Supplementary Material

Similar documents
Effects of Drift, Selection and Gene Flow on Immune Genes in Prairie Grouse

Table S1. Primers and PCR protocols for mutation screening of MN1, NF2, KREMEN1 and ZNRF3.

Studies on probiotics effects on innate immune functions in the gastrointestinal tract of broiler chicks (SUMMARY)

Supplementary Appendix

HOST-PARASITE INTERPLAY

iplex genotyping IDH1 and IDH2 assays utilized the following primer sets (forward and reverse primers along with extension primers).

Discovery of a SNP in exon 2 the lipoprotein lipase gene and its association with intramuscular fat content in Chinese ring-necked pheasant

SUPPLEMENTARY INFORMATION. Divergent TLR7/9 signaling and type I interferon production distinguish

Cytochalasins from an Australian marine sediment-derived Phomopsis sp. (CMB-M0042F): Acid-mediated intra-molecular cycloadditions enhance

New Enhancements: GWAS Workflows with SVS

a) SSR with core motif > 2 and repeats number >3. b) MNR with repeats number>5.

To test the possible source of the HBV infection outside the study family, we searched the Genbank

Genetics and Genomics in Medicine Chapter 8 Questions

Diversity and Frequencies of HLA Class I and Class II Genes of an East African Population

2) Cases and controls were genotyped on different platforms. The comparability of the platforms should be discussed.

The Human Major Histocompatibility Complex

Parentage and relatedness determination in farmed Atlantic salmon. Ashie T. Norris*, Daniel G. Bradley and Edward P. Cunningham.

5/2/18. After this class students should be able to: Stephanie Moon, Ph.D. - GWAS. How do we distinguish Mendelian from non-mendelian traits?

Dr Rick Tearle Senior Applications Specialist, EMEA Complete Genomics Complete Genomics, Inc.

Validation of the MIA FORA NGS FLEX Assay Using Buccal Swabs as the Sample Source

Drug Metabolism Disposition

Multi-clonal origin of macrolide-resistant Mycoplasma pneumoniae isolates. determined by multiple-locus variable-number tandem-repeat analysis

Isolation and identification of Mycoplasma gallisepticum in chickensbn from industrial farms in Kerman province

Single SNP/Gene Analysis. Typical Results of GWAS Analysis (Single SNP Approach) Typical Results of GWAS Analysis (Single SNP Approach)

University of Groningen. Metabolic risk in people with psychotic disorders Bruins, Jojanneke

Award Number: W81XWH TITLE: CYP1B1 Polymorphism as a Risk Factor for Race-Related Prostate Cancer

Generating Mouse Models of Pancreatic Cancer

Host-parasite interactions: Evolutionary genetics of the House Finch- Mycoplasma epizootic

Genetics of Pediatric Inflammatory Bowel Disease

Supplementary Information

Introduction to LOH and Allele Specific Copy Number User Forum

Supplemental Information For: The genetics of splicing in neuroblastoma

TITLE: CYP1B1 Polymorphism as a Risk Factor for Race-Related Prostate Cancer

CS2220 Introduction to Computational Biology

SINGLE CHOICE. 5. The gamma invariant chain binds to this molecule during its intracytoplasmic transport. A TCR B BCR C MHC II D MHC I E FcγR

Rare Variant Burden Tests. Biostatistics 666

International Journal of Science, Environment and Technology, Vol. 6, No 5, 2017,

Abstract. Optimization strategy of Copy Number Variant calling using Multiplicom solutions APPLICATION NOTE. Introduction

Nature Neuroscience: doi: /nn Supplementary Figure 1. Missense damaging predictions as a function of allele frequency

CDH1 truncating alterations were detected in all six plasmacytoid-variant bladder tumors analyzed by whole-exome sequencing.

