PDX Tumor Biology Pla0orms for Drug Advancement Neal Goodwin, Ph.D. Vice President Corporate Research & Development

Similar documents
Illumina Trusight Myeloid Panel validation A R FHAN R A FIQ

NeoTYPE Cancer Profiles

NeoTYPE Cancer Profiles

Out-Patient Billing CPT Codes

Next Generation Sequencing in Haematological Malignancy: A European Perspective. Wolfgang Kern, Munich Leukemia Laboratory

The Center for PERSONALIZED DIAGNOSTICS

August 17, Dear Valued Client:

Molecular. Oncology & Pathology. Diagnostic, Prognostic, Therapeutic, and Predisposition Tests in Precision Medicine. Liquid Biopsy.

The preclinical efficacy of a novel telomerase inhibitor, imetelstat, in AML: A randomized trial in patient-derived xenografts

Examining Genetics and Genomics of Acute Myeloid Leukemia in 2017

Patricia Aoun MD, MPH Professor and Vice-Chair for Clinical Affairs Medical Director, Clinical Laboratories Department of Pathology City of Hope

Pediatric Oncology & Pathology Services

Blastic Plasmacytoid Dendritic Cell Neoplasm with DNMT3A and TET2 mutations (SH )

TEST MENU TEST CPT CODES TAT. Chromosome Analysis Bone Marrow x 2, 88264, x 3, Days

Click to edit Master /tle style

Enhancing Assessment of Myeloid Disorders in the Era of Precision Medicine

Targeted Agent and Profiling Utilization Registry (TAPUR ) Study. February 2018

The Evolving Role of Transplantation for MPN

Jocelyn Chapman, MD Division of Gynecologic Oncology. Julie S. Mak, MS, MSc Genetic Counselor Hereditary Cancer Clinic

Supplementary Information

ADRL Advanced Diagnostics Research Laboratory

We are in an era that promises a rational. treatment of cancer patients. Levy et al. Genome Research 22:2201, 2012 Vanderbilt university

Enhancing Assessment of Myeloid Leukemia in the Era of Precision Medicine

Illumina s Cancer Research Portfolio and Dedicated Workflows

Enhancing Assessment of Myeloid Leukemia in the Era of Precision Medicine

Objectives and Financial Disclosure

7/12/2016 TESTING. Objectives. New Directions in Aplastic Anemia: What's on the Horizon? Better way to evaluate clonal evolution?

Identification and clinical detection of genetic alterations of pre-neoplastic lesions Time for the PML ome? David Sidransky MD Johns Hopkins

Please Silence Your Cell Phones. Thank You

Supplemental Material. The new provisional WHO entity RUNX1 mutated AML shows specific genetics without prognostic influence of dysplasia

SESSION 1 Reactive cytopenia and dysplasia

Next generation sequencing analysis - A UK perspective. Nicholas Lea

Laboratory Service Report

Jennifer Hauenstein Oncology Cytogenetics Emory University Hospital Atlanta, GA

Overview. Methods 9/11/2017. Next Generation Sequencing and Precision Medicine in Hematological Malignancies. Genotyping in hematology

West Midlands Regional Genetics Laboratory

AML Genomics 11/27/17. Normal neutrophil maturation. Acute Myeloid Leukemia (AML) = block in differentiation. Myelomonocy9c FAB M5

Myelodysplastic syndromes and the new WHO 2016 classification

Objectives. Morphology and IHC. Flow and Cyto FISH. Testing for Heme Malignancies 3/20/2013

Juan Ma 1, Jennifer Dunlap 2, Lisong Shen 1, Guang Fan 2 1

Supplementary Appendix

Session 4: Summary and Conclusions

Session 7 Summary. Magdalena Czader, MD, PhD David Czuchlewski, MD MOLECULAR GENETICS OF HEMATOPOIETIC NEOPLASMS

Kevin Kelly, MD, Phd Acute Myeloid and Lymphoid Leukemias

Cost-Effective Strategies in the Workup of Hematologic Neoplasm. Karl S. Theil, Claudiu V. Cotta Cleveland Clinic

Sample Metrics. Allele Frequency (%) Read Depth Ploidy. Gene CDS Effect Protein Effect. LN Metastasis Tumor Purity Computational Pathology 80% 60%

Supplementary Figure 1

Update on the WHO Classification of Acute Myeloid Leukemia. Kaaren K. Reichard, MD Mayo Clinic Rochester

Laboratory Service Report

Case #1. 65 yo man with no prior history presented with leukocytosis and circulating blasts: Bone marrow biopsy was performed

