Missy a 12-year-old, 32-kg (70.4-lb), spayed German

Similar documents
HOW LOW CAN YOU GO? HYPOTENSION AND THE ANESTHETIZED PATIENT.

The Top 5 Anesthetic Complications Donna M. Sisak, CVT, LVT, VTS (Anesthesia/Analgesia) Seattle Veterinary Specialists Kirkland, WA

INTUBATION/RSI. PURPOSE: A. To facilitate secure, definitive control of the airway by endotracheal intubation in an expeditious and safe manner

Standardize comprehensive care of the patient with severe traumatic brain injury

IFT1 Interfacility Transfer of STEMI Patients. IFT2 Interfacility Transfer of Intubated Patients. IFT3 Interfacility Transfer of Stroke Patients

Capnography: The Most Vital of Vital Signs. Tom Ahrens, PhD, RN, FAAN Research Scientist, Barnes-Jewish Hospital, St. Louis, MO May, 2017

Anesthesia Monitoring. D. J. McMahon rev cewood

Hemodynamic Monitoring

Feline Anesthesia Fluid Therapy Treatment of Anesthetic Complications

ADVANCED PATIENT MONITORING DURING ANAESTHESIA: PART ONE

ANESTHESIA EXAM (four week rotation)

Anaesthetic considerations for laparoscopic surgery in canines

10. Severe traumatic brain injury also see flow chart Appendix 5

Critical Care of the Post-Surgical Patient

Admission of patient CVICU and hemodynamic monitoring

June 2011 Bill Streett-Training Section Chief

Acute Neurosurgical Emergency Transfer [see also CATS SOP neurosurgical]

BRAIN TRAUMA THERAPEUTIC RECOMMENDATIONS

New Therapeutic Hypothermia Techniques

Non-Invasive Monitoring

Advanced Cardiac Life Support (ACLS) Science Update 2015

ITLS Pediatric Provider Course Basic Pre-Test

Research Anesthesia Skills

Resuscitation Patient Management Tool May 2015 MET Event

Rhonda Dixon, DVM Section Head, Emergency and Critical Care Sugar Land Veterinary Specialty and Emergency

I. Subject: Continuous Positive Airway Pressure CPAP by Continuous Flow Device

Pet owners are often very anxious about veterinary procedures that involve anesthesia. This handout attempts to alleviate some of these concerns.

THE PERMANENT PACEMAKER SYSTEM FOR THE TREATMENT OF HEART BLOCK IN THE DOG. Lanqford House, Lanqford, Bristol

Standard Operating Procedure (SOP) Management of intervention group patients SOP 001

Patient Management Code Blue in the CT Suite

Anesthetic Techniques in Endoscopic Sinus and Skull Base Surgery

Capnography Connections Guide

Sepsis Wave II Webinar Series. Sepsis Reassessment

ASPIRUS WAUSAU HOSPITAL, INC. Passion for excellence. Compassion for people. SUBJECT: END TIDAL CARBON DIOXIDE MONITORING (CAPNOGRAPHY)

Addendum D. Procedural Sedation Test MERCY MEDICAL CENTER- SIOUX CITY. Procedural Sedation Questions

PRACTICE GUIDELINE. DEFINITIONS: Mild head injury: Glasgow Coma Scale* (GCS) score Moderate head injury: GCS 9-12 Severe head injury: GCS 3-8

STANDARD OPERATING PROCEDURE #203 LARGE ANIMAL SURGERY

Don t let your patients turn blue! Isn t it about time you used etco 2?