Whole-genome detection of disease-associated deletions or excess homozygosity in a case control study of rheumatoid arthritis

Supplementary Note. Nature Genetics: doi: /ng.2928

Myoglobin A79G polymorphism association with exercise-induced skeletal muscle damage

Supplementary Information

PREVENTION OF HAEMOGLOBINOPATHIES: New methodologies and procedures Non-invasive Prenatal Diagnosis

immunity defenses invertebrates vertebrates chapter 48 Animal defenses --

Ct=28.4 WAT 92.6% Hepatic CE (mg/g) P=3.6x10-08 Plasma Cholesterol (mg/dl)

Sebastian Jaenicke. trnascan-se. Improved detection of trna genes in genomic sequences

CHAPTER 18: Immune System

Immunology 2011 Lecture 11 Innate Immunity & Genetics of Inbreeding. 6 October

Genetic Approaches to Alcoholism, Alcohol Abuse Susceptibility, and Therapeutic Response. Ray White Verona March

ASSESSMENT OF THE RISK FOR TYPE 1 DIABETES MELLITUS CONFERRED BY HLA CLASS II GENES. Irina Durbală

Lack of association of IL-2RA and IL-2RB polymorphisms with rheumatoid arthritis in a Han Chinese population

INVESTIGATION THE PREVALENCE OF MUTATIONS IVS 10 AND R158Q IN A NUMBER OF IRANIAN PATIENTS WITH PKU

Two hierarchies. Genes Chromosomes Organisms Demes Populations Species Clades

Dan Koller, Ph.D. Medical and Molecular Genetics

CHAPTER IV RESULTS Microcephaly General description

Figure S1. Schematic presentation of genomic replication of idsiv after transfection and infection. After transfection of idsiv plasmid DNA into 293T

In search for hypoallergenic trees: Screening for genetic diversity in birch pollen allergens, a multigene family of Bet v 1 (PR 10) proteins MJM

Supplementary Figure 1. Schematic diagram of o2n-seq. Double-stranded DNA was sheared, end-repaired, and underwent A-tailing by standard protocols.

Role of inflammatory parameters in the susceptibility of cerebral thrombosis

New polymorphism of the influenza virus resistance Mx1 gene in Iberian domestic pigs RF Godino1, AI Fernández2 Abstract Keywords:

Supplementary webappendix

Analysis of Massively Parallel Sequencing Data Application of Illumina Sequencing to the Genetics of Human Cancers

1. Overview of Adaptive Immunity

Genetics of COPD Prof. Ian P Hall

Examples of questions for Cellular Immunology/Cellular Biology and Immunology

MRC-Holland MLPA. Description version 29;

The Innate Immune Response

RASA: Robust Alternative Splicing Analysis for Human Transcriptome Arrays

Significance of the MHC

Supplementary Information Titles Journal: Nature Medicine

Detection and significance of PD-1.3 SNP (rs ) and IL28B SNP (rs ) in patients with current or past hepatitis B virus (HBV) infection

SALSA MLPA KIT P050-B2 CAH

AD (Leave blank) TITLE: Genomic Characterization of Brain Metastasis in Non-Small Cell Lung Cancer Patients

JCM Accepts, published online ahead of print on 27 September 2006 J. Clin. Microbiol. doi: /jcm

IVF Michigan, Rochester Hills, Michigan, and Reproductive Genetics Institute, Chicago, Illinois

RNA based high-resolution HLA sequencing based typing

Computational Systems Biology: Biology X

Supplementary Figure 1. SC35M polymerase activity in the presence of Bat or SC35M NP encoded from the phw2000 rescue plasmid.

WDR62 is associated with the spindle pole and mutated in human microcephaly

Genome - Wide Linkage Mapping

Supplementary Figure 1. Estimation of tumour content

Y. Zhan, C. Li, Q. Gao, J. Chen, S. Yu and S.G. Liu. Corresponding author: Y. Zhan

MRP1 polymorphisms (T2684C, C2007T, C2012T, and C2665T) are not associated with multidrug resistance in leukemic patients

Whole Genome and Transcriptome Analysis of Anaplastic Meningioma. Patrick Tarpey Cancer Genome Project Wellcome Trust Sanger Institute

Supplementary Figure 1

Sex is determined by genes on sex chromosomes

HLA and more. Ilias I.N. Doxiadis. Geneva 03/04/2012.

