Arterial-Cardiac Interaction: The Concept and Implications

Similar documents
Mechanisms of heart failure with normal EF Arterial stiffness and ventricular-arterial coupling. What is the pathophysiology at presentation?

Clinical application of Arterial stiffness. pulse wave analysis pulse wave velocity

Which method is better to measure arterial stiffness; augmentation index, pulse wave velocity, carotid distensibility? 전북의대내과 김원호

Chapter 01. General introduction and outline

Measurement of Arterial Stiffness: Why should I measure both PWA and PWV?

Effects of Renin-Angiotensin System blockade on arterial stiffness and function. Gérard M. LONDON Manhès Hospital Paris, France

Coronary artery disease (CAD) risk factors

ARTERIAL STIFFNESS AND CORONARY ARTERY DISEASE

ASSOCIATION OF SYSTEMIC INFLAMMATION WITH ARTERIAL STIFFNESS IN HYPERTENSION

A Comparative Study of Methods of Measurement of Peripheral Pulse Waveform

The arterial system has a dual function:

Pathophysiology of Vascular Function in CKD. INSERM U970 Hôpital Européen Georges Pompidou Paris

Can Arterial Stiffness Be Reversed? And If So, What Are the Benefits?

Pulse pressure as a haemodynamic variable in systolic heart failure Petrie, Colin James

IS PVR THE RIGHT METRIC FOR RV AFTERLOAD?

Central Pressures and Prehypertension

Advanced imaging of the left atrium - strain, CT, 3D, MRI -

In epidemiology studies, nearly 50% of patients with heart

Arterial function and longevity Focus on the aorta

Arterial stiffness and central BP as goals for antihypertensive therapy in pre- and elderly. Piotr Jankowski

TODAY S TOPIC Blood Pressure & Pulse Wave Measurement Combined in One Procedure Re-classification of Risk Patients

Pulse pressure, reflecting the pulsatile component of blood

LV geometric and functional changes in VHD: How to assess? Mi-Seung Shin M.D., Ph.D. Gachon University Gil Hospital

Arterial Stiffness: pathophysiology and clinical impact. Gérard M. LONDON Manhès Hospital Fleury-Mérogis/Paris, France

Evaluation of Arterial Stiffness by Echocardiography: Methodological Aspects

RV dysfunction and failure PATHOPHYSIOLOGY. Adam Torbicki MD, Dept Chest Medicine Institute of Tuberculosis and Lung Diseases Warszawa, Poland

HTA ET DIALYSE DR ALAIN GUERIN

Relationship between Arterial Stiffness and the Risk of Coronary Artery Disease in Subjects with and without Metabolic Syndrome

Left atrial function. Aliakbar Arvandi MD

The reproducibility of central aortic blood pressure measurements in healthy subjects using applanation tonometry and sphygmocardiography

The importance of blood pressure as a determinant of

Measurement and Analysis of Radial Artery Blood Velocity in Young Normotensive Subjects

Age-related changes in cardiovascular system. Dr. Rehab Gwada

Summary. Introduction

Cardiovascular disease is the major

Determination of age-related increases in large artery stiffness by digital pulse contour analysis

Nomogram of the Relation of Brachial-Ankle Pulse Wave Velocity with Blood Pressure

Research Article The Age-Dependent Contribution of Aortic Incident and Reflected Pressure Waves to Central Blood Pressure in African-Americans

Mædica - a Journal of Clinical Medicine

The Conduit Artery Functional Endpoint (CAFE) study in ASCOT

Changes in Blood Pressure and Vascular Physiology: Markers for Cardiovascular Disease

T he association between arterial dysfunction and left

Cardiovascular Imaging Endpoints in Oncology Clinical Trials

BIPN100 F15 Human Physiol I (Kristan) Lecture 14 Cardiovascular control mechanisms p. 1

Differences in Effects of Age and Blood Pressure on Augmentation Index

Smoking is a major risk factor in the development and

Cardiovascular hemodynamics in the stress echo lab with open-source software

A comparison of diabetic and nondiabetic subjects

Left Atrial Volume:?Physiologic Model for Cardiovascular Disease Risk.