Post Resuscitation Care

What Monitors Can and Can t Tell You: re-world monitoring for field and high volume anesthesia

Case 1. Case 5/30/2013. Traumatic Brain Injury : Review, Update, and Controversies

ADVANCED AIRWAY MANAGEMENT

Describe regional differences in pulmonary blood flow in an upright person. Describe the major functions of the bronchial circulation

ENDOTRACHEAL INTUBATION POLICY

Waitin In The Wings. Esophageal/Tracheal Double Lumen Airway (Combitube ) Indications and Use for the Pre-Hospital Provider

Information Often Given to the Nurse at the Time of Admission to the Postanesthesia Care Unit

Anesthesia Monitoring

8th Annual NKY TBI Conference 3/28/2014

ANESTHETIZING DISEASED PATIENTS: URINARY; NEUROLOGICAL; TRAUMATIZED

Michigan Pediatric Cardiac Protocols. Date: November 15, 2012 Page 1 of 1 TABLE OF CONTENTS

Capnography 101. James A Temple BA, NRP, CCP

12/1/2009. Chapter 19: Hemorrhage. Hemorrhage and Shock Occurs when there is a disruption or leak in the vascular system Internal hemorrhage

a central pulse located at the apex of the heart Apical pulse Apical-radial pulse a complete absence of respirations Apnea

Neonatal Life Support Provider (NLSP) Certification Preparatory Materials

Understanding Your Pet's Oral Treatment Plan at Interbay Veterinary Care Center

INCREASED INTRACRANIAL PRESSURE

Michael Avant, M.D. The Children s Hospital of GHS

Subspecialty Rotation: Anesthesia

Other methods for maintaining the airway (not definitive airway as still unprotected):

ADVANCED PATIENT MONITORING DURING ANAESTHESIA: PART TWO

ETCO2 MONITORING NON-INTUBATED PATIENTS

IV Fluids. I.V. Fluid Osmolarity Composition 0.9% NaCL (Normal Saline Solution, NSS) Uses/Clinical Considerations

SUMMARY OF MAJOR CHANGES 2010 AHA GUIDELINES FOR CPR & ECC

Technique. Technique. Technique. Monitoring 1. Local anesthetic? Aseptic technique Hyper-extend (if radial)

Pilot Of Spontaneous Breathing Vs. Ventilated Model For Hemorrhage And Resuscitation In The Rabbit

The Vigileo monitor by Edwards Lifesciences supports both the FloTrac Sensor for continuous cardiac output and the PreSep oximetry catheter for

Proceeding of the NAVC North American Veterinary Conference Jan. 8-12, 2005, Orlando, Florida

FloTrac Sensor and Edwards PreSep Central Venous Oximetry Catheter Case Presentations

CrackCast Episode 8 Brain Resuscitation

Hemodynamic Monitoring and Circulatory Assist Devices

Comparison of the Hemodynamic Responses with. with LMA vs Endotracheal Intubation

Optimal sedation and management of anxiety in patients undergoing endobronchial ultrasound (EBUS)

INternational observational study To Understand the impact and BEst practices of airway management in critically ill patients CASE REPORT FORM

Pedi-Cap CO 2 detector

H Alex Choi, MD MSc Assistant Professor of Neurology and Neurosurgery The University of Texas Health Science Center Mischer Neuroscience Institute

Interesting Cases - A Case Report: Renal Cell Carcinoma With Tumor Mass In IVC And Heart. O Wenker, L Chaloupka, R Joswiak, D Thakar, C Wood, G Walsh

Analgesic-Sedatives Drug Dose Onset


Cath Lab Essentials: Pericardial effusion & tamponade

Adult Intubation Skill Sheet

#6 - Cardiovascular III Heart Sounds, Pulse Rate, Hemoglobin Saturation, and Blood Pressure

Nothing to Disclose. Severe Pulmonary Hypertension

INTRACEREBRAL HEMORRHAGE FOLLOWING ENUCLEATION: A RESULT OF SURGERY OR ANESTHESIA?

Health Tech Symposium Fall, Dan Sommers P.E. EMT-P

European Board of Anaesthesiology (EBA) recommendations for minimal monitoring during Anaesthesia and Recovery

Index. Note: Page numbers of article titles are in boldface type

CalvertHealth Medical Center s Moderate Sedation Competency Examination

Index. Note: Page numbers of article titles are in boldface type.