Supporting Information Table of Contents

Supplementary Material

Lack of cadherins Celsr2 and Celsr3 impairs ependymal ciliogenesis, leading to fatal

Tcf21 MCM ; R26 mtmg Sham GFP Col 1/3 TAC 8W TAC 2W. Postn MCM ; R26 mtmg Sham GFP Col 1/3 TAC 8W TAC 2W

Supplementary information. Supplementary figure 1. Flow chart of study design

Bin Liu, Lei Yang, Binfang Huang, Mei Cheng, Hui Wang, Yinyan Li, Dongsheng Huang, Jian Zheng,

Supplementary Document

Original Article The programmed death-1 gene polymorphism (PD-1.5 C/T) is associated with non-small cell lung cancer risk in a Chinese Han population

TNF-α antibodies in immune-mediated inflammatory disorders

Supplementary Figures

Transcription:

Supplementary Material 2 4 6 Single-locus gene screening methods We screened for single nucleotide polymorphisms (SNPs) at 16 candidate immune genes (Table S1) by initially sequencing three captive-bred Attwater s prairie-chickens and one greater prairie-chicken from either the genetically diverse Kansas or Nebraska populations. If we found polymorphism among these sequences, we randomly selected an additional 16 Attwater s prairie-chickens to 8 genotype and identified exons by aligning each sequence with the domestic chicken (Gallus gallus) genome using the BLAST algorithm in Geneious version 7.0. If there were non-synonymous SNPs that resulted in different alleles (n = 20 individuals), we 10 genotyped the remaining Attwater s prairie-chickens used in this study (n = 125) In total, we genotyped Attwater s prairie-chickens at seven non-mhc genes, however, three of these (TLR4, TLR5 and AvBD11) had only two alleles and were included only in the 12 immune response and survival models where standardized heterozygosity and heterozygosity at individual loci were used as predictor variables (Tables S4 and S6). All immune gene sequences that were found in at least two individuals or two independent PCRs are 14 deposited in Genbank (accession nos. KX239674-KX239750). 16

18 20 22 Table S1. Primers and PCR conditions used to amplify the seven single-locus immune genes used in the study (A) and the nine other immune genes not used (B) because they did not contain non-synonymous SNPs. Each immune gene was amplified in PCRs (final volume 20ul) consisting of 1x Green GoTaq Flexi Buffer (Promega), 1.5 mm of MgCl 2, 10% DMSO, 0.5 µm of each primer, 0.4 mm of dntps, 1.0 U of GoTaq DNA polymerase and approximately 50 ng of genomic DNA. PCRs were performed with an initial denaturation step at 94 C for 2 min followed by 35 cycles of 20 s at 94 C, 20 s at locus-specific annealing temperature (T A ) and extension time (T E ) at 72 C. 24 (A) 26 28 T A T E Locus ( C) (sec) Primer names Primer sequences (5'-3') References Toll-like receptor 1B (TLR1B) 59 80 avtlr1lbf TCCAGGYTWCAAAATCTGACAC 1 Alcaide and Edwards 2010 avtlr1lbr CGGCACRTCCARGTAGATG Toll-like receptor 4 (TLR4) 50 80 avtlr4f GAGACCTTGATGCCCTGAG Alcaide and Edwards 2010 avtlr4r CCATCTTRAGCACTTGCAAAG Toll-like receptor 5 (TLR5) 55 80 avtlr5f GTAATCTTACCAGCTTCCAAGG Alcaide and Edwards 2010 avtlr5r GCTGGAGTTCATCTTCATC Toll-like receptor (TLR15) 62 45 TLR15F1 GCTGGGTGCTGTTTTGGAGT This study TLR15R1 GAGGTGCTGCAGAGAGATCG C-type lectin-like receptor 62 45 Blec1F AGCTCCCACGTTTCTCATCC This study (Blec1) Blec1R CCAAGGCAAGGATGGGAACT Interleukin 4 (IL4) 54 45 IL4ex1-2F ATGAGCTCCTCACTGCCCAC This study IL4ex1-2R CTGGCTTTCCTCTTACCTTA β-defensin 11 (AvBD11) 60 45 AvBD11F1mat GACTGATCCTGCAGCACAAC 2 Hellgren and Sheldon 2011 AvBD11R1 AGGGCTCCCACACGTACC 1 Alcaide M, Edwards SV. 2011. Molecular evolution of the toll-like receptor multigene family in birds. Molecular Biology and Evolution 28:1703-1715. 2 Hellgren O, Sheldon BC. 2011. Locus-specific protocol for nine different innate immune genes (antimicrobial peptides: β-defensins) across passerine birds species reveals within-species coding variation and a case of trans-species polymorphism. Molecular Ecology Resources 11:686-692.

