Nature Neuroscience: doi: /nn Supplementary Figure 1

Similar documents
A region-specific neurogenesis mode requires migratory progenitors in the Drosophila visual system

glial cells missing and gcm2 Cell-autonomously Regulate Both Glial and Neuronal

effects on organ development. a-f, Eye and wing discs with clones of ε j2b10 show no

Supporting Information

SUPPLEMENTARY INFORMATION

Supplementary Figures

Supplementary Figure 1 Madm is not required in GSCs and hub cells. (a,b) Act-Gal4-UAS-GFP (a), Act-Gal4-UAS- GFP.nls (b,c) is ubiquitously expressed

Supplementary Figure 1. Flies form water-reward memory only in the thirsty state

marker. DAPI labels nuclei. Flies were 20 days old. Scale bar is 5 µm. Ctrl is

The Tumor Suppressors Brat and Numb Regulate Transit-Amplifying Neuroblast Lineages in Drosophila

Cell migration in Drosophila optic lobe neurons is controlled by eyeless/pax6

Supplementary Fig. 1 V-ATPase depletion induces unique and robust phenotype in Drosophila fat body cells.

Supplementary Figure S1: TIPF reporter validation in the wing disc.

50mM D-Glucose. Percentage PI. L-Glucose

Article. The Color-Vision Circuit in the Medulla of Drosophila. Javier Morante 1 and Claude Desplan 1, * 1

Temporal Patterning of Neuroblasts Controls Notch-Mediated Cell Survival through Regulation of Hid or Reaper

Supplementary Information

Supplementary Figure 1. Procedures to independently control fly hunger and thirst states.

SUPPLEMENTARY INFORMATION

Supplemental Data SUPPLEMENTAL EXPERIMENTAL PROCEDURES

Supplementary Figure 1. Electroporation of a stable form of β-catenin causes masses protruding into the IV ventricle. HH12 chicken embryos were

Table S1. Gal4 Driver Lines in This Study, Related to Figures 1, 2, 3, 4, 5, 6, S1, S2, S3, S4, S5, and S6

Concentric zones, cell migration and neuronal circuits in the Drosophila visual center

Viktorin, G. and Riebli, N. and Popkova, A. and Giangrande, A. and Reichert, H.

Supplemental Information. Proprioceptive Opsin Functions. in Drosophila Larval Locomotion

Developmental Biology

Nature Neuroscience: doi: /nn Supplementary Figure 1. Neuron class-specific arrangements of Khc::nod::lacZ label in dendrites.

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Glucosylceramide synthase (GlcT-1) in the fat body controls energy metabolism in Drosophila

Supplementary Figure 1

Supplementary Figure 1 hlrrk2 promotes CAP dependent protein translation.

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY FIGURES

Neurogenesis and neuronal circuit formation in the Drosophila visual center

T H E J O U R N A L O F C E L L B I O L O G Y

G-TRACE: rapid Gal4-based cell lineage analysis in Drosophila

Transgenic Expression of the Helicobacter pylori Virulence Factor CagA Promotes Apoptosis or Tumorigenesis through JNK Activation in Drosophila

Supplementary Information

SUPPLEMENTARY INFORMATION

doi: /nature09554

Regulation of sleep plasticity by a thermo-sensitive circuit in Drosophila

atonal Regulates Neurite Arborization but Does Not Act as a Proneural Gene in the Drosophila Brain

Supplementary Information

SUPPLEMENTARY INFORMATION

Cancer Stem Cells & Glioblastoma

Supplementary Figure S1: Tanycytes are restricted to the central/posterior hypothalamus

RNA-interference knockdown of Drosophila pigment dispersing factor in neuronal subsets: The anatomical basis of a neuropeptide s circadian functions

Zhu et al, page 1. Supplementary Figures

Developmental Biology

Stereotyped connectivity and computations in higher order olfactory neurons Mehmet Fisek and Rachel I. Wilson

Head of College Scholars List Scheme. Summer Studentship Report Form

Drosophila PTEN Regulates Cell Growth and Proliferation through PI3K-Dependent and -Independent Pathways

Supplementary Table 1. List of primers used in this study

mir-7a regulation of Pax6 in neural stem cells controls the spatial origin of forebrain dopaminergic neurons

Conserved properties of dentate gyrus neurogenesis across postnatal development revealed by single-cell RNA sequencing

Supplementary Figure 1. Chimeric analysis of inner ears. (A-H) Chimeric inner ears with fluorescent ES cells and (I,J) Rainbow inner ears.