Problem Based Learning. Problem. Based Learning

-Cardiogenic: shock state resulting from impairment or failure of myocardium

Surgical Care at the District Hospital. EMERGENCY & ESSENTIAL SURGICAL CARE

ACLS Prep. Preparation is key to a successful ACLS experience. Please complete the ACLS Pretest and Please complete this ACLS Prep.

Monitoring in Anesthesia

Vital Signs. Vital Signs. Vital Signs

Michigan Pediatric Cardiac Protocols. Date: November 15, 2012 Page 1 of 1 TABLE OF CONTENTS

Tracheal stenosis in infants and children is typically characterized

Conflicts of Interest

Pain & Sedation Management in PICU. Marut Chantra, M.D.

Physiological normal values (Depends on age, strain, health status, type of anesthesia, etc.)

BACHELOR OF SCIENCE IN CARDIO VASCULAR TECHNOLOGY

Transcription:

1 CE Credit Case Report Olfactory Meningioma Removal by Craniectomy and Craniotomy Anita Parkin, AVN, Dip (Surgery), VTS (Anesthesia) Veterinary Specialist Services Pty Ltd Queensland, Australia Missy a 12-year-old, 32-kg (70.4-lb), spayed German shepherd presented with a 3-month history of worsening seizures, which were previously well controlled with oral phenobarbitone (30 mg/kg). On the day of presentation, Missy had a generalized grand mal seizure lasting approximately 2 minutes, followed by two shorter seizures. Missy was admitted to the hospital and administered IV phenobarbitone, diazepam, and fluid therapy. A complete blood cell count and a serum biochemistry profile revealed moderate neutrophilia; all other values were within normal limits. Glossary Craniectomy excision of a part of the skull Craniotomy surgery on the cranium Dicrotic notch (also called aortic notch) closure of the aortic valve Invasive BP direct measurement of arterial blood pressure via an arterial catheter Preoxygenation administration of oxygen before administration of an anesthetic agent The neutrophilia indicated inflammation most likely associated with mild compression around a tumor, as there was no evidence of other clinical infection. The following day, chest radiography (FIGURE 1) showed no signs of metastatic disease, and abdominal ultrasonography revealed no abnormalities; however, computed tomography (CT) of the brain revealed a contrastenhancing mass involving the right olfactory lobe and adjacent cortex (FIGURE 2). Presented at IVECCS 2010 in conjunction with Pfizer Animal Health. The 3 2 1 cm mass was presumably causing a midline shift of the left cerebral hemisphere. The CT findings suggested a meningioma possibly low grade, as the lesion appeared encapsulated and did not invade other tissues. Noninvasive, encapsulated brain tumors are typically low-grade meningiomas. 1 Tumors that invade other tissues are typically high-grade meningiomas and appear invasive on contrast-study CT scans. The Anesthetic Plan Before Surgery Before surgery, the following were administered: Methadone (0.3 mg/kg SC; a pure opioid agonist) for preemptive analgesia Mannitol (0.5 g/kg IV over 20 minutes) for osmotic diuresis and free radical scavenging 2 Glycopyrrolate (0.016 mg/kg SC) to help maintain heart rate and cardiac output 3 during anesthesia; a decrease in heart rate (bradycardia) is expected with the use of an opioid CRI (fentanyl); the duration of action of glycopyrrolate is 2 to 3 hours 4 Phenobarbitone (15 mg/kg IV) to control seizures Induction For craniectomy and craniotomy, it is important to avoid increasing intracranial pressure (ICP). An increase in ICP increases the likelihood of cerebral ischemia (a decrease in the supply of blood and oxygen to the brain), which has lasting effects in patients. To avoid an increase in ICP during induction and intubation, it is important for the patient to be adequately anesthetized beforehand (coughing due to a light anesthetic level can increase ICP 4 ) and in lateral recumbency without elevation of the head (elevating the head can also increase ICP). 5 Missy was preoxygenated for 10 minutes (4 L/min) via facemask, and the staff ensured that she was not stressed by the mask because stress would have negated the purpose of preoxygenation. Anesthesia was induced with midazolam (0.2 mg/kg IV) and fentanyl (4 µg/kg IV) over 1 minute, followed by propofol (1 mg/kg IV). E1 Copyright 2011 Vetstreet Inc. This document is for internal purposes only. Reprinting or posting on an external website without written permission from Vetlearn is a violation of copyright laws.