30 (B) Locus T A ( C) T E (sec) Primer names Primer sequences (5'-3') References Toll-like receptor 3 (TLR3) 53 80 pctlr3falt ACCTCTCACTGAGCCATGTG This study pctlr3r TGTTGTTATTGCTGATGTC Toll-like receptor 7 (TLR7) 59 60 pctlr7f2 GAAGCTTATCCCCAGTCTTG This study pctlr7r3 AGACAGGTAGCAGAATTCGC Interleukin 1B (IL1B) 59 60 IL1Bex5-6F CTTCGACATCTTCGACATCAAC 1 Downing, et al. 2009 IL1Bex5-6R ATACGAGATGGAAACCAGCAAC Interleukin 6 (IL6.1) 63 45 IL6ex2-3F CGAGAACAGCATGGAGATGC This study IL6ex2-3R GTGGCCGCCAGGTGCTTTGT Interleukin 6 (IL6.2) 57 45 IL6ex4F GTGATAAATCCCGATGAAGT This study IL6ex4R TCAGGCACTGAAACTCCTGG Interleukin 10 (IL10) 62 45 IL-10_F1 CCACTGCTGGGGTTCAGATT This study IL-10_R1 CTCTCTCCCCACCCACTGAA β-defensin 02 (AvBD02) 55 45 AvBD2ex2F ATGAGGATTCTTTACCTGC This study AvBD2ex3R CATTTGCAGCAGGAACGGAA β-defensin 04 (AvBD04) 56 45 pcavbd4ex3f TGTTCAGGCTTTCCCCGTCC This study pcavbd4ralt TCAGTTTAGCCATAGTCAAG Lysozyme (LYZ) 60 45 LYSOex1_Falt GAGACAGGTGCAAGAGAGCC This study LYSOex1_Ralt GGGAAAGGAGCGTAAAGGGA 1 Downing T, Lynn DJ, Connell S, Lloyd AT, et al. 2009. Contrasting evolution of diversity at two disease-associated chicken genes. Immunogenetics 61:303-314.

32 34 Table S2. Description of the sequences that did not contain non-synonymous SNPs, obtained from the nine single-locus immune genes in the initial screening of prairie-chickens (n = 20). Included are the number of birds (n), particular exons sequences and the corresponding exon length in base pairs (intron length in parentheses if amplified), synonymous (Syn) and intron SNPs. Immune gene n Exon(s) Sequence length Syn SNPs Toll-like receptor 3 (TLR3) 20 4 773 1 - Toll-like receptor 7 (TLR7) 20 2 609 1 - Interleukin 1B (IL1B) 20 4,5,6 422 (185) 3 4 Interleukin 6 (IL6.1) 4 2,3 161 (121) 0 0 Interleukin 6 (IL6.2) 20 4 144 1 - Interleukin 10 (IL10) 20 3,4 219 (509) 1 2 β-defensin 02 (AvBD02) 20 2,3 180 (231) 1 3 β-defensin 04 (AvBD04) 4 2 102 0 - Lysozyme (LYZ) 20 1 136 (188) 2 3 Intron SNPs 36 38 40 42 44

46 48 50 Table S3. Models for post-release survival of Attwater s prairie-chickens using higher thresholds for the number of reads (compare with Table 2). Survival model A includes individuals (n = 93) with MHC class I genotypes based on 30 pyrosequencing reads, whereas survival model B includes individuals (n = 100) with class II genotypes based on 300 pyrosequencing. Predictor variables are specific alleles at immune genes, genome-wide heterozygosity, body mass (g), age class and sex. Family ID was also included in the models as a random factor. Presented are the parameter estimates (β), standard error (SE), hazard ratio (Exp(β)), P values from the Cox proportional mixed model and q values (the probability (P) values corrected for the false discovery rate). Predictors with P and q values 0.07 are in bold. Model A Model B β SE Exp(β) P q β SE Exp(β) P q Genome-wide het 0.123 1.274 1.130 0.92 0.63 0.070 0.989 1.073 0.94 0.75 MHC class I Tycu-IA*20 0.095 0.588 1.100 0.87 0.63-0.397 0.554 0.672 0.47 0.61 Tycu-IA*22-0.789 0.355 0.454 0.03 0.06-0.820 0.342 0.441 0.02 0.09 Tycu-IA*24-0.774 0.356 0.461 0.03 0.06-0.754 0.335 0.470 0.02 0.10 MHC class II Tycu-BLB*08-1.312 0.413 0.269 <0.01 0.01-1.278 0.430 0.279 <0.01 0.03 Blec1 Blec1*01 0.110 0.373 1.116 0.77 0.63-0.014 0.342 0.986 0.97 0.75 Blec1*02 0.250 0.331 1.284 0.45 0.48 0.118 0.378 1.126 0.75 0.73 Blec1*04-1.203 0.388 0.300 <0.01 0.01-1.168 0.367 0.311 <0.01 0.03 TLR1B TLR1B*01 0.471 0.392 1.602 0.23 0.29 0.442 0.362 1.556 0.22 0.37 TLR1B*02 0.295 0.456 1.343 0.52 0.49-0.021 0.445 0.980 0.96 0.75 TLR1B*03 0.829 0.351 2.291 0.02 0.06 0.587 0.326 1.798 0.07 0.20 TLR1B*04 0.582 0.390 1.790 0.14 0.19 0.123 0.366 1.131 0.74 0.73 TLR15 TLR15*01-0.063 0.745 0.939 0.93 0.63 0.296 0.672 1.344 0.66 0.73 TLR15*02 0.436 0.409 1.546 0.29 0.33 0.387 0.420 1.473 0.36 0.51 TLR15*03-0.113 0.479 0.894 0.81 0.63 0.076 0.447 1.079 0.87 0.75 TLR15*04 1.024 0.518 2.785 0.05 0.09 0.548 0.524 1.729 0.30 0.46

IL-4 IL4*01-0.029 0.333 0.971 0.93 0.63 0.084 0.287 1.088 0.77 0.73 IL4*02-0.973 0.630 0.378 0.12 0.18-0.910 0.546 0.403 0.10 0.20 IL4*03 0.347 0.491 1.415 0.48 0.48-0.175 0.494 0.839 0.72 0.73 52 Age class 1.180 0.533 3.255 0.03 0.06 0.831 0.494 2.295 0.09 0.20 Body mass -0.006 0.002 0.994 <0.01 0.01-0.004 0.002 0.996 0.03 0.11 Sex 0.601 0.319 1.824 0.06 0.10 0.474 0.300 1.606 0.11 0.21 54