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION

Supplementary Figure 1. Nature Neuroscience: doi: /nn.4547

Supplemental Information. A Regulatory Network. of Drosophila Germline. Stem Cell Self-Renewal

Compartmental organization of the Drosophila genital imaginal discs

McWilliams et al., http :// /cgi /content /full /jcb /DC1

Miniature Neurotransmission Regulates Drosophila Synaptic Structural Maturation

Drosophila model for fetal alcohol syndrome disorders: Role for the insulin pathway

Edited by J. Richard McIntosh, University of Colorado, Boulder, CO, and approved June 17, 2016 (received for review November 13, 2015) Results

c Ischemia (30 min) Reperfusion (8 w) Supplementary Figure bp 300 bp Ischemia (30 min) Reperfusion (4 h) Dox 20 mg/kg i.p.

SUPPLEMENTARY INFORMATION. Otx2 controls neuron subtype identity in ventral tegmental area and antagonizes

Control of neuronal cell fate and number by integration of distinct daughter cell proliferation modes with temporal progression

Neocortex Zbtb20 / NFIA / Sox9

OSVZ progenitors of human and ferret neocortex are epithelial-like and

Supplementary Figure 1. Rab27a-KD inhibits speed and persistence of HEp3 cells migrating in the chick CAM. (a) Western blot analysis of Rab27a

Drosophila Hey is a target of Notch in asymmetric divisions during embryonic and larval neurogenesis

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION

Nature Medicine doi: /nm.2860

Gbb/Bmp signaling is essential for maintaining germline stem cells and for repressing bam transcription in the Drosophila testis

Supplementary Figures

Dissecting and Staining Drosophila Optic Lobes PAGE PROOFS

SUPPLEMENTARY MATERIAL

The microrna bantam Functions in Epithelial Cells to Regulate Scaling Growth of Dendrite Arbors in Drosophila Sensory Neurons

Supplementary Figure 1 (Related with Figure 4). Molecular consequences of Eed deletion. (a) ChIP analysis identifies 3925 genes that are associated

Brat Is a Miranda Cargo Protein that Promotes Neuronal Differentiation and Inhibits Neuroblast Self-Renewal

Autophagy suppresses Ras-driven epithelial tumourigenesis by limiting the accumulation of reactive oxygen species

Meigo governs dendrite targeting specificity by modulating Ephrin level and N-glycosylation

SUPPLEMENTARY FIGURE LEGENDS

Supplementary Figure 1: Signaling centers contain few proliferating cells, express p21, and

INVESTIGATING THE ROLE OF THE HISTONE DEMETHYLASE LID IN THE DROSOPHILA TESTIS NICHE

CONTRACTING ORGANIZATION: Cold Spring Harbor Laboratory Cold Spring Harbor, NY 11724

SUPPLEMENTARY FIGURES AND TABLE

The Hunchback temporal transcription factor establishes, but is not required to maintain, early-born neuronal identity

Supplemental Figure 1. Quantification of proliferation in thyroid of WT, Ctns -/- and grafted

Progression of the morphogenetic furrow in the Drosophila eye: the roles of Hedgehog, Decapentaplegic and the Raf pathway

Targeted expression of teashirt induces ectopic eyes in Drosophila

Control of Growth within Drosophila Peripheral Nerves by Ras and Protein Kinase A

Supplementary Figure 1

let-7-complex MicroRNAs Regulate the Temporal Identity of Drosophila Mushroom Body Neurons via chinmo

LABORATÓRIUMI GYAKORLAT SILLABUSZ SYLLABUS OF A PRACTICAL DEMOSTRATION. financed by the program

