when combined with other glomerulonephritides, constituted the major cause of end-stage renal disease in this cohort. Average dosage of erythropoietin used by each patient was 5556.5 IU per week. Calcium channel blockers, angiotensin-converting enzyme inhibitors/angiotensin receptor blockers, and b-blockers were the most widely used antihypertensive agents in this population, each being used by 58.8%, 43.1%, and 47.1% of the patients, respectively. Evaluation by echocardiography revealed mean values of LVDD, IVS, and left ventricular PWD as 50.9, 11.5, and 10.6 mm, respectively. Ejection fraction was well preserved in the study population, with an average of 65.7%. However, diastolic function was impaired in most patients, represented by a mean E/A of 0.8. The prevalence of left ventricular hypertrophy was 70.6% (30 of 49 patients) with a mean LVMI of 55.7 g/m 2.7. The mean predialysis BP was 146.0/88.5 mm Hg, with an average heart rate of 75.8 beats per minute. Both systolic BP (SBP) and diastolic BP (DBP) were lower after dialysis, while postdialysis heart rate (HR) did not differ from predialysis HR. As mentioned above, the first 24H and the last 24H BP periods would be unsuitable to represent the average level of the interdialytic 44H period BP because BP continuously rises during this period. In support of this, we calculated the paired differences for SBP between each 24H segment vs the entire 44H period. There were significant paired differences for the first and the last 24H SBP compared with 44H (44H vs first 24H, 2.24 mm Hg, P<.001; 44H vs last 24H, 1.54 mm Hg, P=.010), while no significant difference was noted for the nondialysis day fixed 24H SBP vs 44H with the smallest paired difference (0.43 mm Hg, P=.331). 44H and the fixed 24H ABPs are shown and compared in Table II. As expected, the overall BPs of both 44H ABP and 24H ABP were lower than predialysis BPs. The majority of the patients exhibited uncontrolled hypertension with an average overall SBP 64 The Journal of Clinical Hypertension Vol 16 No 1 January 2014

TABLE I. Basic Characteristics TABLE I. (Continued) Clinical Characteristics MeanSD or No. (%) Clinical Characteristics MeanSD or No. (%) Male 33 (64.7) Age, y 53.414.1 Dry body weight, kg 60.810.8 BMI, kg/m 2 21.93.1 Smoker 18 (35.3) Duration of dialysis, mo 58.753.5 Interdialytic weight gain, kg 2.40.8 Diabetes mellitus 12 (23.5) Erythropoietin, U 5556.52693.3 Etiology Diabetes mellitus 12 (23.5) Hypertension 3 (6.3) Glomerulonephritis 14 (27.4) Other 22 (43.1) Use of antihypertensive drug CCB 30 (58.8) ACE inhibitor/arb 22 (43.1) b-blocker 24 (47.1) Other 10 (19.6) Antihypertensive drugs, No. 0 14 (27.5) 1 10 (19.6) 2 10 (19.6) 3 17 (33.3) Laboratory tests Hemoglobin, g/l 101.812.0 Hematocrit, % 30.34.0 Total protein, g/l 68.86.9 Albumin, g/l 41.73.3 Triglyceride, mmol/l 1.771.15 Total cholesterol, mmol/l 3.721.03 HDL cholesterol, mmol/l 1.020.32 LDL cholesterol, mmol/l 2.080.60 Calcium, mmol/l 2.380.25 Phosphorus, mmol/l 1.640.63 Parathyroid hormone, pg/ml 272.9561.6 Kt/V (N=24) 1.390.22 Echocardiography findings LV internal diameter in 50.95.4 diastole, mm Interventricular septum 11.51.9 thickness in diastole, mm LV posterior wall in 10.61.7 diastole, mm EF% 65.74.7 E/A 0.800.17 LVMI, g/m 2.7 55.718.3 LVH 36 (73.5) Clinical BP Predialysis SBP 146.018.1 Predialysis DBP 88.510.0 Predialysis PP 57.512.9 Predialysis HR 75.88.7 Postdialysis SBP 138.317.7 Postdialysis DBP 85.810.4 Postdialysis PP 52.512.8 Postdialysis HR 75.89.0 Abbreviations: ACE, angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker; BP, blood pressure; CCB, calcium channel blocker; DBP, diastolic blood pressure; EF, ejection fraction; HDL, high-density lipoprotein; HR, heart rate; LDL, low-density lipoprotein; LVH, left ventricular hypertrophy; LV, left ventricular; LVMI, left ventricular mass index; PP, pulse pressure; SBP, systolic blood pressure; SD, standard deviation. >135 mm Hg, which was the cutoff value for diagnosing hypertension in the ABP setting. A very strong and significant positive correlation was found between all parameters of 44H and 24H ABPs, with the lowest correlation coefficient of 44H and 24H nighttime HR reaching 0.957. Concordance for SBP and