A Tour of the Cell. Chapter 6. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for

Similar documents
Human height. Length of some nerve and muscle cells. Chicken egg. Frog egg. Most plant and animal cells Nucleus Most bacteria Mitochondrion

(a) TEM of a plasma. Fimbriae. Nucleoid. Ribosomes. Plasma membrane. Cell wall Capsule. Bacterial chromosome

A Tour of the Cell. Chapter 6. Biology. Edited by Shawn Lester. Inner Life of Cell. Eighth Edition Neil Campbell and Jane Reece

A Tour of the Cell. Chapter 6. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for

4 A Tour of the Cell CAMPBELL BIOLOGY IN FOCUS. Urry Cain Wasserman Minorsky Jackson Reece

A Tour of the Cell. Chapter 6. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for

A Tour of the Cell. Chapter 6. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for

A Tour of the Cell. Chapter 6. PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece

A Tour of the Cell 4/10/12. Chapter 6. Overview: The Fundamental Units of Life

A Tour of the Cell. Chapter 6. Slide 1. Slide 2. Slide 3. Overview: The Fundamental Units of Life

CHAPTER 6 A TOUR OF THE CELL

Lectures by Erin Barley Kathleen Fitzpatrick Pearson Education, Inc Pearson Education, Inc. Figure 6.5. Bacterial chromosome

Microfilaments. myosin. In muscle cells. Microfilaments. Microfilaments. Video: Cytoplasmic Streaming. amoeboid movement. Pseudopodia.

LECTURE PRESENTATIONS

A TOUR OF THE CELL 10/1/2012

General Biology. The Fundamental Unit of Life The Cell. All organisms are made of cells The cell is the simplest collection of matter that can live

LECTURE PRESENTATIONS

Ch. 6 Tour of the Cell

LECTURE PRESENTATIONS

A Tour of the Cell. Chapter 6. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for

Lecture 5- A Tour of the Cell

A Tour of the Cell. Chapter 7

CH 4: A tour of the cell Overview: The Fundamental Units of Life. Concept 4.1: Biologists use microscopes and the tools of biochemistry to study cells

Bell Work: What is the fundamental unit of life? 2014 Pearson Education, Inc.

CHAPTER 6: A TOUR OF THE CELL AP BIOLOGY 2011

A Tour of the Cell CAMPBELL BIOLOGY IN FOCUS URRY CAIN WASSERMAN MINORSKY REECE. Overview: The Fundamental Units of Life

BIOLOGY. A Tour of the Cell CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson. Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick

The Golgi Apparatus: Shipping and Receiving Center. The Golgi apparatus. Functions of the Golgi apparatus. Lysosomes: Digestive Compartments

The Fundamental Unit of Life The Cell. General Biology. All organisms are made of cells. The cell is the simplest collection of matter that can live

Chapter 6: A Tour of the Cell. 1. Studying Cells 2. Intracellular Structures 3. The Cytoskeleton 4. Extracellular Structures

1. Studying Cells. Concepts of Microscopy 11/7/2016. Chapter 6: A Tour of the Cell

Cell Theory. Chapter 6. cell. fundamental unit of structure and function for all living organisms. arise only from previously existing cell

Early scientists who observed cells made detailed sketches of what they saw.

Thursday, October 16 th

A. Major parts 1. Nucleus 2. Cytoplasm a. Contain organelles (see below) 3. Plasma membrane (To be discussed in Cellular Transport Lecture)

Nucleic acids. Nucleic acids are information-rich polymers of nucleotides

NOTES: CH 6 A Tour of the Cell

Cytology. Light microscopy resolving power Electron microscopy TEM SEM Cell fractionation Ultracentrifuges

Review from Biology A

A Tour of the Cell. Chapter 4. Most cells are microscopic. Cells vary in size and shape

AP Biology Summer Assignment

Cytosol the fluid Cytoplasm cell interior, everything outside the nucleus but within the cell membrane, includes the organelles, cytosol, and

All organisms are made of cells (cells are the basic units of life) Cell structure is highly correlated to cellular function

Chapter 4. A Tour of the Cell. Lectures by Edward J. Zalisko

Cells. Variation and Function of Cells

CHAPTER 4 A TOUR OF THE CELL

Chapter 4. A Tour of the Cell. Lecture by Richard L. Myers

Chapter 6. A Tour of the Cell. Concept 6.1 Biologists use microscopes and the tools of biochemistry to study cells

Chapter 6. A Tour of the Cell

Eukaryotic cell. Premedical IV Biology

A Tour of the Cell. Ch. 7

10 m Human height 1 m Length of some nerve and muscle cells eye 100 mm (10 cm) Chicken egg aid n 10 mm