A Figure 3. The surgical field. b C Figure 1. (A) Left lateral chest radiograph showing no signs of metastatic disease. (B) Right lateral chest radiograph showing no signs of metastatic disease. (C) Ventrodorsal chest radiograph showing no signs of metastatic disease. Surgery After induction, a CRI of fentanyl (10 µg/kg/h) and propofol (4 mg/kg/h) 2 was started to minimize use of a volatile agent (isoflurane) during surgery. Using a fentanyl and propofol CRI can depress ventilation, causing hypercapnia. The ETCO 2 must be closely monitored to avoid hypercapnia. Manual, intermittent positive-pressure ventilation was administered at 20 cm H 2 O; to avoid trauma to the lung tissue, this pressure should not be exceeded. 3 One veterinary technician was responsible for ventilation, and another monitored the anesthetic depth. FIGURE 3 shows the surgical field. A b Figure 2. (A) Transverse CT scan showing a contrast-enhanced mass in the olfactory lobe (arrow). (B) Sagittal CT image highlighting the mass (arrow). Benzodiazepines (e.g., midazolam) decrease cerebral blood flow and ICP. 2 A 10.5-mm, cuffed endotracheal tube was connected to an open circuit, and oxygen was delivered at a rate of 1.5 L/min. The endotracheal tube cuff was checked for a seal and inflated, and isoflurane was initiated at 1%. End-tidal carbon dioxide (ETCO 2 ) monitoring was then initiated. Maintaining hypocapnia in the patient decreases cerebral blood flow, reducing the chance of cerebral edema. Methylprednisolone (30 mg/kg IV) was administered over 30 minutes to help reduce inflammation associated with surgery. This drug is typically given in a single dose. The arterial blood gas was analyzed to correlate the carbon dioxide (CO 2 ) and oxygen levels with the multiparameter readings. IV fluid therapy (lactated Ringer solution) was increased to a surgical fluid rate (10 ml/kg/h). Cephalothin (22 mg/kg IV) was given for antibiotic coverage. Missy was placed in sternal recumbency with care not to occlude the jugular vein (occlusion would increase ICP), 2 and she was aseptically prepared for surgery. After Surgery A central venous catheter (7-French triple lumen) was placed in the left jugular vein. Once a tumor has been removed, there is less risk of increasing ICP by occluding the jugular vein. During postoperative care, it is helpful to monitor central venous pressure (CVP) to ensure that the patient maintains normovolemia (2 to 7 cm H 2 O). 3 IV fluids and CRI drugs were infused through the central line, and the peripheral catheters were removed. A nasal oxygen line was placed for potential use after extubation. A fentanyl patch (100 µg) was applied. Once it became active (12 hours after application), the fentanyl CRI was reduced and then stopped. Monitoring An arterial line was aseptically placed in the left dorsal pedal artery for invasive blood pressure (BP) monitoring and blood gas sampling (TABLE 1). Sufficient sedation before induction facilitates arterial catheter placement before induction. Monitoring equipment was used to ensure that anesthesia and analgesia were adequate. Missy s heart rate was monitored by electrocardiography and esophageal stethoscope and remained between 100 and 110 bpm throughout surgery. If Missy had developed bradycardia, atropine (0.04 mg/kg IV) would have been administered. Atropine has a faster onset of action than glycopyrrolate. 4 Throughout anesthesia, Missy s systolic arterial pressure was 90 to 105 mm Hg (normal range: 100 to 140 mm Hg) 4 and mean arterial pressure was 68 to 80 mm Hg (normal range: 80 to 100 mm Hg). 4 Hypotension was treated by administering synthetic E2