Glial-Derived Prodegenerative Signaling in the Drosophila Neuromuscular System

100 mm Sucrose. +Berberine +Quinine

AD (Leave blank) TITLE: Control of Growth Within Drosophila Peripheral Nerves by Ras and Protein Kinase A

Transcription:

Supplementary Figure 1 Expression of escargot (esg) and genetic approach for achieving IPC-specific knockdown. (a) esg MH766 -Gal4 UAS-cd8GFP (green) and esg-lacz B7-2-22 (red) show similar expression patterns. Both transgenes label cells at the p- IPC neuroepithelial margins (arrowheads), as well as migratory progenitors within cell streams (arrows) of late third instar larvae (3L). (b,c) fasciclin 3 (fas3) NP1233 -Gal4 drives expression of UAS-cd8GFP (green) in the IPC and its progeny, while ey 3.5 -Gal80 blocks Gal4 activity in R-cells (arrows, b). This approach efficiently drives expression of UAS-RNAi transgenes, as revealed by the knockdown of fas3 in p-ipc neuroepithlial cells and their progeny (asterisks, red, c). (d) In a EdU pulse-chase experiment, brains of mid third instar larvae (mid 3L) were assessed 4 hours after 2.5 hours EdU feeding. At this stage, p-ipc neuroepithelial cells extensively incorporate EdU (red) and thus are proliferative. dc, distal cells; ln, lamina neurons; lopn, lobula plate neurons; mn, medulla neurons. For genotypes and sample numbers, see Supplementary Table 2. Scale bars represent 50 µm.

Supplementary Figure 2 Validation of lethal of scute (l sc) RNAi-mediated knockdown and characterization of phenotypes in the developing IPC. (a) In control animals, maintained at 18 C, L sc is expressed in neuroepithelial cells of the OPC and p-ipc (red, arrows). (b,c) Experimental animals were grown at 29 C during the third instar larval stage. IPC-specific expression of two different l sc RNAi transgenes - l sc IR JF02399 and l sc IR KK104691 - using fasciclin 3 (fas3) NP1233 -Gal4 results in efficient knockdown of L sc expression in the p- IPC (asterisks) without affecting expression in the OPC (arrows). (d-g) IPC-specific expression of l sc IR KK104691 results in identical phenotypes as l sc IR JF02399 (cf. Fig. 7). Compared to controls, Deadpan-positive (Dpn + ) neuroblasts (red, arrows, d,e) and Dachshundpositive (Dac + ) progeny (red, arrows, f,g), including lobula plate neurons (lopn), are reduced. (h-k) Knockdown of l sc does not affect esg-lacz expression (red, h,i), p-ipc morphology (arrow, h,i), and Dichaete expression in cell streams (red, arrows, j,k). Although the d-ipc is reduced in size, Dichaete continues to be expressed (j,k). For genotypes and sample numbers, see Supplementary Table 2. Scale bars represent 50 µm.

Supplementary Figure 3 Validation of Dichaete RNAi-mediated knockdown in the IPC. (a) In controls, Dichaete (red) is expressed in cell streams (arrow), the d-ipc and medulla neurons (mn). (b,c) IPC-specific expression IR KK107194 IR GD49549 NP1233 of two different RNAi transgenes - Dichaete and Dichaete using fasciclin 3 (fas3) -Gal4 results in efficient knockdown of Dichaete expression in progenitors in cell streams and neuroblasts in the d-ipc (asterisks), without affecting expression in medulla neurons. (d-f) Asense (Ase, red) is not expressed in cell streams (arrows) in control animals (d) and upon Dichaete knockdown (e,f). Both Dichaete RNAi transgenes show identical phenotypes in impairing d-ipc neurogenesis. Discs large (Dlg) immunolabeling is shown in blue. For genotypes and sample numbers, see Supplementary Table 2. Scale bars represent 50 µm.