Chapter 7. (7-1 and 7-2) A Tour of the Cell

ORGANELLES OF THE ENDOMEMBRANE SYSTEM

Ch. 6 A Tour of the Cell BIOL 222

Chapter 4. A Tour of the Cell. Lecture by Richard L. Myers

4/12/17. Cells. Cell Structure. Ch. 2 Cell Structure and Func.on. Range of Cell Sizes BIOL 100

Cytology = the study of cells. Chapter 4 CELL STRUCTURE

Plasma Membrane. comprised of a phospholipid bilayer and embedded proteins separates the cells s contents from its surroundings

10/13/11. Cell Theory. Cell Structure

Chapter 4. A Tour of the Cell. Lectures by Chris C. Romero, updated by Edward J. Zalisko

CELL PARTS TYPICAL ANIMAL CELL

Chapter 4. A Tour of the Cell. Lectures by Edward J. Zalisko

Lysosomes. Vacuoles. Phagocytosis. One cell engulfing another. forms a food vacuole. fuses with lysosome. Autophagy. Lysosomes use enzymes

Unit A: Cells. Ch. 4 A Tour of the Cell

Chapter 4 A Tour of the Cell

Chapter 4 A Tour of the Cell

A Tour of the Cell Lecture 2, Part 1 Fall 2008

BIOLOGY. A Tour of the Cell CAMPBELL. Robert Hooke (1665) Antoni van Leeuwenhoek (1674) Reece Urry Cain Wasserman Minorsky Jackson

Chapter 4. A Tour of the Cell. RPTSE Biology Fall 2015, Dr. Jong B. Lee 1. Biology and Society: Antibiotics: Drugs that Target Bacterial Cells

Organelles. copyright cmassengale 1

A Tour of the Cell Chapter 4. Outline. Early contributors to Understanding Cells. Cell Theory. Cell Size s Matt Schleiden & Ted Schann

AP Biology Book Notes Chapter 4: Cells v Cell theory implications Ø Studying cell biology is in some sense the same as studying life Ø Life is

Chapter 4. A Tour of the Cell. Lectures by Edward J. Zalisko

Cell Structure and Function

A Tour of the cell. 2- Eukaryotic cells have internal membranes that compartmentalize their functions

Cell Structure & Function. Source:

A Tour of the Cell. reference: Chapter 6. Reference: Chapter 2

2011 Pearson Education, Inc.

Ch. 7 Inside the Cell BIOL 222

Cytology II Study of Cells

Organelles of the Cell & How They Work Together. Packet #7

2011 Pearson Education, Inc.

11/1/2014. accumulate in brain.

Organelles of the Cell & How They Work Together. Packet #5

BIOSC 041. v Today s lecture. v Today s lab. v Note- Monday is a holiday good time to do some reading!

Organelles of the Cell & How They Work Together. Packet #5

First to View Cells. copyright cmassengale

Name 4 A Tour of the Cell Test Date Study Guide You must know: The difference between prokaryotic and eukaryotic cells. The structure and function of

Fungal cell walls are rigid with less flexibility due to a combination of more sugar (more chitin) and protein flexibility.

Eukaryotic Cell Structures

Cell Structure. Cells. Why are cells so small? 9/15/2016. Schleiden and Schwann proposed Cell Theory in

Bio10 Cell Structure SRJC

Chapter 4: Cell Structure and Function

Eukaryotic Cell Structure

Ch. 6: A Tour of the Cell

BIOLOGY. A Tour of the Cell. Outline. Cell Theory. Cells. Cell Size. Cell Theory

LECTURE 3 CELL STRUCTURE

Cells: The Basic Units of Life

Structures in Cells. Lecture 5, EH1008: Biology for Public Health, Biomolecules.

Transcription:

Chapter 6 A Tour of the Cell PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Overview: The Fundamental Units of Life All organisms are made of cells The cell is the simplest collection of matter that can live Cell structure is correlated to cellular function All cells are related by their descent from earlier cells Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Fig. 6-1

Concept 6.1: To study cells, biologists use microscopes and the tools of biochemistry Though usually too small to be seen by the unaided eye, cells can be complex Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Microscopy Scientists use microscopes to visualize cells too small to see with the naked eye In a light microscope (LM), visible light passes through a specimen and then through glass lenses, which magnify the image Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

The quality of an image depends on Magnification, the ratio of an object s image size to its real size Resolution, the measure of the clarity of the image, or the minimum distance of two distinguishable points Contrast, visible differences in parts of the sample Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Fig. 6-2 10 m 1 m 0.1 m 1 cm Human height Length of some nerve and muscle cells Chicken egg Unaided eye 1 mm Frog egg 100 µm 10 µm 1 µm 100 nm 10 nm Most plant and animal cells Nucleus Most bacteria Mitochondrion Smallest bacteria Viruses Ribosomes Proteins Light microscope Electron microscope 1 nm Lipids Small molecules 0.1 nm Atoms