Table 1. Patient Monitoring: Ideal Readings for Dogs Parameter Oxygen saturation of hemoglobin (Spo 2 ) Rate, rhythm, and electrical activity of the heart Invasive blood pressure Method of Measurement Ideal Reading Pulse oximetry 95% 100% Electrocardiography Direct measurement of arterial blood pressure ~100 110 bpm Systolic arterial pressure: >90 mm Hg; mean arterial pressure: >70 mm Hg Core body temperature Esophageal probe >96.8 F (>36 C) End-tidal carbon dioxide Capnography 25 35 mm Hg Heart rate Esophageal stethoscope (directly monitors rhythm and sounds of the heart; useful when monitoring equipment is not functioning) 100 110 bpm Systolic phase Dicrotic notch Diastolic phase Figure 4. Graph showing normal invasive blood pressure. The upward trend corresponds to the systolic phase (depolarization of the ventricles), and the downward trend corresponds to the diastolic phase (blood volume; repolarization of the ventricles). The dicrotic notch in the diastolic period corresponds to closure of the aortic valve. colloids (rather than crystalloids). Synthetic colloids were advantageous for treating hypotension in this case because they increase BP as a result of their large molecules, which keep them in the vessels longer. 4 Fluid overload (hypervolemia) should be avoided because it increases CVP, which cannot be monitored during surgery because placement of a central venous line can occlude the jugular vein, increasing ICP. Hypertension associated with a light plane of anesthesia was treated by increasing the propofol CRI. If hypertension had been due to pain, the fentanyl CRI would have been increased. A fentanyl CRI can be safely increased to 20 µg/kg/h if needed; however, respiration should Key Points It is important to use all available monitoring equipment for craniotomy patients because their anesthetic depth and status cannot be determined by visual observation. An increase in intracranial pressure (ICP) can cause brain tissue damage; therefore, it is important to know what increases ICP. Providing patients with adequate pain relief before, during, and after surgery can decrease the need for anesthetic drug administration and increase the likelihood of an uneventful recovery. be closely monitored in nonventilated patients because fentanyl is a potent respiratory depressant. BP and heart rate should be evaluated together because they are closely related. An increase in BP and a decrease in heart rate could indicate fluid loading, requiring a decrease in the fluid rate. A decrease in BP and an increase in heart rate could indicate fluid or blood loss, requiring an assessment for hemorrhage. A synthetic colloid could be used to maintain intravascular oncotic pressure, but fresh whole blood should be used if it is available because it is better for replacing blood lost through hemorrhage. Simultaneous decreases in BP and heart rate could indicate a deep plane of anesthesia. This could also be interpreted as myocardial depression on a graph of invasive BP (i.e. a slow increase in the systolic period of the graph; FIGURE 4). Absence of a dicrotic notch in the baseline may indicate the need to increase the blood volume. The patient and all physiologic values should be assessed before treatment is initiated. ETCO 2 and oxygen saturation of hemoglobin (Spo 2 ) levels can mostly be controlled through ventilation, unless disturbances of these parameters are due to cardiac arrest. If lung function is normal before surgery, ventilation at the correct respiratory rate and tidal volume should maintain adequate oxygen and CO 2 levels. If hypercapnia is present, the respiratory rate and/or tidal volume should be increased to lower the CO 2 level. Hypocapnia causes intracranial vessels to constrict rather than dilate, which avoids cerebral edema. 2 If the ETCO 2 level falls below 25 mm Hg, a decrease in the respiratory rate and/or tidal volume is necessary to elevate the ETCO 2 level to 25 to 35 mm Hg to avoid an excessive decrease in ICP. A dramatic decrease in the ETCO 2 level could indicate one of the following: Cardiac arrest, requiring cardiopulmonary resuscitation A disconnected monitoring device; all connections should be secured with tape and checked before the patient is draped for surgery A need to calibrate the multiparameter monitor Missy was actively warmed once she was anesthetized. Normothermia (>96.8 F [>36 C]) should be maintained to allow better E3