Supplementary Figure 4 Knockdown of tailless (tll) affects early p-ipc development. (a,b) Compared to controls (a), IPC-specific expression of a tll RNAi transgene using fasciclin 3 (fas3) NP1233 -Gal4 strongly impairs early p-ipc neuroepithelial development, visualized by apkc labeling at the third instar larval stage (red, b). The p-ipc is absent (asterisk) and the d-ipc is reduced (arrow). (c,d) neuralized (neur)-gal4 mediated tll RNAi transgene expression results in knockdown of Tll (red) in the d-ipc (asterisk, d) without affecting expression in the lamina (La) and p-ipc (arrows). Low levels of Tll expression remain in the d-ipc. Discs large (Dlg) immunolabeling is shown in blue. For genotypes and sample numbers, see Supplementary Table 2. Scale bars represent 50 µm.

Supplementary Figure 5 Model illustrating two neuroblast competence stages in the d-ipc. Migratory progenitors mature into neuroblasts (Nb) in the d-ipc, where they transition through two competence stages that are defined by the sequential expression of Asense (Ase) and Atonal (Ato)/Dachshund (Dac). These give rise to Twin of Eyeless-positive (Toy + ) distal cells (dc) and Dachshund-positive (Dac + ) lobula plate neurons (lopn), respectively. Dichaete (D) acts upstream of tailless (tll) to promote the transition between the two neuroblast stages. Genetic manipulations indicate that Dichaete is required to induce tll. tll is required to suppress Dichaete and ase, and to induce ato and dac.

Supplementary Table 1 Full genotypes and numbers of samples shown in main figure panels. Figure Panel Genotype n = a Fig. 1 c esg MH766 -Gal4/CyO or Pin YT ; UAS-cd8GFP/UAS-cd8GFP 15 d esg MH766 -Gal4/CyO or Pin YT ; UAS-cd8GFP/UAS-cd8GFP 19 e esg MH766 -Gal4/CyO or Pin YT ; UAS-cd8GFP/UAS-cd8GFP 9 f esg MH766 -Gal4/CyO or Pin YT ; UAS-cd8GFP/UAS-cd8GFP 20 g-k esg MH766 -Gal4/CyO or Pin YT ; UAS-cd8GFP/UAS-cd8GFP 11 Fig. 2 a esg MH766 -Gal4/CyO or Pin YT ; UAS-cd8GFP/UAS-cd8GFP 11 b esg MH766 -Gal4/CyO or Pin YT ; UAS-cd8GFP/UAS-cd8GFP 19 c, e esg MH766 -Gal4/CyO or Pin YT ; UAS-cd8GFP/UAS-cd8GFP 14 d esg MH766 -Gal4/CyO or Pin YT ; UAS-cd8GFP/UAS-cd8GFP 8 f esg MH766 -Gal4/CyO or Pin YT ; UAS-cd8GFP/UAS-cd8GFP 13 g esg MH766 -Gal4/CyO or Pin YT ; UAS-cd8GFP/UAS-cd8GFP 7 h w hs-flp 122 elav-gal4 c155 UAS-cd8GFP/+ or Y; FRT42D tubp-gal80/frt42d; tubp-gal4/+ i ey 3.5 -Gal80/w 1118 or Y; esg MH766 -Gal4/+; UAS-Dcr2 UAS-cd8GFP/+ 4 j w hs-flp 122 elav-gal4 c155 UAS-cd8GFP/+ or Y; FRT42D tubp-gal80/frt42d Pcl 3-78*38 ; tubp-gal4/+ Fig. 3 a esg MH766 -Gal4/CyO or Pin YT ; UAS-cd8GFP/UAS-cd8GFP 10 b ey 3.5 -Gal80/w 1118 or Y; fas3 NP1233 -Gal4/+; UAS-Dcr2 UAS-cd8GFP/+ 4 c ey 3.5 -Gal80/+ or Y; fas3 NP1233 -Gal4/dpp-lacZ Exel.2 ; UAS-Dcr2 UAS-cd8GFP/UASesg IR GD9794 16/30 e esg MH766 -Gal4/CyO or Pin YT ; UAS-cd8GFP/UAS-cd8GFP 5 f esg MH766 -Gal4/CyO or Pin YT ; UAS-cd8GFP/UAS-cd8GFP 12 i w 1118 4 j w 1118 8 k w 1118 7 l w 1118 9 Fig. 4 a-c +/CyO or Pin YT ; dpp-gal4/uas-cd8gfp 10 d brk x47 /+ or Y; UAS-cd8GFP/+; dpp-gal4/+ 4 e omb P1 /+ or Y; UAS-cd8GFP/+; dpp-gal4/+ 3 g (wt) (tkv strii ) h (wt) (tkv strii ) i (wt) (tkv strii ) ey 3.5 -Gal80/+ or Y; ubi-gfp cyce AR95 FRT40A/FRT40A; lama-gal4 UAS-FLP Exel.2 13 mδ/dpp-lacz ey 3.5 -Gal80/+ or Y; ubi-gfp cyce AR95 FRT40A/tkv strii FRT40A; lama-gal4 UAS- Exel.2 29/33 FLP mδ/dpp-lacz ey 3.5 -Gal80/brk x47 ; ubi-gfp cyce AR95 FRT40A/FRT40A; lama-gal4 UAS-FLP mδ/tm2 ey 3.5 -Gal80/brk x47 ; ubi-gfp cyce AR95 FRT40A/tkv strii FRT40A; lama-gal4 UAS- FLP mδ/tm2 ey 3.5 -Gal80/omb P1 ; ubi-gfp cyce AR95 FRT40A/FRT40A; lama-gal4 UAS-FLP mδ/tm2 ey 3.5 -Gal80/omb P1 ; ubi-gfp cyce AR95 FRT40A/tkv strii FRT40A; lama-gal4 UAS- FLP mδ/+ Fig. 5 a acj6-gal4 UAS-cd8GFP/+; UAS-cd8GFP/+ 9 b esg MH766 -Gal4/CyO or Pin YT ; UAS-cd8GFP/UAS-cd8GFP 3 c w 1118 9 e, f, h, i w hs-flp 122 elav-gal4 c155 UAS-cd8GFP/+ or Y; FRT42D tubp-gal80/frt42d; tubp-gal4/+ g, j, k w hs-flp 122 elav-gal4 c155 UAS-cd8GFP/+ or Y; FRT42D tubp-gal80/frt42d 17 Fig. 6 a ey 3.5 -Gal80/w 1118 or Y; esg MH766 -Gal4/+; UAS-Dcr2 UAS-cd8GFP/+ 6 16 5/8 3 18 8 40 16

b w 1118 7 c w 1118 17 d w 1118 10 e w 1118 11 f w 1118 6 g h w hs-flp 122 elav-gal4 c155 UAS-cd8GFP/+ or Y; FRT42D tubp-gal80/frt42d; tubp-gal4/+ w hs-flp 122 elav-gal4 c155 UAS-cd8GFP/+ or Y; FRT42D tubp-gal80/frt42d; tubp-gal4/ + i brk x47 /+ or Y; UAS-cd8GFP/+; dpp-gal4/+ 4 Fig. 7 a ey 3.5 -Gal80/+ or Y; fas3 NP1233 -Gal4/+; UAS-Dcr2 UAS-cd8GFP/UAS-l sc IR JF02399 10 b ey 3.5 -Gal80/+ or Y; fas3 NP1233 -Gal4/+; UAS-Dcr2 UAS-cd8GFP/UAS-l sc IR JF02399 17 c ey 3.5 -Gal80/+ or Y; fas3 NP1233 -Gal4/+; UAS-Dcr2 UAS-cd8GFP/UAS-l sc IR JF02399 7 d ey 3.5 -Gal80/+ or Y; fas3 NP1233 -Gal4/+; UAS-Dcr2 UAS-cd8GFP/UAS-l sc IR JF02399 12 e ey 3.5 -Gal80/+ or Y; fas3 NP1233 -Gal4/+; UAS-Dcr2 UAS-cd8GFP/UAS-l sc IR JF02399 6 f ey 3.5 -Gal80/+ or Y; fas3 NP1233 -Gal4/+; UAS-Dcr2 UAS-cd8GFP/UAS-l sc IR JF02399 7 g ey 3.5 -Gal80/+ or Y; fas3 NP1233 -Gal4/+; UAS-Dcr2 UAS-cd8GFP/UAS-l sc IR JF02399 9 h ey 3.5 -Gal80/+ or Y; fas3 NP1233 -Gal4/+; UAS-Dcr2 UAS-cd8GFP/UAS-l sc IR JF02399 9 j w 1118 17 k Df(1)ase-1, sc ase-1 pn 1 /Y 11 l w 1118 11 m Df(1)ase-1, sc ase-1 pn 1 /Y 10 n w 1118 6 o Df(1)ase-1, sc ase-1 pn 1 /Y 7 Fig. 8 a ey 3.5 -Gal80/w 1118 or Y; fas3 NP1233 -Gal4/+; UAS-Dcr2 UAS-cd8GFP/+ 4 b ey 3.5 -Gal80/+ or Y; fas3 NP1233 -Gal4/UAS-D IR KK107194 ; UAS-Dcr2 UAS-cd8GFP/+ 8 c ey 3.5 -Gal80/w 1118 or Y; fas3 NP1233 -Gal4/+; UAS-Dcr2 UAS-cd8GFP/+ 7 d ey 3.5 -Gal80/+ or Y; fas3 NP1233 -Gal4/UAS-D IR KK107194 ; UAS-Dcr2 UAS-cd8GFP/+ 6 e ey 3.5 -Gal80/w 1118 or Y; fas3 NP1233 -Gal4/+; UAS-Dcr2 UAS-cd8GFP/+ 3 f ey 3.5 -Gal80/+ or Y; fas3 NP1233 -Gal4/UAS-D IR KK107194 ; UAS-Dcr2 UAS-cd8GFP/+ 8 g ey 3.5 -Gal80/w 1118 or Y; fas3 NP1233 -Gal4/+; UAS-Dcr2 UAS-cd8GFP/+ 3 h ey 3.5 -Gal80/+ or Y; fas3 NP1233 -Gal4/UAS-D IR KK107194 ; UAS-Dcr2 UAS-cd8GFP/+ 7 i +/w 1118 or Y; neur P72 -Gal4 UAS-ponGFP/+ 6 j +/w 1118 or Y; UAS-tll IR GD6236 /+; neur P72 -Gal4 UAS-ponGFP/UAS-Dcr2 11 k +/w 1118 or Y; neur P72 -Gal4 UAS-ponGFP/+ 7 l +/w 1118 or Y; UAS-tll IR GD6236 /+; neur P72 -Gal4 UAS-ponGFP/UAS-Dcr2 9 m +/w 1118 or Y; neur P72 -Gal4 UAS-ponGFP/+ 8 n +/w 1118 or Y; UAS-tll IR GD6236 /+; neur P72 -Gal4 UAS-ponGFP/UAS-Dcr2 12 o w 1118 7 p ato 1 7 q ey 3.5 -Gal80/+ or Y; ubi-gfp cyce AR95 FRT40A/dac 1 FRT40A; lama-gal4 UAS- FLP mδ/+ a If not otherwise indicated, in loss-of-function and knockdown experiments, all examined control samples were normal, while all experimental samples showed defects (100% penetrance). 2 6 8