LMs can magnify effectively to about 1,000 times the size of the actual specimen Various techniques enhance contrast and enable cell components to be stained or labeled Most subcellular structures, including organelles (membrane-enclosed compartments), are too small to be resolved by an LM Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Fig. 6-3 TECHNIQUE (a) Brightfield (unstained specimen) RESULTS (b) Brightfield (stained specimen) 50 µm (c) Phase-contrast (d) Differential-interferencecontrast (Nomarski) (e) Fluorescence (f) Confocal 50 µm 50 µm

Fig. 6-3ab TECHNIQUE RESULTS (a) Brightfield (unstained specimen) 50 µm (b) Brightfield (stained specimen)

Fig. 6-3cd TECHNIQUE RESULTS (c) Phase-contrast (d) Differential-interferencecontrast (Nomarski)

Fig. 6-3e TECHNIQUE RESULTS (e) Fluorescence 50 µm

Fig. 6-3f TECHNIQUE RESULTS (f) Confocal 50 µm

Two basic types of electron microscopes (EMs) are used to study subcellular structures Scanning electron microscopes (SEMs) focus a beam of electrons onto the surface of a specimen, providing images that look 3-D Transmission electron microscopes (TEMs) focus a beam of electrons through a specimen TEMs are used mainly to study the internal structure of cells Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Fig. 6-4 TECHNIQUE RESULTS (a) Scanning electron microscopy (SEM) Cilia 1 µm (b) Transmission electron microscopy (TEM) Longitudinal section of cilium Cross section of cilium 1 µm

Cell Fractionation Cell fractionation takes cells apart and separates the major organelles from one another Ultracentrifuges fractionate cells into their component parts Cell fractionation enables scientists to determine the functions of organelles Biochemistry and cytology help correlate cell function with structure Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Fig. 6-5 TECHNIQUE Homogenization Tissue cells Homogenate 1,000 g (1,000 times the force of gravity) 10 min Differential centrifugation Supernatant poured into next tube 20,000 g 20 min Pellet rich in nuclei and cellular debris 80,000 g 60 min Pellet rich in mitochondria (and chloroplasts if cells are from a plant) 150,000 g 3 hr Pellet rich in microsomes (pieces of plasma membranes and cells internal membranes) Pellet rich in ribosomes

Fig. 6-5a TECHNIQUE Homogenization Tissue cells Homogenate Differential centrifugation

Fig. 6-5b TECHNIQUE (cont.) 1,000 g (1,000 times the force of gravity) 10 min Supernatant poured into next tube 20,000 g 20 min Pellet rich in nuclei and cellular debris Pellet rich in mitochondria (and chloroplasts if cells are from a plant) 80,000 g 60 min Pellet rich in microsomes (pieces of plasma membranes and cells internal membranes) 150,000 g 3 hr Pellet rich in ribosomes

Concept 6.2: Eukaryotic cells have internal membranes that compartmentalize their functions The basic structural and functional unit of every organism is one of two types of cells: prokaryotic or eukaryotic Only organisms of the domains Bacteria and Archaea consist of prokaryotic cells Protists, fungi, animals, and plants all consist of eukaryotic cells Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Comparing Prokaryotic and Eukaryotic Cells Basic features of all cells: Plasma membrane Semifluid substance called cytosol Chromosomes (carry genes) Ribosomes (make proteins) Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Prokaryotic cells are characterized by having No nucleus DNA in an unbound region called the nucleoid No membrane-bound organelles Cytoplasm bound by the plasma membrane Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Fig. 6-6 Fimbriae Nucleoid Ribosomes Plasma membrane Bacterial chromosome (a) A typical rod-shaped bacterium Cell wall Capsule Flagella 0.5 µm (b) A thin section through the bacterium Bacillus coagulans (TEM)

Eukaryotic cells are characterized by having DNA in a nucleus that is bounded by a membranous nuclear envelope Membrane-bound organelles Cytoplasm in the region between the plasma membrane and nucleus Eukaryotic cells are generally much larger than prokaryotic cells Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

The plasma membrane is a selective barrier that allows sufficient passage of oxygen, nutrients, and waste to service the volume of every cell The general structure of a biological membrane is a double layer of phospholipids Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Fig. 6-7 Outside of cell (a) TEM of a plasma membrane Inside of cell 0.1 µm Carbohydrate side chain Hydrophilic region Hydrophobic region Hydrophilic region Phospholipid Proteins (b) Structure of the plasma membrane