Diverse Techniques to Detect Arterial Stiffness

Diastology State of The Art Assessment

Effects of Age on Arterial Stiffness and Blood Pressure Variables in Patients with Newly Diagnosed Untreated Hypertension

3 Aging, Arterial Stiffness,

Low fractional diastolic pressure in the ascending aorta increased the risk of coronary heart disease

Selected age-associated changes in the cardiovascular system

Aortic Augmentation Index in Patients With Peripheral Arterial Disease

Arterial Pressure in CKD5 - ESRD Population Gérard M. London

...SELECTED ABSTRACTS...

Biomechanics of Ergometric Stress Test: regional and local effects on elastic, transitional and muscular human arteries

Segmental Tissue Doppler Image-Derived Tei Index in Patients With Regional Wall Motion Abnormalities

Journal of Hypertension 2008, 26:

Left ventricular hypertrophy: why does it happen?

John Feely deceased. Received 21 October 2008 Revised 5 June 2009 Accepted 28 June 2009

Brachial artery (BA) pulse pressure (PP) is a strong and

Does it matter where we measure blood pressure?

Blood Pressure Response Under Chronic Antihypertensive Drug Therapy

Dominic Y. Leung, MBBS, PhD; Melissa Leung, MBBS, PhD Department of Cardiology, Liverpool Hospital, University of New South Wales, Sydney, Australia

Relationship between Radial and Central Arterial Pulse Wave and Evaluation of Central Aortic Pressure Using the Radial Arterial Pulse Wave

Advance Publication by-j-stage

chap ter 01 General introduction

The importance of left atrium in LV diastolic function

Multimodality Imaging of Anomalous Left Coronary Artery from the Pulmonary

Sex Differences in Arterial Stiffness and Ventricular-Arterial Interactions

BIOL 219 Spring Chapters 14&15 Cardiovascular System

Η σημασία της αρτηριακής σκληρίας στην εκτίμηση της διαστολικής δυσλειτουργίας στην υπέρταση. Θεραπευτικές παρεμβάσεις

Heart Failure with Preserved Left Ventricular Ejection Fraction. (HFpEF)

Clinical usefulness of the second peak of radial systolic blood pressure for estimation of aortic systolic blood pressure

Olga Vriz 1, Caterina Driussi 2, Salvatore La Carrubba 3, Vitantonio Di Bello 4, Concetta Zito 5, Scipione Carerj 5 and Francesco Antonini- Canterin 6

Patrick Segers 1, Nikos Stergiopulos 2, Pascal Verdonck 1 and Nico Westerhof 3

Conflict of Interest Slide

Disclosures. Afterload on the PV loop. RV Afterload THE PULMONARY VASCULATURE AND ASSESSMENT OF THE RIGHT VENTRICLE

Assessment of Arterials Functions: Is Pulse Wave Velocity ready forprime Time. Gérard M. LONDON INSERM U970 Hopital Georges Pompidou Paris, France

Cardiac Output MCQ. Professor of Cardiovascular Physiology. Cairo University 2007

Strain/Untwisting/Diastolic Suction

Combined Ventricular Systolic and Arterial Stiffening in Patients With Heart Failure and Preserved Ejection Fraction

Director of the Israeli Institute for Quality in Medicine Israeli Medical Association July 1st, 2016

Special Lecture 10/28/2012

Pulse wave velocity, augmentation index and arterial age in students

Πρώιμη αγγειακή γήρανση στην υπέρταση: διάγνωση και αντιμετώπιση

Journal of Hypertension 2006, 24: a Department of Medicine, Uppsala University Hospital and b AstraZeneca R&D.