Supplementary Table 2 Full genotypes and numbers of samples shown in Supplementary figure panels. Figure Panel Genotype n = a Suppl. a esg MH766 -Gal4/esg-lacZ B7-2-22 ; UAS-cd8GFP/TM2 7 Fig. 1 b ey 3.5 -Gal80/w 1118 or Y; fas3 NP1233 -Gal4/+; UAS-Dcr2 UAS-cd8GFP/+ 16 c ey 3.5 -Gal80/+ or Y; fas3 NP1233 -Gal4/UAS-fas3 IR KK100642 ; UAS-Dcr2 UAScd8GFP/+ d w 1118 4 Suppl. a ey 3.5 -Gal80/w 1118 or Y; fas3 NP1233 -Gal4/+; UAS-Dcr2 UAS-cd8GFP/+ 10 Fig. 2 b ey 3.5 -Gal80/+ or Y; fas3 NP1233 -Gal4/+; UAS-Dcr2 UAS-cd8GFP/UAS-l sc IR JF02399 6 c ey 3.5 -Gal80/+ or Y; fas3 NP1233 -Gal4/UAS-l sc IR KK104691 ; UAS-Dcr2 UAS-cd8GFP/+ 4 d ey 3.5 -Gal80/+ or Y; fas3 NP1233 -Gal4/UAS-l sc IR KK104691 ; UAS-Dcr2 UAS-cd8GFP/+ 9 e ey 3.5 -Gal80/+ or Y; fas3 NP1233 -Gal4/UAS-l sc IR KK104691 ; UAS-Dcr2 UAS-cd8GFP/+ 7 f ey 3.5 -Gal80/+ or Y; fas3 NP1233 -Gal4/UAS-l sc IR KK104691 ; UAS-Dcr2 UAS-cd8GFP/+ 6 g ey 3.5 -Gal80/+ or Y; fas3 NP1233 -Gal4/UAS-l sc IR KK104691 ; UAS-Dcr2 UAS-cd8GFP/+ 5 h i ey 3.5 -Gal80/+ or Y; fas3 NP1233 -Gal4/ esg-lacz B7-2-22 ; UAS-Dcr2 UAScd8GFP/UAS-l sc IR JF02399 14 ey 3.5 -Gal80/+ or Y; fas3 NP1233 -Gal4/ esg-lacz B7-2-22 ; UAS-Dcr2 UAScd8GFP/UAS-l sc IR JF02399 7 j ey 3.5 -Gal80/+ or Y; fas3 NP1233 -Gal4/+; UAS-Dcr2 UAS-cd8GFP/UAS-l sc IR JF02399 4 k ey 3.5 -Gal80/+ or Y; fas3 NP1233 -Gal4/+; UAS-Dcr2 UAS-cd8GFP/UAS-l sc IR JF02399 6 Suppl. a ey 3.5 -Gal80/w 1118 or Y; fas3 NP1233 Gal4/+; UAS-Dcr2 UAS-cd8GFP/+ 10 Fig. 3 b ey 3.5 -Gal80/+ or Y; fas3 NP1233 -Gal4/UAS-D IR KK107194 ; UAS-Dcr2 UAS-cd8GFP/+ 3 c ey 3.5 -Gal80/+ or Y; fas3 NP1233 -Gal4/+; UAS-Dcr2 UAS-cd8GFP/UAS-D IR GD49549 3 d ey 3.5 -Gal80/w 1118 or Y; fas3 NP1233 Gal4/+; UAS-Dcr2 UAS-cd8GFP/+ 3 e ey 3.5 -Gal80/+ or Y; fas3 NP1233 -Gal4/UAS-D IR KK107194 ; UAS-Dcr2 UAS-cd8GFP/+ 5 f ey 3.5 -Gal80/+ or Y; fas3 NP1233 -Gal4/+; UAS-Dcr2 UAS-cd8GFP/UAS-D IR GD49549 6 Suppl. a ey 3.5 -Gal80/w 1118 or Y; fas3 NP1233 Gal4/+; UAS-Dcr2 UAS-cd8GFP/+ 5 Fig. 4 b ey 3.5 -Gal80/+ or Y; fas3 NP1233 -Gal4/UAS-tll IR GD6236 ; UAS-Dcr2 UAS-cd8GFP/+ 4 c +/w 1118 or Y; neur P72 -Gal4 UAS-ponGFP/+ 5 d +/w 1118 or Y; UAS-tll IR GD6236 /+; neur P72 -Gal4 UAS-ponGFP/UAS-Dcr2 4 a If not otherwise indicated, in loss-of-function and knockdown experiments, all examined control samples were normal, while all experimental samples showed defects (100% penetrance). 5