The logistics of carrying out cellular metabolism sets limits on the size of cells The surface area to volume ratio of a cell is critical As the surface area increases by a factor of n 2, the volume increases by a factor of n 3 Small cells have a greater surface area relative to volume Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Fig. 6-8 Surface area increases while total volume remains constant 5 1 1 Total surface area [Sum of the surface areas (height width) of all boxes sides number of boxes] 6 150 750 Total volume [height width length number of boxes] 1 125 125 Surface-to-volume (S-to-V) ratio [surface area volume] 6 1.2 6

A Panoramic View of the Eukaryotic Cell A eukaryotic cell has internal membranes that partition the cell into organelles Plant and animal cells have most of the same organelles BioFlix: : Tour Of An Animal Cell BioFlix: : Tour Of A Plant Cell Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Fig. 6-9a ENDOPLASMIC RETICULUM (ER) Rough ER Smooth ER Flagellum Nuclear envelope Nucleolus Chromatin NUCLEUS Centrosome Plasma membrane CYTOSKELETON: Microfilaments Intermediate filaments Microtubules Ribosomes Microvilli Peroxisome Golgi apparatus Mitochondrion Lysosome

Fig. 6-9b NUCLEUS Nuclear envelope Nucleolus Chromatin Rough endoplasmic reticulum Smooth endoplasmic reticulum Ribosomes Golgi apparatus Central vacuole Microfilaments Intermediate filaments Microtubules CYTO- SKELETON Mitochondrion Peroxisome Plasma membrane Chloroplast Cell wall Wall of adjacent cell Plasmodesmata

Concept 6.3: The eukaryotic cell s genetic instructions are housed in the nucleus and carried out by the ribosomes The nucleus contains most of the DNA in a eukaryotic cell Ribosomes use the information from the DNA to make proteins Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

The Nucleus: Information Central The nucleus contains most of the cell s genes and is usually the most conspicuous organelle The nuclear envelope encloses the nucleus, separating it from the cytoplasm The nuclear membrane is a double membrane; each membrane consists of a lipid bilayer Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Fig. 6-10 1 µm Nuclear envelope: Inner membrane Outer membrane Nucleolus Chromatin Nucleus Nuclear pore Pore complex Surface of nuclear envelope 0.25 µm Ribosome Rough ER 1 µm Close-up of nuclear envelope Pore complexes (TEM) Nuclear lamina (TEM)

Pores regulate the entry and exit of molecules from the nucleus The shape of the nucleus is maintained by the nuclear lamina, which is composed of protein Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

In the nucleus, DNA and proteins form genetic material called chromatin Chromatin condenses to form discrete chromosomes The nucleolus is located within the nucleus and is the site of ribosomal RNA (rrna) synthesis Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Ribosomes: Protein Factories Ribosomes are particles made of ribosomal RNA and protein Ribosomes carry out protein synthesis in two locations: In the cytosol (free ribosomes) On the outside of the endoplasmic reticulum or the nuclear envelope (bound ribosomes) Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Fig. 6-11 Cytosol Endoplasmic reticulum (ER) Free ribosomes Bound ribosomes Large subunit 0.5 µm TEM showing ER and ribosomes Small subunit Diagram of a ribosome

Concept 6.4: The endomembrane system regulates protein traffic and performs metabolic functions in the cell Components of the endomembrane system: Nuclear envelope Endoplasmic reticulum Golgi apparatus Lysosomes Vacuoles Plasma membrane These components are either continuous or connected via transfer by vesicles Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

The Endoplasmic Reticulum: Biosynthetic Factory The endoplasmic reticulum (ER) accounts for more than half of the total membrane in many eukaryotic cells The ER membrane is continuous with the nuclear envelope There are two distinct regions of ER: Smooth ER, which lacks ribosomes Rough ER, with ribosomes studding its surface Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Fig. 6-12 Smooth ER Rough ER Nuclear envelope ER lumen Cisternae Ribosomes Transport vesicle Smooth ER Rough ER Transitional ER 200 nm

Functions of Smooth ER The smooth ER Synthesizes lipids Metabolizes carbohydrates Detoxifies poison Stores calcium Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Functions of Rough ER The rough ER Has bound ribosomes, which secrete glycoproteins (proteins covalently bonded to carbohydrates) Distributes transport vesicles, proteins surrounded by membranes Is a membrane factory for the cell Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

The Golgi Apparatus: Shipping and Receiving Center The Golgi apparatus consists of flattened membranous sacs called cisternae Functions of the Golgi apparatus: Modifies products of the ER Manufactures certain macromolecules Sorts and packages materials into transport vesicles Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Fig. 6-13 cis face ( receiving side of Golgi apparatus) Cisternae 0.1 µm trans face ( shipping side of Golgi apparatus) TEM of Golgi apparatus