PRELIMINARY STUDIES OF LEFT VENTRICULAR WALL THICKNESS AND MASS OF NORMOTENSIVE AND HYPERTENSIVE SUBJECTS USING M-MODE ECHOCARDIOGRAPHY

A STUDY OF LEFT VENTRICULAR DIASTOLIC DYSFUNCTION IN HYPERTENSION Ravi Keerthy M 1

Departments of Cardiology and Vascular Surgery Michaelidion Cardiac Center University of Ioannina, Greece

The 2003 European Society of Hypertension/European

Pulse Pressure Amplification

Influence of physical effort on aortic stiffness in young male athletes

Laser Doppler Vibrometry for Assessment of Pulse Wave Velocity

Assessment of the Arterial Stiffness Index as a Clinical Parameter for Atherosclerotic Coronary Artery Disease

Managing cardiovascular risk with SphygmoCor XCEL

Review of Cardiac Imaging Modalities in the Renal Patient. George Youssef

Transcription:

DOI: 10.42/jcu.2011.19.2.62 blood travels faster, returns earlier, and boosts pressure in late systole. Therefore, vascular stiffening results in widening of the arterial pulse pressure (PP), high augmentation pressure, high augmentation index (AIx) and high pulse wave velocities (PWV). Because young subjects have good pressure amplification from the central to the peripheral, and elderly subjects do not, their central blood pressures (BP) differ even when they have the same peripheral BPs. 7-9) Elderly subjects have higher central BPs in similar peripheral BPs with younger sujects, that can cause pulsatile stress on the left ventricle (LV). There are several different methods of assessing arterial stiffness, some of which are more widely applicable than others. 10) The representative indices and surrogates of arterial stiffness are summerized in Table 1 and shown on Fig. 1. PWV is the speed at which the forward pressure wave is transmitted from the aorta through the vascular tree. 11) It is calculated by measuring the time taken for the arterial waveform to pass between two points a measured distance apart. The PWV has been validated and is reproducible, and has been widely applied as the gold standard of arterial stiffness measurement. 11) Pulse waveform analysis permits measurement of central systolic BP, central PP and AIx. 11)12) The arterial pressure waveform is a composite of the forward wave created by LV contraction and a reflected wave generated in the periphery, returning towards the heart. AIx is calculated as the ratio between augmentation pressure and central PP and is expressed as a percentage. 11) It is a complex composite measurement, derived from many important dypissn 1975-4612/ eissn 2005-9655 Copyright 2011 Korean Society of Echocardiography www.kse-jcu.org REVIEW J Cardiovasc Ultrasound 2011;19(2):62-66 Arterial-Cardiac Interaction: The Concept and Implications Chi Young Shim, MD, PhD Cardiology Division, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Seoul, Korea Vascular stiffening of the large arteries is a common feature of human aging. Increased aortic stiffness with age may contribute to pathological changes in the left ventricle and this can induce ventricular stiffening. Vascular-ventricular stiffening combined with abnormal arterial-cardiac interaction is considered an important pathophysiology of heart failure with a preserved ejection fraction. Here, I briefly review the concept and implications of arterial-cardiac interaction and this will pave the way to understanding and controlling heart failure with a preserved ejection fraction, which is more prevalent in the elderly. KEY WORDS: Aortic stiffness Left ventricle Heart failure. Introduction The circulatory system is a closed system. The heart and the vascular system interact to provide adequate blood flow throughout the body. This interaction of properties of the systolic ventricle, as a pump, and the vascular system, as a load, plays a critical role in determining cardiac output. Therefore, arterial-cardiac interaction, also known as ventricular-vascular interaction or ventricular-vascular coupling, is considered a central deteminant of net cardiovascular performance. 1-3) There has been much interest in the relationship among vascular stiffness, cardiac function, and cardiovascular diseases. The concept of arterial-cardiac interaction is important to understanding the pathophysiologies of heart failure, especially in patients with preserved ejection fraction. This review will focus on the concept and implications of arterial-cardiac interaction and the non-invasive methods available for its clinical assessment. Vascular Aging and Stiffening Vascular stiffening of the large arteries is a common feature of human aging and is exacerbated by many common disorders such as hypertension, diabetes mellitus, and renal disease. 4-6) The normal aorta delivers blood from the heart to the capillaries and cushions pulsations. 5) The arterial system in youth is a very effective conduit and a very efficient cushion. 