56 58 60 Table S4. Post-release survival of Attwater s prairie-chickens (n = 116) in relation to standardized heterozygosity (A) and single-locus heterozygosity (B) at immune genes, genomewide heterozygosity, body mass (g), age class and sex. In both analyses, family group was used as a random factor. Presented are the parameter estimates (β), standard error (SE), hazard ratio (Exp(β)) and corresponding P and q (P values corrected for the false discovery rate) values from the Cox proportional mixed models. Predictors with P and q values < 0.05 are given in bold. (A) 62 Predictor β SE Exp(β) P q Genome-wide het 0.383 0.876 1.466 0.66 0.73 Immune gene het 0.115 0.338 1.121 0.73 0.73 Age class 0.979 0.375 2.661 0.01 0.02 Body mass -0.003 0.001 0.996 0.02 0.03 Sex 0.644 0.232 1.904 0.01 0.02 (B) 64 Predictor β SE Exp(β) P q Genome-wide het 0.446 0.857 1.562 0.60 0.90 MHC class I 0.016 0.257 1.016 0.95 0.95 Blec1-0.097 0.257 0.908 0.71 0.95 TLR1B 0.379 0.218 1.462 0.08 0.24 TLR4 0.330 0.469 1.391 0.48 0.90 TLR5-0.044 0.434 0.957 0.92 0.95 TLR15-0.142 0.244 0.868 0.56 0.90 IL4-0.028 0.217 0.972 0.90 0.95 AvBD11-0.583 0.544 0.558 0.28 0.67 Age class 1.085 0.391 2.959 <0.01 0.06 Body mass -0.003 0.002 0.997 0.03 0.10 Sex 0.649 0.252 1.913 0.01 0.06 66 68 70

72 74 76 78 Table S5. Immune response of Attwater s prairie-chickens in relation to specific alleles at immune genes, genome-wide heterozygosity, body mass (g), age class and sex. Family group was used as a random factor. Presented are the estimates (β), standard error (SE), P and q (P values corrected for the false discovery rate) values for each predictor variable in the models for Bacteria killing assay (n = 116) and Agglutination assay (n = 107). Note that no predictors had significant q values. Bacteria killing Agglutination Predictor β SE P q β SE P q Genome-wide het -0.433 0.358 0.23 0.94 2.257 1.131 0.05 0.55 MHC class I Tycu-IA*20-0.087 0.176 0.62 0.94 0.291 0.569 0.61 0.85 Tycu-IA*22 0.023 0.112 0.84 0.94 0.235 0.380 0.54 0.85 Tycu-IA*24-0.170 0.125 0.18 0.94 0.063 0.430 0.88 0.96 MHC class II Tycu-BLB*08-0.095 0.138 0.49 0.94 0.455 0.465 0.33 0.77 Blec1 Blec1*01 0.237 0.130 0.07 0.94 0.046 0.452 0.92 0.96 Blec1*02-0.039 0.121 0.75 0.94 0.170 0.402 0.67 0.87 Blec1*04-0.073 0.117 0.53 0.94 0.278 0.370 0.45 0.83 TLR1B TLR1B*01-0.043 0.131 0.74 0.94-0.239 0.428 0.58 0.85 TLR1B*02 0.181 0.148 0.23 0.94 0.777 0.485 0.11 0.62 TLR1B*03-0.014 0.109 0.90 0.94 0.045 0.361 0.90 0.96 TLR1B*04-0.030 0.128 0.82 0.94 0.011 0.435 0.98 0.98 TLR15 TLR15*01-0.080 0.228 0.73 0.94 0.195 0.783 0.80 0.96 TLR15*02 0.048 0.152 0.75 0.94-0.586 0.496 0.24 0.77 TLR15*03 0.049 0.147 0.74 0.94-0.682 0.471 0.15 0.67 TLR15*04 0.049 0.149 0.74 0.94 0.414 0.475 0.39 0.77 IL-4 IL4*01-0.035 0.098 0.72 0.94-0.531 0.327 0.11 0.62 IL4*02 0.038 0.208 0.85 0.94-0.351 0.701 0.62 0.85 IL4*03-0.101 0.190 0.60 0.94-0.569 0.600 0.35 0.77 Age class 0.081 0.078 0.30 0.94-0.634 0.256 0.02 0.34 Body mass 0.001 0.001 0.30 0.94-0.002 0.002 0.36 0.77 Sex -0.006 0.047 0.89 0.94 0.161 0.156 0.31 0.77

80 82 84 Table S6. Immune response of pre-released Attwater s prairie-chickens in relation to standardized heterozygosity (A) and single-locus heterozygosity (B) at eight immune genes, genome-wide heterozygosity, body mass (g), age class and sex. In these models, family group was included as a random factor. Sample sizes (n), parameter estimates (β), standard error (SE), P and q (P values corrected for the false discovery rate) values are given from the generalized linear mixed models. Single-locus heterozygosity models (B) also include false discovery rate q values for each variable. Significant q values are given in bold. A) Immunoassay Genome-wide het Immune genes het Age class Body mass Sex Lysozyme β 0.512-0.062 0.053 <0.001-0.113 n = 127 SE 0.205 0.089 0.054 <0.001 0.033 P 0.02 0.49 0.33 0.87 <0.01 q 0.04 0.61 0.54 0.87 0.01** Haemolysis β -1.421 0.268-0.276 0.001-0.197 n = 129 SE 0.935 0.336 0.189 0.001 0.124 P 0.13 0.43 0.15 0.66 0.11 q 0.26 0.56 0.26 0.69 0.26 Bacteria-killing β -0.566-0.056 0.026 < 0.001-0.015 n = 128 SE 0.304 0.110 0.062 < 0.001 0.040 P 0.07 0.61 0.67 0.54 0.71 q 0.34 0.74 0.74 0.74 0.74 Agglutination β 1.565-0.244-0.604-0.002 0.023 n = 118 SE 0.989 0.363 0.210 0.001 0.137 P 0.12 0.50 <0.01 0.16 0.87 q 0.27 0.63 0.02* 0.27 0.87 * indicates that second year after hatch birds had increased agglutination activity; ** indicates that males had stronger lysozyme activity 86

2 Table 6 (continued) 4 B) Immunoassay Genomewide het MHCI Blec1 TLR1B TLR4 TLR5 TLR15 IL4 AvBD11 Age class Body mass Sex Lysozyme β 0.451 0.059 0.020 0.026-0.045-0.066-0.021 0.035-0.122 0.079 <0.001-0.128 n = 114 SE 0.234 0.051 0.043 0.038 0.077 0.079 0.040 0.039 0.105 0.061 <0.001 0.039 P 0.06 0.25 0.63 0.49 0.55 0.41 0.60 0.37 0.25 0.20 0.98 <0.01 q 0.35 0.61 0.69 0.69 0.69 0.69 0.69 0.69 0.61 0.61 0.98 0.02* Haemolysis β -0.786 0.131-0.008-0.093-0.281-0.020 0.063-0.076-0.040-0.340 0.001-0.015 n = 113 SE 0.682 0.116 0.111 0.093 0.198 0.200 0.101 0.095 0.233 0.151 0.001 0.100 P 0.25 0.26 0.94 0.32 0.16 0.92 0.53 0.42 0.87 0.03 0.46 0.88 q 0.77 0.77 0.94 0.77 0.77 0.94 0.80 0.79 0.94 0.32 0.79 0.94 Bacteria-killing β -0.438 0.059-0.089-0.018-0.069 0.013 0.005 0.038-0.078 0.025 <0.001-0.018 n = 115 SE 0.325 0.050 0.051 0.042 0.091 0.089 0.046 0.043 0.104 0.069 0.001 0.045 P 0.18 0.25 0.08 0.67 0.45 0.89 0.91 0.38 0.45 0.72 0.40 0.69 q 0.78 0.78 0.78 0.86 0.78 0.91 0.91 0.78 0.78 0.86 0.78 0.86 Agglutination β 2.372-0.136-0.145-0.018-0.147 0.251 0.111 0.234-0.434-0.589-0.001 0.050 n = 105 SE 1.084 0.169 0.171 0.141 0.316 0.315 0.153 0.141 0.338 0.232 0.002 0.150 P 0.03 0.42 0.40 0.90 0.64 0.43 0.47 0.10 0.20 0.01 0.41 0.74 q 0.19 0.63 0.63 0.90 0.77 0.63 0.63 0.41 0.61 0.15 0.63 0.81 *indicates that males had stronger lysozyme activity 6 8

92 94 Figure S1. Plot of standardized heterozygosity at 20 990 SNPs (genome-wide) and eight single-locus immune genes in Attwater s prairie-chickens released into the wild in 2011 and 2012. 96 Genome-wide heterozygosity Immune gene heterozygosity