Lysosomes: Digestive Compartments A lysosome is a membranous sac of hydrolytic enzymes that can digest macromolecules Lysosomal enzymes can hydrolyze proteins, fats, polysaccharides, and nucleic acids Animation: Lysosome Formation Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Some types of cell can engulf another cell by phagocytosis; this forms a food vacuole A lysosome fuses with the food vacuole and digests the molecules Lysosomes also use enzymes to recycle the cell s own organelles and macromolecules, a process called autophagy Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Fig. 6-14 Nucleus 1 µm Vesicle containing two damaged organelles 1 µm Mitochondrion fragment Lysosome Peroxisome fragment Lysosome Digestive enzymes Lysosome Plasma membrane Digestion Peroxisome Food vacuole Vesicle Mitochondrion Digestion (a) Phagocytosis (b) Autophagy

Fig. 6-14a Nucleus 1 µm Lysosome Lysosome Digestive enzymes Plasma membrane Digestion Food vacuole (a) Phagocytosis

Fig. 6-14b Vesicle containing two damaged organelles 1 µm Mitochondrion fragment Peroxisome fragment Peroxisome Lysosome Vesicle Mitochondrion Digestion (b) Autophagy

Vacuoles: Diverse Maintenance Compartments A plant cell or fungal cell may have one or several vacuoles Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Food vacuoles are formed by phagocytosis Contractile vacuoles, found in many freshwater protists, pump excess water out of cells Central vacuoles, found in many mature plant cells, hold organic compounds and water Video: Paramecium Vacuole Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Fig. 6-15 Central vacuole Cytosol Nucleus Central vacuole Cell wall Chloroplast 5 µm

The Endomembrane System: A Review The endomembrane system is a complex and dynamic player in the cell s compartmental organization Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Fig. 6-16-1 Nucleus Rough ER Smooth ER Plasma membrane

Fig. 6-16-2 Nucleus Rough ER Smooth ER cis Golgi trans Golgi Plasma membrane

Fig. 6-16-3 Nucleus Rough ER Smooth ER cis Golgi trans Golgi Plasma membrane

Concept 6.5: Mitochondria and chloroplasts change energy from one form to another Mitochondria are the sites of cellular respiration, a metabolic process that generates ATP Chloroplasts, found in plants and algae, are the sites of photosynthesis Peroxisomes are oxidative organelles Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Mitochondria and chloroplasts Are not part of the endomembrane system Have a double membrane Have proteins made by free ribosomes Contain their own DNA Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Mitochondria: Chemical Energy Conversion Mitochondria are in nearly all eukaryotic cells They have a smooth outer membrane and an inner membrane folded into cristae The inner membrane creates two compartments: intermembrane space and mitochondrial matrix Some metabolic steps of cellular respiration are catalyzed in the mitochondrial matrix Cristae present a large surface area for enzymes that synthesize ATP Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Fig. 6-17 Intermembrane space Outer membrane Free ribosomes in the mitochondrial matrix Inner membrane Cristae Matrix 0.1 µm

Chloroplasts: Capture of Light Energy The chloroplast is a member of a family of organelles called plastids Chloroplasts contain the green pigment chlorophyll, as well as enzymes and other molecules that function in photosynthesis Chloroplasts are found in leaves and other green organs of plants and in algae Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Chloroplast structure includes: Thylakoids, membranous sacs, stacked to form a granum Stroma, the internal fluid Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Fig. 6-18 Ribosomes Stroma Inner and outer membranes Granum Thylakoid 1 µm

Peroxisomes: Oxidation Peroxisomes are specialized metabolic compartments bounded by a single membrane Peroxisomes produce hydrogen peroxide and convert it to water Oxygen is used to break down different types of molecules Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Fig. 6-19 Chloroplast Peroxisome Mitochondrion 1 µm

Concept 6.6: The cytoskeleton is a network of fibers that organizes structures and activities in the cell The cytoskeleton is a network of fibers extending throughout the cytoplasm It organizes the cell s structures and activities, anchoring many organelles It is composed of three types of molecular structures: Microtubules Microfilaments Intermediate filaments Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Fig. 6-20 Microtubule 0.25 µm Microfilaments

Roles of the Cytoskeleton: Support, Motility, and Regulation The cytoskeleton helps to support the cell and maintain its shape It interacts with motor proteins to produce motility Inside the cell, vesicles can travel along monorails provided by the cytoskeleton Recent evidence suggests that the cytoskeleton may help regulate biochemical activities Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Fig. 6-21 ATP Vesicle Receptor for motor protein (a) Motor protein (ATP powered) Microtubule of cytoskeleton Microtubule Vesicles 0.25 µm (b)

Components of the Cytoskeleton Three main types of fibers make up the cytoskeleton: Microtubules are the thickest of the three components of the cytoskeleton Microfilaments, also called actin filaments, are the thinnest components Intermediate filaments are fibers with diameters in a middle range Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Table 6-1 10 µm 10 µm 10 µm Column of tubulin dimers 25 nm Actin subunit Keratin proteins Fibrous subunit (keratins coiled together) α β Tubulin dimer 7 nm 8 12 nm