5)6) In young subjects, the wave travels slowly in the distensible tube so that the reflected wave from the resistance artery boosts pressure during diastole. As the aorta ages and stiffens, 62 Received: June 1, 2011 Revised: June 13, 2011 Accepted: June 14, 2011 Address for Correspondence: Chi Young Shim, Cardiology Division, Severance Cardiovascular Hospital, Yonsei University College of Medicine, 2 Seongsan-ro, Seodaemun-gu, Seoul 120-752, Korea Tel: +82-2-2228-8453, Fax: +82-2-2227-7732, E-mail: cysprs@yuhs.ac This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Arterial-Cardiac Interaction Chi Young Shim namic variables. It is influenced by PWV, the reflectance point, and LV ejection characteristics. 10) The age-related changes in central AIx and aortic PWV follow different patterns. 9) AIx might provide a more sensitive marker of arterial aging in younger individuals, whereas aortic PWV might be a more sensitive marker in older individuals. 9) Recently, PP amplification has been suggested as a mechanical biomarker of cardiovascular diesase and risk, together with global arterial properties. 13) Normally, differences in vessel stiffness and reflection of pressure waves within the arterial tree result in considerable amplification of PP between the aorta and brachial artery. This so-called PP amplification is a well-established hemodynamic phenomenon and reduced PP amplification is related to increased cardiovascular risks and poor outcomes superior to the values of brachial or central arteries alone. 13)14) Ultrasound-based measurements of arterial stiffness are also in use. It is necessary to simultaneously measure BP. The stiffness index β is less affected by arterial pressure changes and could be more useful than other parameters, being easily determined using ultrasound. 10) Carotid stiffness index β has been used to assess arterial stiffness in various cardiovascular diseases. 10)15) Influence of Vascular Stiffening on Left Ventricular Function The pathophysiological and clinical implications of arterial stiffness should be considered together with LV function. Several possible pathways exist whereby aortic stiffening may contribute to pathological changes in the LV, which can be the substrate of diastolic dysfunction. 16) Aortic stiffening leads to augmentation of the central aortic systolic BP, thus increasing LV afterload. Increased afterload may promote myocyte hypertrophy and slow LV relaxation. Concomitant reduction in central aortic diastolic BP may compromise coronary perfusion and aggravate subendocardial ischemia. This can further impair myocardial relaxation and promote myocardial fibrosis leading to diastolic dysfunction. Fig. 2 illustrates the mechanisms that predispose the LV to ischemia and to dysfunction with aortic stiffening. 16)17) A vicious cycle becomes relevant in the development of heart failure with preserved ejection fraction, probably the most common form of heart failure in the elderly. 5) In a recent study, we demonstrated the gender differences in the association between the indices of arterial stiffness and LV diastolic functional parameters in age-matched men and women with preserved LV ejection fraction. 18) In women, despite similar peripheral pressures to those of men, there were significant differences in central pressures and indices of wave reflections. 18)19) LV diastolic function significantly correlated with parameters representing arterial stiffness in women but not in men. 18) The effect of earlier wave reflection on central pressure and stronger relation to LV diastolic function could be Table 1. Indices and surrogates of arterial stiffness Methods Parameter Definition Pulse wave velocity Pulse wave velocity Velocity of the traveling pulse along a length of artery Distance/ t (cm/s) Pulse wave analysis Central pulse pressure The difference between the central systolic and central diastolic pressures Ultrasound In: natural logarithm Augmentation index Pulse pressure amplification Stiffness index β The difference between the second and first systolic peaks as a percentage of the pulse pressure Peripheral pulse pressure/central pulse pressure Ratio of the In (systolic/diastolic pressure) to the relative change in the diameter β = In (Ps/Pd)/(Ds- Dd/Dd) L Systolic peak P1 Central systolic pressure Augmentation pressure (AP) Central pulse pressure (PP) Central aortic systolic BP Aortic stiffening Central aortic diastolic BP Time Central diastolic pressure PWV (m/sec) = L / Time AIx (%) = AP/central PP (%) M-mode of Aorta LV afterload Myocardial hypertrophy Coronary perfusion Subendocardial ischemia Ps (Systolic BP) Pd (Diastolic BP) + Dd Ds Impaired relaxation Myocardial fibrosis β Stiffness index = Ln (Ps-Pd) / [(Ds-Dd)/Dd] Fig. 1. Indices and surrogates of arterial stiffness. PWV: pulse wave velocity, AIx: augmentation index, BP: blood pressure. Diastolic dysfunction Fig. 2. Pathophysiological pathways: Relation of arterial stiffness to diastolic dysfunction in hypertensive patients. 16) BP: blood pressure, LV: left ventricular. 63