control of anesthesia and the patient s physiologic status. Normothermia can be maintained using the following methods: Applying bubble wrap to the extremities to avoid heat loss Warming IV fluids Heating the surgery table and/or using a commercial warming blanket during surgery Postoperative Care Missy was transferred to the intensive care unit for ongoing care. She continued to receive propofol and fentanyl by CRI at a reduced dose and was kept on a mechanical ventilator. In addition to visual observation, the following were monitored postoperatively: heart rate, respiratory rate, Spo 2 level, invasive BP, electrocardiogram, ETCO 2 level, and CVP. In addition, the arterial blood gas values, packed cell volume, and total plasma proteins (a total of albumin and globulin) were monitored every 12 hours. The propofol and fentanyl infusions were reduced over the next 12 hours. Missy was awake the next morning, extubated, and maintained on normal oxygen saturation without the use of nasal oxygen. Outcome Missy was kept in a quiet area of the intensive care unit and recovered well over the next 36 hours. She was transferred to the general ward 2 days after surgery and went home 5 days later with her very happy owners. References 1. Withrow SJ, Vail DM. Withrow and MacEwen s Small Animal Clinical Oncology. 4th ed. St. Louis, MO: Saunders Elsevier; 2007. 2. Tranquilli WJ, Thurmon JC, Grimm KA, Lumb WV. Lumb and Jones Veterinary Anesthesia and Analgesia. 4th ed. Ames, IA: Blackwell Publishing; 2007. 3. Bryant S. Anesthesia for Veterinary Technicians. Ames, IA: Blackwell Publishing; 2010. 4. McKelvey D, Hollingshead KW. Veterinary Anesthesia and Analgesia. 3rd ed. St. Louis, MO: Mosby; 2003. 5. Silverstein D, Hopper K. Small Animal Critical Care Medicine. St. Louis, MO: Saunders Elsevier; 2009. E4

1 CE Credit The article you have read qualifies for 1.0 credit hour. To receive credit from Alfred State College, choose the best answer to each of the following questions. CE tests must be taken online at Vetlearn.com; test results and CE certificates are available immediately. 1. To help keep ICP within an acceptable range, the ETCO 2 level of craniotomy patients should be maintained at mm Hg. A. 25 to 35 B. 35 to 40 C. 40 to 45 D. 45 to 50 2. Before surgery, mannitol can be used as A. an osmotic diuretic. B. a synthetic colloid. C. a free radical scavenger. D. a and c 3. To avoid trauma to lung tissue during intermittent positive-pressure ventilation, a pressure of cm H 2 O should not be exceeded. A. 10. B. 20. C. 30 D. 40 4. The use of opioid agonists may result in A. hypercapnia. B. bradycardia. C. hypocapnia. D. a and b 5. SC glycopyrrolate can have a duration of action of up to A. 1 hour. B. 2 hours. C. 3 hours. D. 4 hours. 6. In this case, synthetic colloids were used instead of crystalloids A. to increase BP. B. because synthetic colloids have larger molecules, which improves oncotic pressure. C. to decrease BP. D. a and b 7. A decrease in heart rate and an increase in BP could indicate A. an anesthetic overdose. B. that the patient is in pain. C. hypervolemia. D. hypovolemia. 8. ICP can be increased by A. administration of a benzodiazepine. B. jugular vein occlusion. C. a decrease in the CO 2 level. D. none of the above 9. To help prevent an increase in ICP during intubation, the patient should be A. adequately anesthetized. B. in sternal recumbency. C. in lateral recumbency. D. a and c 10. A benzodiazepine can be used to decrease A. cerebral blood flow. B. ETCO 2. C. body temperature. D. none of the above E5 Copyright 2011 Vetstreet Inc. This document is for internal purposes only. Reprinting or posting on an external website without written permission from Vetlearn is a violation of copyright laws.