Table 6-1a 10 µm Column of tubulin dimers 25 nm α β Tubulin dimer

Table 6-1b 10 µm Actin subunit 7 nm

Table 6-1c 5 µm Keratin proteins Fibrous subunit (keratins coiled together) 8 12 nm

Microtubules Microtubules are hollow rods about 25 nm in diameter and about 200 nm to 25 microns long Functions of microtubules: Shaping the cell Guiding movement of organelles Separating chromosomes during cell division Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Centrosomes and Centrioles In many cells, microtubules grow out from a centrosome near the nucleus The centrosome is a microtubule-organizing center In animal cells, the centrosome has a pair of centrioles, each with nine triplets of microtubules arranged in a ring Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Fig. 6-22 Centrosome Microtubule Centrioles 0.25 µm Longitudinal section of one centriole Microtubules Cross section of the other centriole

Cilia and Flagella Microtubules control the beating of cilia and flagella, locomotor appendages of some cells Cilia and flagella differ in their beating patterns Video: Chlamydomonas Video: Paramecium Cilia Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Fig. 6-23 Direction of swimming (a) Motion of flagella 5 µm Direction of organism s movement Power stroke Recovery stroke (b) Motion of cilia 15 µm

Cilia and flagella share a common ultrastructure: A core of microtubules sheathed by the plasma membrane A basal body that anchors the cilium or flagellum A motor protein called dynein, which drives the bending movements of a cilium or flagellum Animation: Cilia and Flagella Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Fig. 6-24 0.1 µm Outer microtubule doublet Dynein proteins Plasma membrane Central microtubule Radial spoke Microtubules Protein crosslinking outer doublets Plasma membrane (b) Cross section of cilium Basal body 0.5 µm (a) Longitudinal section of cilium 0.1 µm Triplet (c) Cross section of basal body

How dynein walking moves flagella and cilia: Dynein arms alternately grab, move, and release the outer microtubules Protein cross-links limit sliding Forces exerted by dynein arms cause doublets to curve, bending the cilium or flagellum Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Fig. 6-25 Microtubule doublets ATP Dynein protein (a) Effect of unrestrained dynein movement Cross-linking proteins inside outer doublets ATP Anchorage in cell (b) Effect of cross-linking proteins 1 3 2 (c) Wavelike motion

Fig. 6-25a Microtubule doublets ATP Dynein protein (a) Effect of unrestrained dynein movement

Fig. 6-25b Cross-linking proteins inside outer doublets ATP Anchorage in cell (b) Effect of cross-linking proteins 1 3 2 (c) Wavelike motion

Microfilaments (Actin Filaments) Microfilaments are solid rods about 7 nm in diameter, built as a twisted double chain of actin subunits The structural role of microfilaments is to bear tension, resisting pulling forces within the cell They form a 3-D network called the cortex just inside the plasma membrane to help support the cell s shape Bundles of microfilaments make up the core of microvilli of intestinal cells Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Fig. 6-26 Microvillus Plasma membrane Microfilaments (actin filaments) Intermediate filaments 0.25 µm

Microfilaments that function in cellular motility contain the protein myosin in addition to actin In muscle cells, thousands of actin filaments are arranged parallel to one another Thicker filaments composed of myosin interdigitate with the thinner actin fibers Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Fig. 6-27 Actin filament Muscle cell Myosin filament Myosin arm (a) Myosin motors in muscle cell contraction Cortex (outer cytoplasm): gel with actin network Inner cytoplasm: sol with actin subunits Extending pseudopodium (b) Amoeboid movement Nonmoving cortical cytoplasm (gel) Chloroplast Streaming cytoplasm (sol) Vacuole Parallel actin filaments Cell wall (c) Cytoplasmic streaming in plant cells

Fig, 6-27a Actin filament Muscle cell Myosin filament Myosin arm (a) Myosin motors in muscle cell contraction

Fig. 6-27bc Cortex (outer cytoplasm): gel with actin network Inner cytoplasm: sol with actin subunits Extending pseudopodium (b) Amoeboid movement Nonmoving cortical cytoplasm (gel) Chloroplast Streaming cytoplasm (sol) Vacuole Parallel actin filaments Cell wall (c) Cytoplasmic streaming in plant cells