DBP between 44H and 24H were demonstrated by the Bland-Altman plot in Figure 1A and 1B. Using paired-samples test to detect the difference between 44H and 24H ABP, significant differences were found only for daytime SBP, nighttime pulse pressure (PP), and nighttime HR, but the degree of the differences was very small: the paired differences for the 3 parameters were 1.2 mm Hg, 1.2 mm Hg, and 1.4 beats per minutes, respectively. Considering the rising BP, we also evaluated whether the fixed 24H BP could predict the whole 44H BP in different dialysis shift groups since the time elapsed following the end of dialysis to the beginning of the fixed 24H was different among shifts. We calculated the paired differences grouped by dialysis shift (7:30 11:30 AM, 12:30 4:30 PM, 5:30 9:30 PM) (Table III). The differences were still acceptable for each parameter and no significant intergroup difference was found. The correlation between 44H ABP and 24H ABP in diagnosing hypertension was further evaluated. 29/19 patients were diagnosed as SBP hypertension/normotension by both 24H and 44H ABP. Different diagnoses were found in only 3 of 51 (5.9%) patients. The accuracy was the same when diagnosing DBP hypertension. The BP parameters correlated significantly with LVMI in univariate analysis, as presented in Table IV. However, no significant association existed between the variants of clinical characteristics and laboratory tests listed in Table I with LVMI. This correlation between BP and LVMI was less strong for clinic BPs than both 44H and 24H ABPs. Multiple linear regression analysis was performed in 3 models (Table V). Since we aimed to determine the major variants associated with LVMI from different BP measurements in the same cohort, we did not control for sex, age, BMI, hemoglobin, parathyroid hormone, and Kt/V. In model 1, in which we compared 44H ABP and clinical BP parameters, the The Journal of Clinical Hypertension Vol 16 No 1 January 2014 65

TABLE II. Paired Sample Test and Correlation of 44-Hour and 24-Hour ABPM Parameters ABPM Paired Samples Test Correlation 44-Hour 24-Hour Paired Differences P Value r P Value SBP 139.622.7 139.123.2 0.43 NS 0.992 <.001 DBP 81.512.4 81.213 0.31.9 NS 0.989 <.001 PP 58.217.6 57.817.2 0.41.9 NS 0.994 <.001 HR 769.3 75.79.5 0.32.1 NS 0.975 <.001 Daytime SBP 140.222.7 13923.1 1.23.6.021 0.988 <.001 Daytime DBP 82.412.6 81.813.1 0.62.3 NS 0.985 <.001 Daytime PP 57.817.5 57.317.4 0.51.9 NS 0.994 <.001 Daytime HR 77.99.6 77.59.8 0.32.2 NS 0.974 <.001 Nighttime SBP 138.523.7 139.724.8 1.15.9 NS 0.972 <.001 Nighttime DBP 79.812.7 79.913.6 03.7 NS 0.963 <.001 Nighttime PP 58.718.2 59.918.5 1.23.5.020 0.981 <.001 Nighttime HR 72.19.8 70.79.9 1.42.9.001 0.957 <.001 Abbreviations: ABPM, ambulatory blood pressure monitoring; DBP, diastolic blood pressure; HR, heart rate; NS, not significant; PP, pulse pressure; SBP, systolic blood pressure. BP parameters were capable of predicting LVMI. In model 2, comparing 24H ABP and clinic BP, 24H ambulatory PP was the only independent predictor for LVMI. When comparing 44H and 24H ABP in model 3, 44H ambulatory nighttime PP was the only variant that remained significant. We also evaluated the association between ambulatory arterial stiffness index (AASI) derived from 44H and the fixed 24H ABP with LVMI. This index was calculated by 1 minus the slope of diastolic on systolic pressure during ABPM. 13 The mean 44H AASI was 0.480.15 and correlated significantly with LVMI (r=0.33, P=.021) (Figure 2A). The mean 24H AASI was 0.500.18 and failed to show a significant correlation with LVMI (r=0.26, P=.073) (Figure 2B). After adjustment for ambulatory SBP, neither of the two AAS indices showed a significant correlation with LVMI (44H AASI, r=0.307, P=.303; 24H AASI, r=0.279, P=.471). FIGURE 1. Bland-Altman plots for systolic blood pressure (SBP) and diastolic blood pressure (DBP) of 44-hour ambulatory blood pressure (44H ABP) and 24-hour ambulatory blood pressure (24H ABP). (A) Bland-Altman plots for SBP of 44H and 24H ABP. (B) Bland-Altman plots for DBP of 44H and 24H ABP. strongest predicator for LVMI was 44H ambulatory nighttime PP. Postdialysis HR was also an independent predicator for LVMI in this model. None of the clinical DISCUSSION In a group of 51 dialysis patients whose disease was relatively well-controlled, as reflected by the average hemoglobin, albumin, and Kt/V, we compared the data of 44H and a fixed 24H ABP. The BP parameters showed a very strong correlation between these two strategies with relatively small differences. According to the paired-samples t test, there were significant differences only in daytime SBP, nighttime, and nighttime HR, and the magnitude of their differences were very small, at 1.2 mm Hg, 1.2 mm Hg, and 1.4 beats per minute, respectively. These small differences suggest the utility of the fixed 24H ABPM in evaluating the BP level of dialysis patients compared with 44H monitoring. This was confirmed by evaluating the ability to discriminate hypertension against normotension in both 44H and 24H monitoring. A majority of patients had the same BP definition according to 24H and 44H 66 The Journal of Clinical Hypertension Vol 16 No 1 January 2014

TABLE III. Paired Differences of 44-Hour and 24-Hour SBP, DBP, PP, and HR Grouped by Dialysis Shift Morning (N=15) Afternoon (N=23) Night (N=13) Paired Differences P Value Paired Differences P Value Paired Differences P Value SBP a 0.14.3 NS 0.42.3 NS 0.82.4 NS DBP a 0.32.8 NS 0.51.3 NS 0.11.8 NS PP b 0.11.9 NS 0.52.2 NS 0.71.3 NS HR b 0.91.7 NS 0.32.4 NS 0.31.9 NS Abbreviation: NS, not significant. a Intergroup comparison using Kruskal-Wallis test with P value of.49 and.37 for systolic blood pressure (SBP) and diastolic blood pressure (DBP), respectively. b Intergroup comparison using one-way analysis of variance with P value of.74 and.34 for pulse pressure (PP) and heart rate (HR), respectively. TABLE IV. Univariate Analysis: Variants Associated With LVMI monitoring. However, it is important to note that a small percentage of patients (5.9%) were still wrongly diagnosed by 24H data compared with 44H. In the current study, we demonstrate that the correlation between ABPs and LVMI was stronger than predialysis and postdialysis BPs. This notion was also supported by other studies. 2,14 We confirmed at the same time that both the fixed 24H and 44H ABPs were superior in predicting LVMI than clinic BP. Using stepwise regression analysis comparing 44H ABP and 24H ABP, 44H nighttime PP remained the sole variant associated with LVMI, indicating an advantage of 44H ABP in association with hypertensive end organ damage. It is interesting to note that PP, especially ambulatory nighttime PP, was a superior determinant of LVMI than SBP. The role of nighttime BP and PP has been investigated in previous studies. In a long prospective study conducted by Jokiniitty and colleagues, 15 the 3 best BP variables identified in predicting LVMI are 24H r P Value 44-H ambulatory SBP 0.539 <.001 44-H ambulatory PP 0.531 <.001 44-H daytime ambulatory SBP 0.520 <.001 44-H daytime ambulatory PP 0.513 <.001 44-H nighttime ambulatory SBP 0.551 <.001 44-H nighttime ambulatory PP 0.554 <.001 Predialysis SBP 0.475.001 Predialysis PP 0.492 <.001 Postdialysis SBP 0.471.001 Postdialysis DBP 0.313.029 Postdialysis PP 0.411.003 Postdialysis HR 0.370.009 24-H ambulatory SBP 0.520 <.001 24-H ambulatory PP 0.526 <.001 24-H daytime ambulatory SBP 0.504 <.001 24-H daytime ambulatory PP 0.510 <.001 24-H nighttime ambulatory SBP 0.523 <.001 24-H nighttime ambulatory PP 0.518 <.001 Abbreviations: HR, heart rate; LVMI, left ventricular mass index; PP, pulse pressure; SBP, systolic blood pressure. TABLE V. Multiple Regression Analysis b SE P Value Model 1 Constant 64.85 21.26.004 44-H ambulatory nighttime PP 0.50 0.12 <.001 Postdialysis HR 0.51 0.24.041 Model 2 Constant 23.41 7.94.005 24-H ambulatory PP 0.55 0.13 <.001 Model 3 Constant 22.77 7.54.004 44-H ambulatory nighttime PP 0.56 0.12 <.001 Abbreviations: HR, heart rate; PP, pulse pressure; SE, standard error. Model 1: 44-hour ambulatory blood pressure (44-H ABP) and clinic blood pressure (BP) parameters associated with left ventricular mass index (LVMI) were included. Model 2: 24-hour ambulatory blood pressure (24-H ABP) and clinic BP parameters associated with LVMI were included. Model 3: 44-H ABP and 24-H ABP parameters associated with LVMI were included. PP, nighttime PP, and daytime PP. After 10 years of follow-up in their study, the change in LVMI was best predicted by the change in casual PP. In treated hypertensive dialysis patients, Amar and colleagues 3 demonstrated that nocturnal BP and 24H PP are independent predictors of cardiovascular mortality. AASI, first suggested by Li and colleagues 13 in 2006, was a surrogate index of arterial stiffness derived from ABP measurements. This assumption was based on the opinion that loss of elasticity of the artery influences the height of the diastolic pressure and its relation to systolic pressure. 16 AASI is calculated by 1 minus the slope of diastolic on SBP during ambulatory monitoring. The index is associated with PWV and other end organ damage including left ventricular hypertrophy 13,17,18 ; however, its use is still controversial. 19,20 In addition, although this index has been examined in chronic kidney disease, 21,22 there are no prior studies specifically addressing AASI in dialysis patients. To our knowledge, this is the first report demonstrating AASI and its association with LVMI in this group of patients. We found that 44H AASI, but not 24H AASI, correlated significantly with LVMI. Nevertheless, after adjustment The Journal of Clinical Hypertension Vol 16 No 1 January 2014 67

interdialytic period, as in study by Martin and colleagues. STUDY LIMITATIONS It should be pointed out that there are some limitations in our study. First, the sample size is small. Furthermore, the 24H nondialysis day period was fixed in our study. Whether there were more appropriate 24H periods, especially corresponding to different dialysis shifts, remained to be addressed. Even though we did not find any significant intergroup difference for the 3 dialysis shifts, it should be acknowledged that a longer-term ABPM will have advantages over shorter ones as a result of the rising interdialytic BP. Finally, the study was conducted in a group of Chinese dialysis patients whose ABP characteristics had not been previously reported. Whether these data are applicable to other races is uncertain. FIGURE 2. Association of ambulatory arterial stiffness index (AASI) with left ventricular mass index (LVMI). (A) Association of 44-hour (44H) AASI with LVMI. (B) Association of 24-hour (24-H) AASI with LVMI. for ambulatory SBP, this association was no longer significant, suggesting that AASI predicts LVMI through BP level. There are quite a few studies focusing on ABPM in dialysis patients, including both 44H and 24H ABP. However, very few studies have attempted to find an appropriate 24H period representing the whole interdialytic session. Martin and colleagues 7 found that dialysis patients with the same interdialytic BP could have different target organ damage as a result of different BP patterns. They conclude that an increase in BP in the second half of the interdialytic period could have a more important pathophysiologic and prognostic role. In this study, we chose a fixed 24H period on the nondialysis day and demonstrated excellent correlation with 44H ABPM. The prognostic value of 24H ABPM on a nondialysis day has been confirmed by Tripepi and colleagues. 9 This validates the clinical significance for performing 24H ABPM on a nondialysis day in hemodialysis patients. Furthermore, performing 24H ABPM in the fixed period is more feasible and may lead to increased use of ABPM in routine clinical practice. It is notable that the fixed 24H period in our study overlapped with the second half of the CONCLUSIONS We have compared the 44H ABP with the fixed 24H ABP on the nondialysis day of the interdialytic session. Both ABPs are superior to clinic BP in correlation with LVMI. PP, especially 44H nighttime PP, appears to be the most important variant for LVMI. 44H AASI, not 24H AASI, may also be correlated with LVMI, but such a correlation disappears after being adjusted for ambulatory SBP. Taken together, while 44H ABP provides accurate and detailed information, the fixed 24H ABP on the nondialysis day serves as a good surrogate of the longer ABP and has the advantage of easier measurement. Acknowledgments and disclosures: We sincerely thank Dr Roderick J. Tan of the University of Pittsburgh for English editing of this paper. This work was supported by the Foundation for Science and Technology Program in Health of Jiangsu to Junwei Yang. References 1. Thompson AM, Pickering TG. The role of ambulatory blood pressure monitoring in chronic and end-stage renal disease. Kidney Int. 2006;70:1000 1007. 2. Agarwal R, Brim NJ, Mahenthiran J, et al. Out-of-hemodialysis-unit blood pressure is a superior determinant of left ventricular hypertrophy. Hypertension. 2006;47:62 68. 3. Amar J, Vernier I, Rossignol E, et al. Nocturnal blood pressure and 24-hour pulse pressure are potent indicators of mortality in hemodialysis patients. Kidney Int. 2000;57:2485 2491. 4. Liu M, Li Y, Wei FF, et al. Is blood pressure load associated, independently of blood pressure level, with target organ damage? J Hypertens. 2013;31:1812 1818. 5. Seo HS, Kang TS, Park S, et al. Non-dippers are associated with adverse cardiac remodeling and dysfunction. Int J Cardiol. 2006;112:171 177. 6. Tatasciore A, Renda G, Zimarino M, et al. Awake systolic blood pressure variability correlates with target-organ damage in hypertensive subjects. Hypertension. 2007;50:325 332. 7. Martin LC, Franco RJ, Gavras I, et al. Is 44-hour better than 24-hour ambulatory blood pressure monitoring in hemodialysis? Kidney Blood Press Res. 2006;29:273 279. 8. Kelley K, Light RP, Agarwal R. Trended cosinor change model for analyzing hemodynamic rhythm patterns in hemodialysis patients. Hypertension. 2007;50:143 150. 9. Tripepi G, Fagugli RM, Dattolo P, et al. Prognostic value of 24-hour ambulatory blood pressure monitoring and of night/day ratio in nondiabetic, cardiovascular events-free hemodialysis patients. Kidney Int. 2005;68:1294 1302. 68 The Journal of Clinical Hypertension Vol 16 No 1 January 2014

10. Devereux RB, Alonso DR, Lutas EM, et al. Echocardiographic assessment of left ventricular hypertrophy: comparison to necropsy findings. Am J Cardiol. 1986;57:450 458. 11. de Simone G, Daniels SR, Devereux RB, et al. Left ventricular mass and body size in normotensive children and adults: assessment of allometric relations and impact of overweight. J Am Coll Cardiol. 1992;20:1251 1260. 12. Zoccali C, Benedetto FA, Mallamaci F, et al. Prognostic impact of the indexation of left ventricular mass in patients undergoing dialysis. J Am Soc Nephrol. 2001;12:2768 2774. 13. Li Y, Wang JG, Dolan E, et al. Ambulatory arterial stiffness index derived from 24-hour ambulatory blood pressure monitoring. Hypertension. 2006;47:359 364. 14. Erturk S, Ertug AE, Ates K, et al. Relationship of ambulatory blood pressure monitoring data to echocardiographic findings in haemodialysis patients. Nephrol Dial Transplant. 1996;11:2050 2054. 15. Jokiniitty JM, Tuomisto MT, Majahalme SK, et al. Pulse pressure responses to psychological tasks improve the prediction of left ventricular mass: 10 years of follow-up. J Hypertens. 2003;21:789 795. 16. Macwilliam JA, Melvin GS. Systolic and diastolic blood pressure estimation, with special reference to the auditory method. Br Med J. 1914;1:693 697. 17. Hansen TW, Li Y, Staessen JA, et al. Independent prognostic value of the ambulatory arterial stiffness index and aortic pulse wave velocity in a general population. J Hum Hypertens. 2008;22:214 216. 18. Leoncini G, Ratto E, Viazzi F, et al. Increased ambulatory arterial stiffness index is associated with target organ damage in primary hypertension. Hypertension. 2006;48:397 403. 19. Schillaci G, Parati G. Ambulatory arterial stiffness index: merits and limitations of a simple surrogate measure of arterial compliance. J Hypertens. 2008;26:182 185. 20. Kips JG, Vermeersch SJ, Reymond P, et al. Ambulatory arterial stiffness index does not accurately assess arterial stiffness. J Hypertens. 2012;30:574 580. 21. Boesby L, Elung-Jensen T, Strandgaard S, Kamper AL. Eplerenone attenuates pulse wave reflection in chronic kidney disease stage 3-4 a randomized controlled study. PLoS ONE. 2013;8:e64549. 22. Boesby L, Thijs L, Elung-Jensen T, et al. Ambulatory arterial stiffness index in chronic kidney disease stage 2-5. Reproducibility and relationship with pulse wave parameters and kidney function. Scand J Clin Lab Invest. 2012;72:304 312. The Journal of Clinical Hypertension Vol 16 No 1 January 2014 69