Precision Oncology: Experience at UW

Provide your cancer patients personalized treatment options with ClariFind

BRCAplus. genetic testing for hereditary breast cancer

Acute Myeloid Leukemia with RUNX1 and Several Co-mutations

Introduction of an NGS gene panel into the Haemato-Oncology MPN service

Management of Myelodysplastic Syndromes

Supporting Information

APPLICATIONS OF NEXT GENERATION SEQUENCING IN SOLID TUMORS - PATHOLOGIST PROSPECTIVE

Supplementary Appendix

DISCLOSURE Luca Malcovati, MD. No financial relationships to disclose

Clinically Useful Next Generation Sequencing and Molecular Testing in Gliomas MacLean P. Nasrallah, MD PhD

Initial Diagnostic Workup of Acute Leukemia

New drugs in Acute Leukemia. Cristina Papayannidis, MD, PhD University of Bologna

Chi sono i candidati agli inibitori di JAK2

What is the status of the technologies of "precision medicine?

Challenges and Opportunities for Digital PCR in the Cancer CLIA Laboratory The Moffitt Cancer Center Experience

New Directions in Aplastic Anemia

ONCO-HU TM MICE FOR IMMUNOTHERAPEUTIC DRUG DISCOVERY. Brian W. Soper, Ph.D. Senior Technical Information Scientist

Reporting cytogenetics Can it make sense? Daniel Weisdorf MD University of Minnesota

Concomitant WT1 mutations predicted poor prognosis in CEBPA double-mutated acute myeloid leukemia

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION

Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

MDS/MPN: What it is and How it Should be Treated?

Coverage Determinations Colorectal Carcinoma

Prior Authorization Required: Additional Information:

SUPPLEMENTAL APPENDIX METZELER ET AL.: SPECTRUM AND PROGNOSTIC RELEVANCE OF DRIVER GENE MUTATIONS IN ACUTE MYELOID LEUKEMIA

Next Generation Sequencing in Clinical Practice: Impact on Therapeutic Decision Making

Family Assessment. Objectives. Comprehensive Family History Important Inexpensive Underutilized genetic tool

Genomic Medicine: What every pathologist needs to know

Hematology Fusion/Expression Profile

SureSelect Cancer All-In-One Custom and Catalog NGS Assays

DNA Genetic Cancer Risk Test. Test Report

Clinical Grade Biomarkers in the Genomic Era Observations & Challenges

Molecular Advances in Hematopathology

Utilizing Humanized NSG Mice to Evaluate Drug Efficacy in Immuno-Oncology

Clinical Grade Genomic Profiling: The Time Has Come

Fluxion Biosciences and Swift Biosciences Somatic variant detection from liquid biopsy samples using targeted NGS

Diagnostic Molecular Pathology of Myeloid Neoplasms

Enabling Personalized

MOLECULAR SERVICES. mlabs.umich.edu

Deep Learning Analytics for Predicting Prognosis of Acute Myeloid Leukemia with Cytogenetics, Age, and Mutations

BHS Annual Meeting

Supplementary Figure 1. Cytoscape bioinformatics toolset was used to create the network of protein-protein interactions between the product of each

CHMP Oncology Working Party Workshop on: Histology Independent Indications in Oncology. Non-clinical models: Tumour Models - Proof of Concept

Changing AML Outcomes via Personalized Medicine: Transforming Cancer Management with Genetic Insight

Why Pathway/Network Analysis?

Changing the Culture of Cancer Care II. Eric Holland Fred Hutchinson Cancer Research Center University of Washington Seattle

Accel-Amplicon Panels

Transcription:

PDX Tumor Biology Pla0orms for Drug Advancement Neal Goodwin, Ph.D. Vice President Corporate Research & Development ngoodwin@championsoncology.com +1-530-392-2741

Champions Oncology: Global provider of transla9onal and personalized oncology services Israel New York Baltimore Houston San Diego Canada United Kingdom Korea ü Pa9ent derived xenogra=s, syngeneic models, cell line-derived xenogra=s ü Human immune system mice, hematology oncology, immuno-oncology ü Pre-clinical discovery, co-clinical development, custom model build ü Medical affairs team, >25 clinical trial center collabora9ve network

PDX: conserve human tumor biology Human tumor Champions TumorGra= model Parent tumor PDX model Garcia, P.L. et al. PLoS One, 2013. 8(10): e78183 DeRose, Y.S. et al. Nat Med, 2011. 17(11): p.1514-20 Chou, J. et al. PLoS One, 2013. 8(11): e79874 Gao, H et al. Nat Med 2015. 21(11): p.1318-1325 Parent tumor PDX model Parent tumor Histology An,gen expression Driver muta,ons Gene expression PDX model Parent tumor PDX model ü Retain histological/pathological micro-architecture and cyto-structure of parental tumor ü Retain expression of important tumor an]gens; e.g. surface receptors, immune an]gens ü Retain primary driver muta]ons and gene expression pa_erns ü Heterogeneous tumor biology represen]ng cancer pa]ent popula]ons ü Ideal for simula]ng co-clinical trials

Deep experience in personalized oncology >2000 implants across mul9ple solid tumor types 284 medical centers/hospitals 928 oncologists and surgeons >500 drug/drug combina9ons evaluated (experimental/soc) 2590 drug/drug combina9on screens (experimental/soc)

Champions TumorGra= predic9ve power: High degree of correla9on between pa9ent response and response corresponding PDX Davies et al. EACR 2016

Query by Molecular annota9ons Clinical data Pa9ent treatment history SoC screens in TumorGra=s Select the most relevant models Histology Growth curves Tissue microarrays Champions TumorGra= database Large searchable online collec]on of models Full annota]on with Whole Exome and RNA sequencing data for >500 models Select models deep sequenced for immuno-epitopes Searchable database With comprehensive annota9ons, users can: Compare cohorts of wellcharacterized models Build complex queries Have bioinforma9cs specialists assist with custom queries Save search results for future use Export data

Champions breast cancer TumorGraIs Breast cancer cohorts by ER/PR/HER2 subtype (numbers of models) BRCA gene status in breast cancer models BRCA mutacon status No. of models BRCA1 mutated 5 BRCA2 mutated 3 BRCA-like mutated 29 BRCA-like genes evaluated: ATM ATR BARD1 BLM BRCA1 BRCA2 BRIP1 CDK12 CHEK1 CHEK2 EMSY FANCA FANCB FANCC FANCD2 FANCE FANCF FANCG FANCI FANCL FANCM MRE11 NBN PALB2 PARP1 PARP2 PMS2 PTEN RAD51 RAD51B RAD51C RAD51D RAD52 RAD54L RPA1 Annotated with pa4ent treatment history and molecular characteriza4on

New Prostate PDX models- Clinical data Model Tumor status Harvest site Histology Tumor grade Diagnosis Treatment history Disease stage Age Ethnicity CTG-2427 Metasta]c Rib bone Adenocarcinoma Poorly differen]ated Recurrent Pretreated III 67 Caucasian CTG-2428 Metasta]c Bone Adenocarcinoma Poorly differen]ated Recurrent Pretreated III 67 Caucasian CTG-2429 Metasta9c Bone Not available Poorly differen9ated Recurrent Pretreated Not available 84 Caucasian CTG-2440 Metasta]c Bone Not available Poorly differen]ated Recurrent Pretreated Not available 74 Caucasian CTG-2441 Metasta]c Bone Adenocarcinoma Poorly differen]ated Recurrent Pretreated IV 71 Caucasian

New prostate PDX models Model Pre/Post-collec]on Drug/Drug combina]on Response Dura]on (months) CTG-2427 Pre-collec]on Leuprolide Responded 24 CTG-2427 Pre-collec]on Leuprolide/Bicalu]mide Responded 5 CTG-2427 Post-collec]on Enzalu]mide/Sipuleucel-T/Indoximod No response N/A CTG-2428 Pre-collec]on Leuprolide Responded 24 CTG-2428 Pre-collec]on Leuprolide/Bicalu]mide Responded 5 CTG-2428 Pre-collec]on Enzalu]mide/Sipuleucel-T/Indoximod No response N/A CTG-2428 Post-collec]on Abiraterone No response N/A CTG-2428 Post-collec]on Docetaxel Responded 6 CTG-2428 Post-collec]on Carbopla]n/Docetaxel Not available Not available CTG-2429 Pre-collec]on None N/A N/A CTG-2429 Post-collec]on Abiraterone Responded 3 CTG-2440 Pre-collec]on Abiraterone Responded 3 CTG-2440 Post-collec]on Docetaxel Not available Not available CTG-2441 Pre-collec]on None N/A N/A CTG-2441 Post-collec]on Abiraterone Responded 3 CTG-2441 Post-collec]on Enzalu]mide Not available Not available

Prostate cancer models: IHC

EGFR, ALK, ROS1, HER2 mutant NCSLC Models Model Tumor type Model status EGFR status ALK status ROS1 status Tumor status CTG-0742 NSCLC Established Mutated (A1158V) Not available Not available Metasta9c CTG-1082 NSCLC Established Mutated (G719A; L861Q) Not available Not available Metasta9c CTG-1212 NSCLC Established Mutated (N632fs) Not available Not available Metasta9c CTG-2529 NSCLC Established Wild type ALK (+) Not available Primary CTG-2531 NSCLC Established Mutated (L747_T751del) ALK (-) ROS1 (-) Primary CTG-2532 NSCLC Established Wild type Not available ROS1 (+) Metasta9c CTG-2533 NSCLC Established Wild type ALK (+) Not available Metasta9c CTG-2534 NSCLC Established Mutated (G719C; S768I) ALK (-) ROS1 (-) Metasta9c CTG-2535 NSCLC Established Mutated (E746_A750del) ALK (-) ROS1 (-) Primary CTG-2537 NSCLC Development Mutated (L858R; T790M) ALK (-) ROS1 (-) Local metasta9c CTG-2538 NSCLC Established Wild type ALK (+) Not available Metasta9c CTG-2543 NSCLC Development Wild type (but Her 2 Ex20 Ins) Wild type Not available Metasta9c CTG-2544 NSCLC Established Wild type ALK (+) Not available Primary CTG-2545 NSCLC Development Mutated (Exon19del) ALK (-) ROS1 (-) Primary CTG-2548 NSCLC Established Mutated (L858R) ALK (-) ROS1 (-) Primary CTG-2549 NSCLC Development Mutated (L858R) ALK (-) ROS1 (-) Metasta9c CTG-1316 NSCLC Established Mutated (L480fs) Not available Not available Primary

Champions platinum pretreated ovarian TumorGrafts All models developed from patients clinically treated with a platinum agent. Several models developed from patients also treated clinically with targeted inhibitors in addition to platinum agents Lines of therapy 100 Responsiveness 3 (12%) >3 (12%) 1 (38%) %DT/DC 75 50 25 0-25 2 (38%) -50-75 -100 Carboplatin/Paclitaxel screens (n=21) 26 platinum pretreated ovarian models available Confidential

Biopsy or Surgery PDX Co-Clinical Trial Schema & Human Immune System (HIS) Program Update Treatment with therapy A Progression Treatment Progression Treatment Progression with with therapy B therapy C Treatment with therapy D Tissue implanted into immunodeficient mice Engrapment/Expansion (~14 weeks) TumorGrap is tested with therapy A, B, C and D Report pa]ent response to all therapies Report results TumorGrap results are correlated with pa]ent response to all therapies ü Three IST Programs Underway: TNBC, SCHNC, Sarcoma ü Three Pharma sponsored co-clinical programs underway Phase I-Phase III ü 1st genera9on NOG mouse with HLA-1 matched umbilical chord (500+ mice per month opera9onal >3 yrs) ü 2 nd ggenera9on hgm-csf/hil3-nog HLA-1 matched umbilical chord (100 s mice per month opera9onal) ü 2 nd genera9on NOG with IO post or pre-treated POS PDX models with HLA-1 matched umbilical chord (development) ü 2 nd genera9on NOG with IO post or pre-treated PDX models with autologous humaniza9on (development)

TNBC Co-Clinical IST Trial Schema-16 new Models neoadvuvant, post-neoadjuvant, recurrent/metastatic Biopsy or Surgery All pa4ent treatments are MD-directed without knowledge of TumorGra> results. Treatment with therapy A Treatment with therapy B Treatment with therapy C Progression Progression Progression Treatment with therapy D Tissue implanted into immunodeficient mice Engra>ment/ Expansion (~14 weeks) PDX is tested with therapy A, B, C and D Report pa4ent response to all therapies Report results PDX results are correlated with pa4ent response to all therapies Three IST Programs Underway: TNBC, Head & Neck, Sarcoma Three Pharma sponsored co-clinical programs underway Phase I-Phase III

Cubic Millimeters 1000 800 600 400 200 0 CTG-0743 NSCLC Response to Monotherapy Agent Vehicle Agent 0 10 20 30 40 50 60 Day 24 Studies Using 9 Models Agent Tumor Growth Inhibi?on: 72% Tested Agent decreases regulatory T cells (CD4/FOXP3) in whole blood of humanized mice. %Helper %Cytotoxic Lymphoctyes T-cells T-Cells %Treg Vehicle Average 57.5 9.5 13.1 SEM 5.8 1.6 2.7 Agent Average 60.5 10.1 6.5* SEM 3.5 3.8 0.7 Myeloid % DendriAc cells %Monocytes %Granulocytes Vehicle Average 72.9 23.8 31.8 SEM 10.2 9.4 12.8 Agent Average 59.6 14.9 36.6 SEM 9.8 2.4 3.2 * p< 0.01, compared to Vehicle

hgm-csg/hil-3-nog -Bone Marrow Lineage Analysis: CD34+ CD38- CD33+ Mul9potent Myeloid Progenitors (>20 weeks post engra=ment) CD34 CD33+ CD123+ CD38 CD33 Tim-3 CD123

NOG and hgm-csf/hil3-nog hucd45 UBC-derived CD34+ engra=ment 15 weeks % h u C D 4 5 + c e lls 1 0 0 7 5 5 0 2 5 E n g ra ftm e n t in N O G m ic e D o n o r 1 D o n o r 2 D o n o r 3 D o n o r 4 D o n o r 5 % h u C D 4 5 + c e lls 1 0 0 7 5 5 0 2 5 E n g ra ftm e n t in N O G - E X L m ic e D o n o r 6 D o n o r 7 D o n o r 8 D o n o r 9 0 8 W e e k s 1 0 w e e k s 1 2 W e e k s 8 W e e k s 1 0 w e e k s 1 2 W e e k s 8 W e e k s 1 0 w e e k s 1 2 W e e k s 8 W e e k s 1 0 w e e k s 1 2 W e e k s 8 W e e k s 1 0 w e e k s 1 2 W e e k s 0 8 w e e k s 1 0 w e e k s 1 2 w e e k s 8 w e e k s 1 0 w e e k s 1 2 w e e k s 8 w e e k s 1 0 w e e k s 1 2 w e e k s 8 w e e k s 1 0 w e e k s 1 2 w e e k s

Engra=ment and lineage development in hgm-csf/hil3-nog mice - 15 weeks % h u C D 4 5 + c e lls 1 0 0 7 5 5 0 % CD45 Cells 15 w eek engraftm ent in NO G - EXL m ice C in NO G - EXL m ice at 15 w eeks % C D3 CD3 in NO Gof - EXL CD45 m ice at 15 Cells w eeks % CD19 of CD45 Cells D onor 6 1 0 0 D onor 6 D onor 7 D onor 7 D onor 8 1 0 0 D onor 6 D onor 8 D onor 9 9 0 D onor 7 D onor 9 8 0 7 0 D onor 8 8 0 6 0 D onor 9 5 0 5 0 6 0 4 0 3 0 4 0 % h u C D 3 + c e lls % h u C D 1 9 + c e lls 2 5 2 0 2 0 1 0 0 D o n o r 6 D o n o r 7 D o n o r 8 D o n o r 9 0 D o n o r 6 D o n o r 7 D o n o r 8 D o n o r 9 0 D o n o r 6 D o n o r 7 D o n o r 8 D o n o r 9 % h u C D 3 + c e lls 2 5 2 0 1 5 1 0 C D 3 3 in N O G - E X L m ic e a t % CD33 of CD45 Cells D onor 6 D onor 7 D onor 1 8 0 0 D onor 9 8 0 6 0 4 0 % h u C D 4 5 + C D 3 + C D 4 + c e lls % CD4 of CD3 Cells % CD8 of CD3 Cells C D 4 in N O G - E X L m ic e a t D onor 6 8 0 D onor 7 D onor 8 D onor 9 6 0 4 0 2 0 % h u C D 4 5 + C D 3 + C D 8 + c e lls C D8 in NO G - EXL m ice at 15 w eeks D onor 6 D onor 7 D onor 8 D onor 9 5 2 0 0 D o n o r 6 D o n o r 7 D o n o r 8 D o n o r 9 0 D o n o r 6 D o n o r 7 D o n o r 8 D o n o r 9 0 D o n o r 6 D o n o r 7 D o n o r 8 D o n o r 9

% h u C D 3 + c e lls % h u C D 3 3 + c e lls 1 5 0 1 0 0 5 0 4 0 3 0 2 0 1 0 0 4 0 3 0 2 0 1 0 0 8 w e e k 1 0 w e e k 1 2 W e e k 8 w e e k 1 0 w e e k 1 2 w e e k Engra=ment and lineage development in NOG mice - 15 weeks % CD45 Cells C D 3 d e v e lo p m e n t in N O G m ic e 8 w e e k 1 0 w e e k 1 2 W e e k 8 w e e k 1 0 w e e k 1 2 W e e k 8 w e e k 1 0 w e e k 1 2 W e e k % CD33 C Dof 3 3 CD45 in N O G mcells ic e CD8+ % in CD4 NO G of m ice CD3 at 15 Cells w eeks CD4+ % in CD8 NO G of m ice CD3 at 15 Cells w eeks D o n o r 1 1 0 0 1 5 0 D o n o r 2 1 5 w e e k 8 w e e k 1 0 w e e k 1 2 w e e k 1 5 w e e k 8 w e e k 1 0 w e e k 1 2 w e e k 1 5 w e e k 8 w e e k 1 0 w e e k 1 2 w e e k 1 5 w e e k 8 w e e k 1 0 w e e k 1 2 w e e k 1 5 w e e k D o n o r 1 D o n o r 2 D o n o r 3 D o n o r 4 D o n o r 5 8 w e e k 1 0 w e e k 1 2 W e e k D o n o r 3 D o n o r 4 D o n o r 5 % h u C D 4 5 + C D 3 + C D 8 + c e lls % h u C D 3 + c e lls 1 5 0 1 0 0 8 0 6 0 4 0 2 0 0 5 0 4 0 3 0 2 0 1 0 0 D o n o r 1 8 w e e k 1 0 w e e k 1 2 W e e k D o n o r 2 % CD3 of CD45 Cells C D 3 d e v e lo p m e n t in N O G m ic e 8 w e e k 1 0 w e e k 1 2 W e e k D o n o r 3 8 w e e k 1 0 w e e k 1 2 W e e k D o n o r 4 8 w e e k 1 0 w e e k 1 2 W e e k D o n o r 5 Donor 1 Donor 2 Donor 3 Donor 4 Donor 5 8 w e e k 1 0 w e e k 1 2 W e e k D o n o r 1 D o n o r 2 D o n o r 3 D o n o r 4 D o n o r 5 % h u C D 4 5 + C D 3 + C D 4 + c e lls % h u C D 1 9 + c e lls 1 0 0 1 4 0 1 2 0 1 0 0 5 0 4 0 3 0 2 0 1 0 0 8 0 6 0 4 0 2 0 0 8 w e e k 1 0 w e e k 1 2 W e e k s D o n o r 1 % C DCD19 1 9 d e v e lof p mcd45 e n t in N OCells G m ic e 8 w e e k 1 0 w e e k 1 2 W e e k s 8 w e e k D o n o r 2 D o n o r 3 1 0 w e e k 1 2 W e e k s 8 w e e k 1 0 w e e k 1 2 W e e k s 8 w e e k 1 0 w e e k 1 2 W e e k s D o n o r 4 D o n o r 5 Donor 1 Donor 2 Donor 3 Donor 4 Donor 5 D o n o r 1 D o n o r 2 D o n o r 3 D o n o r 4 D o n o r 5

AML modeling workflow 175 cgy whole body irradia9on Young adult NOG mice FACS analysis for CD45/CD33/CD3 Cohort of mice sent for comprehensive immunophenotyping at study start Tail vein injec9on of up to 5 x 10 6 human AML cells 1-2x weekly clinical observa9on Assessment of AML engra=ment Screen against experimental AML agents FACS analysis of: splenocytes whole blood bone marrow CD45/CD33/CD3 Sanchez et al. Leukemia. 2009 Nov;23(11):2109-17 Wunderlich et al. Blood. 2014 Jun 12;123(24):e134-44 12 weeks 1-4 weeks Up to 42 days on study dosing and clinical observa9on

Hematology Oncology Program Status ü Established pres9gious clinical trial site collaborations ü Executed 14 ml AML co-clinical feasibility study Co-Clinical modeling of patients throughout disease progression Matched patient PDX-directed trial opportunity 100 s of mice per pa9ent sample Ideal for studying matched cohort of pa9ent phenotype/genotype Launched sponsored Phase II-III co-clinical trial ü High-volume AML leukapheresis patient modeling program Characterized models that provide for up to 10,000 P1 mice on study 40 characterized AML models available for sponsored studies ü 7 ALL patient models available (5 B-cell; 2 T-Cell) ü Initiating multiple myeloma & CLL development program

AML leukapheresis engra=ment summary Model BM engrapment (%) PB engrapment (cells/µl) % engraped mice at sac (BM) % of engraped mice at sac (PB) CTG-2225 11 9 89 22 CTG-2226 59 173 80 80 80 3000 CTG-2227 9 2083 90 90 CTG-2228 23 38 100 22 CTG-2229 32 2386 100 100 CTG-2230 7 2411 71 57 CTG-2231 12 13 80 22 CTG-2232 32 95 100 100 CTG-2234 31 28 100 35 BM engrapment (%) 70 60 50 40 30 20 10 2500 2000 1500 1000 500 PB engrapment (cells/µl) CTG-2235 42 258 100 100 0 0 CTG-2236 57 196 100 90 CTG-2237 9 149 80 50 CTG-2225 CTG-2226 CTG-2227 CTG-2228 CTG-2229 CTG-2230 CTG-2231 CTG-2232 CTG-2234 CTG-2235 CTG-2236 CTG-2237 CTG-2238 CTG-2239 CTG-2240 CTG-2242 CTG-2243 CTG-2238 51 37 100 100 CTG-2239 51 481 100 90 CTG-2240 72 686 100 100 CTG-2242 11 23 60 60 BM engra=ment PB engra=ment CTG-2243 37 57 75 27 PB = peripheral blood BM = bone marrow

CTG-2229 IDH1 R132C: WB 3-weeks post inocula9on Diagnosis M1 without matura9on; Gleevac refractory Cytogene]cs: 46,XY,del(2)(p13p?23),t(4;13)(q31;q34),add(4)(q?25),del(6) (q13q25),t(9;22)(q34;q11.2),del(10)(q24),add(16)(q24)[20] Flow Cytometry: CD13 variable +, CD34 bright + Muta]ons: FLT3 wt, NPM1 wt, IDH1 mt, CRUX mt Engrapment Data: WB=2836 counts/µl; BM=32%, Take Rate = 100%; Survival = 8+ weeks TruSight Myeloid Sequencing Panel Gene List ABL1 CEBPA HRAS MYD88 SF3B1 ASXL1 CSF3R IDH1 NOTCH1 SMC1A ATRX CUX1 IDH2 NPM1 SMC3 BCOR DNMT3A IKZF1 NRAS SRSF2 BCORL1 ETV6/TEL JAK2 PDGFRA STAG2 BRAF EZH2 JAK3 PHF6 TET2 CALR FBXW7 KDM6A PTEN TP53 CBL FLT3 KIT PTPN11 U2AF1 CBLB GATA1 KRAS RAD21 WT1 CBLC GATA2 MLL RUNX1 ZRSR2 CDKN2A GNAS MPL SETBP1 Total lymphocytes mucd45 + /hucd45 + CD33 + CD14 - CD33 + CD15 + CD15 + CD14 - CD33 + CD123 + CD33 + CD7 - Derolf et al. Leuk Lymphoma. 2008 Jul;49(7):1279-91

CTG-2235 JAK2 V617F: WB 7-weeks post inocula9on Diagnosis AML-MLD with prior MPN Cytogene]cs: 46,XY,del(20)(q11.2q13.1)[20] Flow Cytometry: CD10-, CD13+, CD14-, CD15-, CD19-, CD20-, CD33 var +, CD34+, CD56-, CD64-, CD79-, HLA-DR+, TdT- Muta]ons: FLT3 wt, NPM1 wt, JAK2 mt, PTPN11 mt Engrapment Data: WB=257 counts/µl; BM=42%, Take Rate = 100%; Survival = 6+ weeks TruSight Myeloid Sequencing Panel Gene List ABL1 CEBPA HRAS MYD88 SF3B1 ASXL1 CSF3R IDH1 NOTCH1 SMC1A ATRX CUX1 IDH2 NPM1 SMC3 BCOR DNMT3A IKZF1 NRAS SRSF2 BCORL1 ETV6/TEL JAK2 PDGFRA STAG2 BRAF EZH2 JAK3 PHF6 TET2 CALR FBXW7 KDM6A PTEN TP53 CBL FLT3 KIT PTPN11 U2AF1 CBLB GATA1 KRAS RAD21 WT1 CBLC GATA2 MLL RUNX1 ZRSR2 CDKN2A GNAS MPL SETBP1 Total lymphocytes mucd45 + /hucd45 +- CD33 + CD117 + CD33 + CD123 + -

100 SOC Response CTG-2229 & CTG-2235 Cytarabine Response 14 days post treatment initiation %CD33 cell/total lymphocytes (+/- SD) 10 vehicle control cytarabine 50 mg/kg i.v. qd X 5 1 CTG-2229 WB CTG-2229 WB CTG-2235 WB CTG-2235 WB sample

CTG-2241 De novo AML inoculated in juvenile hgmcsf/hil3-nog mice-leukapheresis Diagnosis AML with gene9c abnormali9es Cytogene]cs: 47,XX,+8[15], trisomy 8 Muta]ons: Clinical: bcr/abl1 nega9ve; PML-RARA nega9ve; FLT3-ITD posi9ve, NPM1 posi9ve, CEBPA not reported. TruSight: JAK2 V617F, NPM1 L287_W288fs, Ini]al Peripheral WBC: 221 Ini]al Peripheral Blood Blast Count: 90% Mouse Blast Engrapment Data : WB=82 cells/µl (28%); BM= 4013 cells/µl (93%), Spleen = 2401 cells/µl (73%). Take Rate = 92% (12/13); Survival = 20+ weeks; does not engra= in NOG TruSight Myeloid Sequencing Panel Gene List ABL1 CEBPA HRAS MYD88 SF3B1 ASXL1 CSF3R IDH1 NOTCH1 SMC1A ATRX CUX1 IDH2 NPM1 SMC3 BCOR DNMT3A IKZF1 NRAS SRSF2 BCORL1 ETV6/TEL JAK2 PDGFRA STAG2 BRAF EZH2 JAK3 PHF6 TET2 CALR FBXW7 KDM6A PTEN TP53 CBL FLT3 KIT PTPN11 U2AF1 CBLB GATA1 KRAS RAD21 WT1 CBLC GATA2 MLL RUNX1 ZRSR2 CDKN2A GNAS MPL SETBP1

CTG-2241 De novo AML engradment 20 weeks post inocula9on Bone Marrow Spleen Peripheral Blood mucd45+hucd45+ hucd33+hucd45+ hucd33+hucd123+ hucd33+hucd7+ hucd33+humicl+

CTG-2241 De novo AML engradment 20 weeks post inocula9on hucd33 IHC, H&E, FACS bone marrow 99% hucd33 0% hucd33

CTG-2222 INV16 mt engra=ment inoculated in juvenile NOG mice-14 ml co-clinical study Diagnosis De novo AML with balanced transloca9ons/inversions; MS - acute monocy9c Cytogene]cs: 47,XY,inv(16)(p13.lq22),+22 [17]/46,XY[3].nuc ish(dss23,egr1)x2[l12],(d7zl,d7s486)x2 [113],(RUNXl Tl,RUNXl)x2 [11OJ, (KMT2Ax2) [109],(CBFBx2)(5'CBFB sep 3'CBFBx1)[91/111] Flow Cytometry: CD13 variable +, CD34 bright + Muta]ons: FISH posi9ve for CBFB gene rearrangement in 91/111 interphase cells examined (82.0%) FISH nega9ve for monosomy 7, Sq31 and 7q31 dele9ons, and nega9ve RUNX1T1/RUNX1 and KMT2A gene rearrangements Engrapment Data: WB=1590 counts/µl; BM=31%, Take Rate = 100%; Survival = 24+ weeks

CTG-2222 INV16 mt engra=ment in juvenile NOG mice 14 ml co-clinical study

CTG-2224: 19 week post BM engra=ment in neonate NOG mice Diagnosis AML with recurrent gene9c abnormali9es/aml with gene muta9ons; MS - acute monocy9c Cytogene]cs: 46,XY[20] (normal) Flow Cytometry: CD13 variable +, CD34 bright + Muta]ons: PML-RARA nega9ve. NPM1 posi9ve. bcr/abl nega9ve. FLT3-ITD Engrapment Data: WB=2939 counts/µl; BM=43%, Take Rate = 100%; Survival = 19+ weeks

CTG-2224: 19 week post BM engra=ment inoculated in neonate NOG mice-14 ml co-clinical study hucd45 + mucd45 + hucd33 + hucd3 +/-

CTG-2224: 19 week post BM engra=ment in neonate NOG mice 14 ml co-clinical study 1000000 100 total hucd33+ cells 100000 10000 1000 100 % hucd33 /total leukocytes 10 1 0.1 10 0.01

CTG-2357 AML with recurrent gene9c abnormali9es inoculated in neonate NOG, juvenile NOG and hgm-csf/hil3-nog mice 14 ml co-clinical study Diagnosis AML with recurrent gene9c abnormali9es Cytogene]cs: 46,XY[20] Muta]ons: Next Genera9on Sequencing Results, posi9ve: FLT3-ITD, NPM1, TP53, RUNX1, CEBPA (single), nega9ve: PML/RARA Engrapment Data: Model Bone Marrow % Spleen % Peripheral Blood (counts/µl) Take Rate % Timepoint (weeks) # Cells Inoculated Neonate NOG 37.2 7.2 3735 92 20 2.E+05 Juvenile-NOG 14 0.25 169 42 12 5.E+05 Juvenile hgm-csf/hil3-nog 51.6 7.31 977 100 12 5.E+05

CTG-2357 AML with recurrent gene9c abnormali9es EngraDment in neonate NOG mice

CTG-2357 AML with recurrent gene9c abnormali9es Bone marrow engradment in juvenile NOG and hgm-csf/hil3-nog mice mucd45-hucd45+ hucd3-hucd33+

CTG-2357 AML with recurrent gene9c abnormali9es Splenocyte engradment in juvenile NOG and hgm-csf/hil3-nog mice mucd45-hucd45+ hucd3-hucd33+

CTG-2357 AML with recurrent gene9c abnormali9es Peripheral blood engradment in juvenile NOG and hgm-csf/hil3-nog mice mucd45-hucd45+ hucd3-hucd33+

Considera9ons Adapted from Theocharides et al. 2016. Haematologica 101: 5-19

Adapted from Theocharides et al. 2016. Haematologica 101: 5-19 Host Considera9ons i.e. hil2-nog NK cells

PDX Tumor Biology Pla0orms for Drug Advancement Neal Goodwin, Ph.D. Vice President Corporate Research & Development ngoodwin@championsoncology.com +1-530-392-2741