Localized contraction brought about by actin and myosin also drives amoeboid movement Pseudopodia (cellular extensions) extend and contract through the reversible assembly and contraction of actin subunits into microfilaments Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Cytoplasmic streaming is a circular flow of cytoplasm within cells This streaming speeds distribution of materials within the cell In plant cells, actin-myosin interactions and solgel transformations drive cytoplasmic streaming Video: Cytoplasmic Streaming Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Intermediate Filaments Intermediate filaments range in diameter from 8 12 nanometers, larger than microfilaments but smaller than microtubules They support cell shape and fix organelles in place Intermediate filaments are more permanent cytoskeleton fixtures than the other two classes Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Concept 6.7: Extracellular components and connections between cells help coordinate cellular activities Most cells synthesize and secrete materials that are external to the plasma membrane These extracellular structures include: Cell walls of plants The extracellular matrix (ECM) of animal cells Intercellular junctions Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Cell Walls of Plants The cell wall is an extracellular structure that distinguishes plant cells from animal cells Prokaryotes, fungi, and some protists also have cell walls The cell wall protects the plant cell, maintains its shape, and prevents excessive uptake of water Plant cell walls are made of cellulose fibers embedded in other polysaccharides and protein Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Plant cell walls may have multiple layers: Primary cell wall: relatively thin and flexible Middle lamella: thin layer between primary walls of adjacent cells Secondary cell wall (in some cells): added between the plasma membrane and the primary cell wall Plasmodesmata are channels between adjacent plant cells Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Fig. 6-28 Secondary cell wall Primary cell wall Middle lamella 1 µm Central vacuole Cytosol Plasma membrane Plant cell walls Plasmodesmata

Fig. 6-29 RESULTS 10 µm Distribution of cellulose synthase over time Distribution of microtubules over time

The Extracellular Matrix (ECM) of Animal Cells Animal cells lack cell walls but are covered by an elaborate extracellular matrix (ECM) The ECM is made up of glycoproteins such as collagen, proteoglycans, and fibronectin ECM proteins bind to receptor proteins in the plasma membrane called integrins Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Fig. 6-30 Collagen EXTRACELLULAR FLUID Proteoglycan complex Polysaccharide molecule Carbohydrates Fibronectin Core protein Integrins Plasma membrane Proteoglycan molecule Proteoglycan complex Microfilaments CYTOPLASM

Fig. 6-30a Collagen EXTRACELLULAR FLUID Proteoglycan complex Fibronectin Integrins Plasma membrane Microfilaments CYTOPLASM

Fig. 6-30b Polysaccharide molecule Carbohydrates Core protein Proteoglycan molecule Proteoglycan complex

Functions of the ECM: Support Adhesion Movement Regulation Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Intercellular Junctions Neighboring cells in tissues, organs, or organ systems often adhere, interact, and communicate through direct physical contact Intercellular junctions facilitate this contact There are several types of intercellular junctions Plasmodesmata Tight junctions Desmosomes Gap junctions Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Plasmodesmata in Plant Cells Plasmodesmata are channels that perforate plant cell walls Through plasmodesmata, water and small solutes (and sometimes proteins and RNA) can pass from cell to cell Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Fig. 6-31 Cell walls Interior of cell Interior of cell 0.5 µm Plasmodesmata Plasma membranes

Tight Junctions, Desmosomes, and Gap Junctions in Animal Cells At tight junctions, membranes of neighboring cells are pressed together, preventing leakage of extracellular fluid Desmosomes (anchoring junctions) fasten cells together into strong sheets Gap junctions (communicating junctions) provide cytoplasmic channels between adjacent cells Animation: Tight Junctions Animation: Desmosomes Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings Animation: Gap Junctions

Fig. 6-32 Tight junctions prevent fluid from moving across a layer of cells Tight junction 0.5 µm Tight junction Intermediate filaments Desmosome Gap junctions Desmosome 1 µm Space between cells Plasma membranes of adjacent cells Extracellular matrix Gap junction 0.1 µm

Fig. 6-32a Tight junctions prevent fluid from moving across a layer of cells Intermediate filaments Tight junction Desmosome Gap junctions Space between cells Plasma membranes of adjacent cells Extracellular matrix

Fig. 6-32b Tight junction 0.5 µm

Fig. 6-32c Desmosome 1 µm

Fig. 6-32d Gap junction 0.1 µm

The Cell: A Living Unit Greater Than the Sum of Its Parts Cells rely on the integration of structures and organelles in order to function For example, a macrophage s ability to destroy bacteria involves the whole cell, coordinating components such as the cytoskeleton, lysosomes, and plasma membrane Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Fig. 6-33 5 µm