Journal of Cardiovascular Ultrasound 19 June 2011 a possible contributor of hemodynamic liability prone to heart failure in women. Ventricular-Vascular Coupling The concept and assessment of ventricular-vascular coupling The interaction of ventricular and vascular properties, or coupling, is an important determinant of cardiac performance. 1-3) Several groups of systems-physiology investigators have studied and clarified currently accepted frameworks of ventricularvascular coupling. 1)3)20)21) Many investigators have sought ways to characterize both the heart and vascular system and their interaction using common variables. Fig. 3 shows a schematic diagram of the pressure-volume loop for LV, with ventricular systolic and diastolic elastances, and effective arterial elastance. Ventricular systolic elastance () = end-systolic pressure/end-systolic volume (ESP/ESV) Effective arterial elastance () = end-systolic pressure/stroke volume (ESP/SV) Ventricular-vascular coupling index = / Fig. 3. Schematic diagram of the pressure-volume loop for the left ventricle. Young subject defines ventricular systolic stiffness, while is diastolic stiffness. equals the ratio of end systolic pressure over stroke volume, and reflects arterial loading. The ratio of effective arterial elastance to LV end-systolic elastance (/) is used to index relative coupling between the heart and vascular systems. 3)4) Noninvasive assessment of ventricular-vascular coupling Based on this concept, ventricular systolic elastance, effective arterial elastance, and the ventricular-vascular coupling index can be assessed noninvasively using echocardiography and simultaneously assessed BPs. LV end-systolic and end-diastolic volumes are measured from apical 4-chamber and 2-chamber views using the biplane method of disks (modified Simpson s rule). 22) Stroke volume can be calculated by substrating the end-systolic volume from the end-diastolic volume. End-systolic pressure is approximated by [(2 systolic BP + diastolic BP) / 3]. This noninvasive assessment of end-systolic pressure accurately predicts LV pressure-volume loop measurements of end-systolic pressure. 23) The is estimated as the end-systolic pressure/stroke volume. The of LV is calculated as end-systolic pressure/end-systolic volume. Ventricular-vascular coupling is generally assessed by the / ratio, termed the ventricular-vascular coupling index. 3)4) Age-related changes in ventricular-vascular coupling Fig. 4A and B display typical pressure-volume data, along with and, for young and elderly subjects. In comparison with the younger subjects, the older subects display marked increases in both elastances, reflecting vascular stiffening and ventricular stiffening. 24) The result is that both parameters remain relatively matched. The matched increase in arterial and cardiac stiffness with aging can maintain ventricular-vascular coupling within a normal range. 3)24) However, diastolic cham- Elderly subject A B Fig. 4. Relationship between effective arterial elastance () and ventricular systolic elastance () in young (A) versus old subjects (B). 24) A: In young subject. B: A matched increase in arterial and ventricular stiffness in elderly subjects. 64

Arterial-Cardiac Interaction Chi Young Shim ber stiffness () commonly increases with age. 3) Dynamic changes of ventricular-vascular coupling Although maintenance of ventricular-vascular coupling with age would be somewhat beneficial, the rise in both vascular and ventricular stiffening becomes apparently problematic when the system is stressed by exercise. In normal subjects, effective arterial elastance is nearly one half of LV elastance 2)25) and the ventricular-vascular coupling index decreases with exercise, indicating augmented pump efficiency. 26)27) Najjar et al. 27) demonstrated that the ventricular-vascular coupling index during exercise decreased by a smaller degree in older subjects than in younger subjects even though there was no difference by age in resting ventricular-vascular coupling index (Fig. 5A). These findings might suggest that aging is associated with less reserve capacity, or an inability to attain maximal efficacy, manifested by a smaller reduction in the coupling index. The different responses of ventricular-vascular coupling to exercise can be related to exercise intolerance. In addition, higher ventricular and vascular stiffness has important implications regarding BP liability and loading sensitivity even though coupling is maintained with age. 24) In the elderly, even a small increase in blood volume can substantially raise systolic BP 24) (Fig. 5B). Therefore, enhanced BP sensitivity to circulating volume and diuretics is common in elderly subjects and the mechanism of rapid-onset pulmonary edema in elderly subjects can be explained. In summary, when the ventricular-vascular system is stressed with exercise or faced with volume overload, the coupling response may be abnormal, and it may be difficult to maintain effective cardiovascular performance. In conclusion, abnormal arterial-cardiac interaction and stiffening of the ventricular and vascular systems may contribute to the pathophysiology of heart failure with preserved ejection fraction. Combined ventricular-vascular stiffening may have important consequences on cardiac response under stress by exertion, volume overload and abrupt changes in heart function. The major effects of ventricular-vascular stiffening can be summarized as follows: 1) enhanced liability of cardiovascular function; 2) limited reserve capacity; 3) greater pressure sensitivity to blood volume alterations; 4) greater likelihood of poorly matched ventricular-vascular system with cardiac failure; and 5) compromised coronary flow and exacerbated response to myocardial ischemia. References 1. Sunagawa K, Maughan WL, Burkhoff D, Sagawa K. Left ventricular interaction with arterial load studied in isolated canine ventricle. Am J Physiol 1983;245:H773-80. 2. Starling MR. Left ventricular-arterial coupling relations in the normal human heart. Am Heart J 1993;125:1659-66. 3. Kass DA. Age-related changes in venticular-arterial coupling: pathophysiologic implications. Heart Fail Rev 2002;7:51-62. 4. Kass DA. Ventricular arterial stiffening: integrating the pathophysiology. Hypertension 2005;46:185-93. 5. O Rourke MF, Hashimoto J. Mechanical factors in arterial aging: a clinical perspective. J Am Coll Cardiol 2007;:1-13. 6. O Rourke MF. Arterial aging: pathophysiological principles. Vasc Med 2007;12:329-41. 7. Smulyan H, Asmar RG, Rudnicki A, London GM, Safar ME. Comparative effects of aging in men and women on the properties of the arterial tree. J Am Coll Cardiol 2001;37:1374-80. 8. Choi CU, Kim EJ, Kim SH, Shin SY, Choi UJ, Kim JW, Lim HE, Rha SW, Park CG, Seo HS, Oh DJ. Differing effects of aging on central and peripheral blood pressures and pulse wave velocity: a direct intraarterial study. J Hypertens 2010;28:1252-60. 9. McEniery CM, Yasmin, Hall IR, Qasem A, Wilkinson IB, Cockcroft JR; ACCT Investigators. Normal vascular aging: differential effects on wave reflection and aortic pulse wave velocity: the Anglo-Cardiff Collaborative Trial (ACCT). J Am Coll Cardiol 2005;46:1753-60. 10. Antonini-Canterin F, Carerj S, Di Bello V, Di Salvo G, La Carrubba S, Vriz O, Pavan D, Balbarini A, Nicolosi GL; Research Group of the Italian Society of Cardiovascular Echography (SIEC). Arterial stiffness and ventricular stiffness: a couple of diseases or a coupling disease? A review l/l 0.7 0.6 0.5 0.4 0.3 0.2 Men age < 40 Men age > 60 Women age < 40 Women age > 60 Systolic BP (mmhg) 180 120 90 Young Elderly 0.1 60 Supine Sit % max Max 40 60 80 A B LV preload Fig. 5. Dynamic changes of ventricular-vascular coupling under stress caused by exercise (A) 27) and volume overload (B). 24) 120 65

Journal of Cardiovascular Ultrasound 19 June 2011 from the cardiologist s point of view. Eur J Echocardiogr 2009;10:36-43. 11. Laurent S, Cockcroft J, Van Bortel L, Boutouyrie P, Giannattasio C, Hayoz D, Pannier B, Vlachopoulos C, Wilkinson I, Struijker-Boudier H; European Network for Non-invasive Investigation of Large Arteries. Expert consensus document on arterial stiffness: methodological issues and clinical applications. Eur Heart J 2006;27:2588-605. 12. Kelly R, Hayward C, Avolio A, O Rourke M. Noninvasive determination of age-related changes in the human arterial pulse. Circulation 1989; 80:1652-9. 13. Benetos A, Thomas F, Joly L, Blacher J, Pannier B, Labat C, Salvi P, Smulyan H, Safar ME. Pulse pressure amplification a mechanical biomarker of cardiovascular risk. J Am Coll Cardiol 2010;55:1032-7. 14. Nijdam ME, Plantinga Y, Hulsen HT, Bos WJ, Grobbee DE, van der Schouw YT, Bots ML. Pulse pressure amplification and risk of cardiovascular disease. Am J Hypertens 2008;21:388-92. 15. Hirai T, Sasayama S, Kawasaki T, Yagi S. Stiffness of systemic arteries in patients with myocardial infarction. A noninvasive method to predict severity of coronary atherosclerosis. Circulation 1989;80:78-86. 16. Mottram PM, Haluska BA, Leano R, Carlier S, Case C, Marwick TH. Relation of arterial stiffness to diastolic dysfunction in hypertensive heart disease. Heart 2005;91:1551-6. 17. Weber T, Auer J, O Rourke MF, Punzengruber C, Kvas E, Eber B. Prolonged mechanical systole and increased arterial wave reflections in diastolic dysfunction. Heart 2006;92:1616-22. 18. Shim CY, Park S, Choi D, Yang WI, Cho IJ, Choi EY, Chung N, Ha JW. Sex differences in central hemodynamics and their relationship to left ventricular diastolic function. J Am Coll Cardiol 2011;57:1226-33. 19. Borlaug BA. Sex, load, and relaxation: are women more susceptible to loaddependent diastolic dysfunction? J Am Coll Cardiol 2011;57:1234-6. 20. Myhre ES, Johansen A, Piene H. Optimal matching between canine left ventricle and afterload. Am J Physiol 1988;254:H1051-8. 21. Elzinga G, Westerhof N. Matching between ventricle and arterial load. An evolutionary process. Circ Res 1991;68:1495-0. 22. Devereux RB, Alonso DR, Lutas EM, Gottlieb GJ, Campo E, Sachs I, Reichek N. Echocardiographic assessment of left ventricular hypertrophy: comparison to necropsy findings. Am J Cardiol 1986;57:4-8. 23. Kelly RP, Ting CT, Yang TM, Liu CP, Maughan WL, Chang MS, Kass DA. Effective arterial elastance as index of arterial vascular load in humans. Circulation 1992;86:513-21. 24. Chen CH, Nakayama M, Nevo E, Fetics BJ, Maughan WL, Kass DA. Coupled systolic-ventricular and vascular stiffening with age: implications for pressure regulation and cardiac reserve in the elderly. J Am Coll Cardiol 1998;32:1221-7. 25. Nitenberg A, Loiseau A, Antony I. Left ventricular mechanical efficiency in hypertensive patients with and without increased myocardial mass and with normal pump function. Am J Hypertens 2001;14:1231-8. 26. Asanoi H, Kameyama T, Ishizaka S, Miyagi K, Sasayama S. Ventriculoarterial coupling during exercise in normal human subjects. Int J Cardiol 1992;36:177-86. 27. Najjar SS, Schulman SP, Gerstenblith G, Fleg JL, Kass DA, O Connor F, Becker LC, Lakatta EG. Age and gender affect ventricular-vascular coupling during aerobic exercise. J Am Coll Cardiol 2004;44:611-7. 66