Fig. 6-UN1 Cell Component Structure Function Concept 6.3 The eukaryotic cell s genetic instructions are housed in the nucleus and carried out by the ribosomes Nucleus Surrounded by nuclear envelope (double membrane) perforated by nuclear pores. The nuclear envelope is continuous with the endoplasmic reticulum (ER). Houses chromosomes, made of chromatin (DNA, the genetic material, and proteins); contains nucleoli, where ribosomal subunits are made. Pores regulate entry and exit of materials. (ER) Ribosome Two subunits made of ribosomal RNA and proteins; can be free in cytosol or bound to ER Protein synthesis Concept 6.4 The endomembrane system regulates protein traffic and performs metabolic functions in the cell Endoplasmic reticulum (Nuclear envelope) Extensive network of membrane-bound tubules and sacs; membrane separates lumen from cytosol; continuous with the nuclear envelope. Smooth ER: synthesis of lipids, metabolism of carbohydrates, Ca 2+ storage, detoxification of drugs and poisons Rough ER: Aids in synthesis of secretory and other proteins from bound ribosomes; adds carbohydrates to glycoproteins; produces new membrane Golgi apparatus Stacks of flattened membranous sacs; has polarity (cis and trans faces) Modification of proteins, carbohydrates on proteins, and phospholipids; synthesis of many polysaccharides; sorting of Golgi products, which are then released in vesicles. Lysosome Membranous sac of hydrolytic enzymes (in animal cells) Breakdown of ingested substances, cell macromolecules, and damaged organelles for recycling Vacuole Large membrane-bounded vesicle in plants Digestion, storage, waste disposal, water balance, cell growth, and protection Concept 6.5 Mitochondria and chloroplasts change energy from one form to another Mitochondrion Bounded by double membrane; inner membrane has infoldings (cristae) Cellular respiration Chloroplast Peroxisome Typically two membranes around fluid stroma, which contains membranous thylakoids stacked into grana (in plants) Specialized metabolic compartment bounded by a single membrane Photosynthesis Contains enzymes that transfer hydrogen to water, producing hydrogen peroxide (H 2 O 2 ) as a by-product, which is converted to water by other enzymes in the peroxisome

Fig. 6-UN1a Cell Component Structure Function Concept 6.3 The eukaryotic cell s genetic instructions are housed in the nucleus and carried out by the ribosomes Nucleus Surrounded by nuclear envelope (double membrane) perforated by nuclear pores. The nuclear envelope is continuous with the endoplasmic reticulum (ER). Houses chromosomes, made of chromatin (DNA, the genetic material, and proteins); contains nucleoli, where ribosomal subunits are made. Pores regulate entry and exit os materials. (ER) Ribosome Two subunits made of ribosomal RNA and proteins; can be free in cytosol or bound to ER Protein synthesis

Fig. 6-UN1b Cell Component Structure Function Concept 6.4 The endomembrane system regulates protein traffic and performs metabolic functions in the cell Endoplasmic reticulum (Nuclear envelope) Extensive network of membrane-bound tubules and sacs; membrane separates lumen from cytosol; continuous with the nuclear envelope. Smooth ER: synthesis of lipids, metabolism of carbohydrates, Ca 2+ storage, detoxification of drugs and poisons Rough ER: Aids in sythesis of secretory and other proteins from bound ribosomes; adds carbohydrates to glycoproteins; produces new membrane Golgi apparatus Stacks of flattened membranous sacs; has polarity (cis and trans faces) Modification of proteins, carbohydrates on proteins, and phospholipids; synthesis of many polysaccharides; sorting of Golgi products, which are then released in vesicles. Lysosome Vacuole Membranous sac of hydrolytic enzymes (in animal cells) Large membrane-bounded vesicle in plants Breakdown of ingested substances cell macromolecules, and damaged organelles for recycling Digestion, storage, waste disposal, water balance, cell growth, and protection

Fig. 6-UN1c Cell Component Structure Function Concept 6.5 Mitochondria and chloroplasts change energy from one form to another Mitochondrion Bounded by double membrane; inner membrane has infoldings (cristae) Cellular respiration Chloroplast Typically two membranes around fluid stroma, which contains membranous thylakoids stacked into grana (in plants) Photosynthesis Peroxisome Specialized metabolic compartment bounded by a single membrane Contains enzymes that transfer hydrogen to water, producing hydrogen peroxide (H 2 O 2 ) as a by-product, which is converted to water by other enzymes in the peroxisome

Fig. 6-UN2

Fig. 6-UN3

You should now be able to: 1. Distinguish between the following pairs of terms: magnification and resolution; prokaryotic and eukaryotic cell; free and bound ribosomes; smooth and rough ER 2. Describe the structure and function of the components of the endomembrane system 3. Briefly explain the role of mitochondria, chloroplasts, and peroxisomes 4. Describe the functions of the cytoskeleton Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

5. Compare the structure and functions of microtubules, microfilaments, and intermediate filaments 6. Explain how the ultrastructure of cilia and flagella relate to their functions 7. Describe the structure of a plant cell wall 8. Describe the structure and roles of the extracellular matrix in animal cells 9. Describe four different intercellular junctions Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings